Geographic location and characteristics of the coral reefs from the South Gulf of Mexico and Mexican Caribbean. Source of data [19, 20, 25, 37, 38, 43, 44, 45, 46, 47, 48].
\r\n\tHowever, despite the positive outlook and trends in routing protocol design, there are still several open or unresolved challenges that researchers are still grappling with. Providing adequate responses to those challenges is essential for next-generation networks in order to maintain its reputation and sustain its preponderance in cyber and physical security. Some of the challenges include, but are not limited to, the following:
\r\n\t• Robustness and reliability of routing protocol
\r\n\t• Reduced dependencies on heterogeneous networks
\r\n\t• Security of routing protocols
\r\n\t• Dynamic Adhoc routing Protocols
\r\n\t• Routing in 5G Networks
\r\n\t• Routing IoT enabled networks
\r\n\t• Scalable and dependable routing system architectures
\r\n\t• QoS and QoE Models and Routing Architectures
\r\n\t• Context-Aware Services and Models
\r\n\t• Routing Mobile Edge Computing
\r\n\tThe goal of the book is to present the state of the art in routing protocol and report on new approaches, methods, findings, and technologies developed or being developed by the research community and the industry to address the aforementioned challenges.
\r\n\tThe book will focus on introducing fundamental principles and concepts of key enabling technologies for routing protocol applied for next-generation networks, disseminate recent research and development efforts in this fascinating area, investigate related trends and challenges, and present case studies and examples.
\r\n\tThe book also investigates the advances and future in research and development in Routing Protocols in the context of new generation communication networks.
The fish fauna of the south Gulf of Mexico, the Campeche Bank and the Caribbean coast of Yucatan Peninsula comprise the northernmost extreme of the tropical sea, included in the region known as the Caribbean province in the tropical belt of Eastern America. This region has a high species diversity combing a marine shelf covered by terrigenous sediments and coral reefs, allowing the possibility to maintain a diverse fish community, supporting the statement that between 66 and 89% of marine fish species are dwellers of coral reefs and reef-associated habitats [1].
Ichthyofaunal research in the reefs of the Gulf of Mexico and the Mexican Caribbean is just over 50 years old. The first formal documents allude to the components of Alacranes reef, Yucatan [2], Blanquilla reef, Veracruz [3] and Cozumel, Quintana Roo [4]. However, the knowledge of the ichthyological components of both the southern Gulf of Mexico and the Mexican Caribbean is incomplete, because sampling efforts have been isolated and dispersed over time [5]. Among the works that synthesize the regional ichthyofauna stand out Díaz-Ruiz et al., Schmitter-Soto, and Schmitter-Soto et al. [5, 6, 7] for the Mexican Caribbean, as well as Chávez and Beaver [8] for reef systems of the southern Gulf of Mexico.
The publications that have addressed the structure of fish communities (richness, distribution, relationship with environmental factors, etc.) are numerous, some of them correspond to particular systems, such as the Veracruz Reef System [9], Cozumel [10]; or Chinchorro Bank [11]. Others include a general analysis of the reef fish communities of the Gulf of Mexico [12] and the Caribbean [13, 14, 15]. Fishing contributes to degradation of coral reefs and the fisheries associated to these ecosystems, includes a smaller component of coral reef dwelling species [16, 17]. This chapter summarizes the information published so far, comparing the ichthyological components and their relative abundance. In addition, an assessment of the most important fisheries associated with the reef structures of the southern Gulf of Mexico and the Mexican Caribbean is made.
The eastern Gulf of Mexico and the Mexican coast of the Caribbean Sea are a heterogeneous region where three subzones can be defined by the characteristics of the habitat, the western Gulf, the Yucatan platform, also known as Campeche Bank, and the Caribbean coast of the Yucatan peninsula [18]. Despite these regions hold some differential characteristics, the fish fauna has many similarities, and despite the Caribbean coast holds essentially a coral reef habitat, there are many common fish species along these areas. It is considered that more than 100 fish species are closely associated to coral reefs and hard bottoms [8], so preservation of integrity of these communities is important to the economic and ecological health of this region.
