Accurate detection of large-scale atmospheric tropical waves, such as African easterly waves (AEWs), may help extend lead times for predicting tropical cyclone (TC) genesis. Since observed AEWs have comparable but slightly different periods showing spatial and temporal variations, local analysis of frequencies and amplitudes of AEWs is crucial for revealing the role of AEWs in the modulation of TC genesis. To achieve this goal, we investigate the recurrence plot (RP) method. A recurrence is defined when the trajectory of a state returns to the neighborhood of a previously visited state. To verify implementation of the RP method in Python and its capability for revealing a transition between different types of solutions, we apply the RP to analyze several idealized solutions, including periodic, quasiperiodic, chaotic and limit cycle solutions, and various types of solutions within the three- and five-dimensional Lorenz models. We then extend the RP analysis to two datasets from the European Centre for Medium-Range Weather Forecasts global reanalysis and global mesoscale model data in order to reveal the recurrence of multiple AEWs during summer 2006. Our results indicate that the RP analysis effectively displays the major features of time-varying oscillations and the growing or decaying amplitudes of multiple AEWs.
Part of the book: Current Topics in Tropical Cyclone Research