In this work, the twin-grating fiber optic sensor has been applied on wavelength-division multiplexing. A quasi-distributed sensor formed by three local twin-grating sensors, is numerically simulated. The wavelength channels were 1531.5, 1535.5, and 1539.5 nm. The numerical simulation shows the resolution vs. signal-to-noise rate. Three local twin-grating sensors have approximately the same resolution because all local sensors have the same cavity length and the wavelength channels are very close. All local sensors have two numerical resolutions because the Fourier domain phase analysis algorithm makes two evaluations of the Bragg wavelength shift. The transition between both resolutions can be calculated with the parameters: cavity length, Bragg wavelength channel, refraction index, and enveloped resolution. This transition depends on the noise system, demodulation algorithm, instrumentation, and local sensor properties. A very important point is, a theoretical analysis will permit to know the exact resolution for each local twin-grating sensor.
Part of the book: Numerical Simulations in Engineering and Science