The south Gulf of Mexico, from the border with the USA, is considered of tropical nature, where two main habitats are well defined, one which may be subdivided into two main ecosystem types, the first one is shrimp grounds, strongly associated to coastal lagoons and mangroves; the other one is the coral reef ecosystems divided in two subregions (Veracruz and Campeche reefs). The coast of Veracruz contains more than 100 coral reef structures [19] divided in three systems: the Lobos Tuxpan Reef System (LTRS), the Veracruz Reef System (VRS) and the Tuxtlas Reef System (TRS) [20]. Most reefs in Veracruz develop under stress conditions (turbidity and thermal stress) due to their proximity to the coast [21] and the drainage of the ten hydrological basins that flow towards the Veracruz coast [22]. According to their geomorphology, the Veracruz’s reefs are: platform, fringing and submerged banks. Zonation of the platform-type reefs (crest, lagoon, windward and leeward slopes) is defined by the benthic components [21, 23, 24, 25, 26] resulting from wave exposure, ocean currents, suspended sediments, and turbidity [27, 28]. Coral coverage of these reefs is 15 to 25% [21, 26]. Veracruz’s submerged banks have an irregular to oval or semicircular shape, with a depth ranging from 1 to 40 m [19]. Although there are few studies, the coral coverage of these reefs is less than 10% [29, 30], excepting Blake reef, whose coral coverage is higher than 15% [31]. Fringing reefs are small formations (<1.0 km long) in central Veracruz, whose coral cover is less than 10% [32]. In the south, there is a strip of approximately 3.5 km [33] (Figure 1, Table 1).
Coral reefs of the south Gulf of Mexico and Mexican Caribbean. 1=Blanquilla, 2=Medio, 3=Lobos, 4=Tanhuijo, 5=Enmedio, 6=Pantepec, 7=Tuxpan, 8=Blake, 9=Punta Gorda, 10=Galleguilla, 11=Blanquilla, 12=Anegada de Adentro, 13=Verde, 14=Hornos, 15=Pájaros, 16=Sacrificios, 17=Anegada de Afuera, 18=Mocambo, 19=Topatillo, 20=Santiaguillo, 21=Anegadilla, 22=Polo, 23=Enmedio, 24=Los Bajitos, 25=Chopas, 26=Blanca, 27=Cabezo, 28=Giote, 29=Rizo, 30=La Palma, 31=Los Sargazos, 32=Periférico, 33=Terranova, 34=La Perla, 35=Zapotitlán, 36=Palo Seco, 37=Tripie, 38=Triángulos Oeste, 39=Triángulos Este, 40=Obispo Norte, 41=Obispo Sur, 42=Arcas, 43=Banco Pera, 44=Banco Nuevo, 45=Arenas, 46=Serpiente, 47=Madagascar, 48=Sisal, 49=Alacranes, 50=Punta Nizuc, 51=Puerto Morelos, 52=Punta Maroma, 53=Cozumel, 54=Akumal, 55=Boca Paila, 56=Yuyum, 57=Punta Allen, 58=Punta Herrero, 59=Tampalam, 60=El Placer, 61=Mahahual, 62=Xahuayxol, 63=Xcalak, 64=Chinchorro.
Reef | Geographic location | Average surface (ha) | Depth (m) |
---|---|---|---|
1. Blanquilla | 21°32′33”N; 97°16′49”W | 200.76 | 0.5–20 |
2. Medio | 21°30′44”N; 97°15′09”W | 118.78 | 0.5–20 |
3. Lobos | 21°28′19”N; 97°13′27”W | 398.26 | 0.5–30 |
4. Tanhuijo | 21°08′17”N; 97°16′18”W | 155.45 | 0.5–20 |
5. Enmedio | 21°04′56”N; 97°15′20”W | 237.05 | 0.5–20 |
6. Pantepec | 21°02′40”N; 97°14′27”W | 100.99 | 16–27 |
7. Tuxpan | 21°01′44”N; 97°11′43”W | 144.99 | 0.5–30 |
8. Blake | 20°45′47”N; 96°59′24”W | 124.49 | 9–34 |
9. Punta Gorda | 19°15′05”N; 96°10′45”W | 39.03 | 0–4 |
10. Galleguilla | 19°13′49”N; 96°07′22”W | 34.99 | 0–18 |
11. Blanquilla | 19°13′35”N; 96°05′51”W | 42.49 | 0–24 |
