Agriculture and food have a greater role to play in order to achieve sustainable development goals. Therefore, there is a need to put an end to the effect of pathogens on food quality and safety. Pathogens have been recognized as one of the major factors causing a reduction in profitable food production. The conventional methods of detecting pathogens are time-consuming and expensive for the farmers in rural areas. In view of this, this chapter reviews the biosensors that have been developed for the detection of biological hazards in food and agricultural sectors. This chapter also lays emphasis on the impact of nanotechnology on building a fast, reliable, more sensitive, accessible, user-friendly and easily adaptable technology for illiterate farmers in the rural communities. On the whole, we have addressed the past and most recent biosensors that could ensure the quick delivery of vision 2030 which aims to end hunger and poverty.
Part of the book: Biosensing Technologies for the Detection of Pathogens
The synthesis and application of silver nanoparticles are increasingly becoming attractive. Hence, a critical examination of the various factors needed for the synthesis of silver nanoparticles as well as the characterization is imperative. In light of this, we addressed in this chapter, the nitty-gritty on the operational parameters (factors) and characterization relevant to synthesis of silver nanoparticle. The following characterization protocols were discussed in the context of silver nanoparticle synthesis. These protocols include spectroscopic techniques such as ultraviolet visible spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray fluorescence (XRF), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS).
Part of the book: Silver Nanoparticles