12. Anegada de Adentro | 19°13′33”N; 96°03′19”W | 75.85 | 0–36 |
13. Verde | 19°12′11”N; 96°04′03”W | 67.11 | 0–27 |
14. Hornos | 19°11′28”N; 96°07′13”W | 12.02 | 0–3 |
15. Pájaros | 19°11′18”N; 96°05′21”W | 113.08 | 0–18 |
16. Sacrificios | 19°10′35”N; 96°05′31”W | 45.18 | 0–14 |
17. Anegada de Afuera | 19°09′23”N; 95°51′23”W | 471.6 | 0–45 |
18. Mocambo | 19°09′00”N; 96°05′25”W | 43.73 | 0–7 |
19. Topatillo | 19°08′30”N, 95°50′08”W | 13.72 | 0–45 |
20.Santiaguillo | 19°08′29”N; 95°48′30”W | 17.5 | 0–45 |
21. Anegadilla | 19°08′09”N; 95°47′43”W | 20.62 | 0–45 |
22. Polo | 19°06′29”N; 95°58′37”W | 21.97 | 0–24 |
23. Enmedio | 19°06′21”N; 95°56′20”W | 258.62 | 0–24 |
24. Los Bajitos | 19°06′06”N; 95°58′28”W | 42.79 | |
25. Chopas | 19°05′22”N; 95°58′07”W | 473.63 | 0–24 |
26. Blanca | 19°05′10”N; 95°59′56”W | 41.33 | 0–18 |
27. Cabezo | 19°04′31”N; 95°51′00”W | 1037.59 | 0–24 |
28. Giote | 19°04′08”N; 95°59′55”W | 3.46 | 0–2 |
29. Rizo | 19°03′50”N; 95°55′41”W | 184.41 | 0–18 |
30. La Palma | 19°07′15”N; 95°57′58”W | 197.14 | 4–26 |
31. Los Sargazos | 19°06′22”N; 95°56′47”W | 19.22 | 2–22 |
32. Periférico | 19°04′57”N; 95°56′03”W | 4.59 | 2–16 |
33. Terranova | 19°10′59”N; 96°05′42”W | 6.53 | 1–15 |
34. La Perla | 18°32′35”N; 94°49′34”W | ND | 1–12 |
35. Zapotitlán | 18°27′42”N; 94°45′44”W | ND | 1–12 |
36. Palo Seco | 18°10′33”N; 94°31′32”W | ND | 11–22 |
37. Tripie | 18°10′33”N; 94°22′03”W | ND | 7–15 |
38. Triángulos Oeste | 20°57′58”N; 92°17′56”W | ND | 0–18 |
39. Triángulos Este | 20°54′31”N; 92°12′55”W | ND | 0–18 |
40. Obispo Norte | 20°28′41”N; 92°12′21”W | ND | 5–18 |
41. Obispo Sur | 20°25′28”N; 92°13′25”W | ND | 5–18 |
42. Arcas | 20°11′47”N; 91°57′58”W | ND | 0–18 |
43. Banco Pera | 20°42′55”N; 91°55′05”W | ND | 16–44 |
44. Banco Nuevo | 20°30′00”N; 91°50′44”W | ND | 0–30 |
45. Arenas | 22°06′42”N; 91°23′27”W | ND | 0–30 |
46. Serpiente | 20°57′58”N; 92°17′56”W | 0.21 | 7–18 |
47. Madagascar | 20°57′58”N; 92°17′56”W | 0.21 | 4–13 |
48. Sisal | 20°57′58”N; 92°17′56”W | 0.67 | 3–10 |
49. Alacranes | 22°28′43”N; 89°42′05”W | 333,768 | 0.5–50 |
50. Punta Nizuc | 21°19′10”N; 86°46′30”W | ND | 1- > 30 |
51. Puerto Morelos | 20°51′16”N; 86°51′40”W | 9066 | 0.5–25 |
52. Punta Maroma | 20°43′42”N; 86°57′37”W | ND | 1- > 30 |
53. Cozumel | 20°25′16”N; 86°55′52”W | 11,987 | 1.5- < 40 |
54. Akumal | 22°23′24”N; 87°18′30”W | ND | 1.5–65 |
55. Boca Paila | 20°01′11”N; 87°28′06”W | ND | 1- > 30 |
56. Yuyum | 19°54′49”N; 87°25′42”W | ND | 1–45 |
57. Punta Allen | 19°46′20”N; 87°26′52”W | ND | 1- > 30 |
58. Punta Herrero | 19°19′42”N; 87°26′43”W | ND | 1- > 30 |
59. Tampalam | 19°06′54”N; 87°32′11”W | ND | 1- > 30 |
60. El Placer | 18°53′23”N; 87°38′06”W | ND | 1- > 30 |
61. Mahahual | 18°42′49”N; 87°42′07”W | ND | 1- > 30 |
62. Xahuayxol | 18°21′15”N; 87°47′27”W | ND | 1- > 30 |
63. Xcalak | 18°15′35”N; 87°49′25”W | 17,949 | 1–70 |
64. Chinchorro | 18°34′24”N; 87°21′06”W | 144,360 | 1.5–60 |
The coral formations of the Campeche Bank (CBRS) are geomorphologically divided in two: platform-type or emergent (Arcas) and submerged banks (Banco Pera), among them, Alacranes reef (22 km long), is on the north of Yucatan peninsula, at 150 km from the coast [34] (Figure 1, Table 1). Jordán-Dahlgren [35] refers to up to 46 structures in this region. Platform-type reefs present a similar zoning to that observed in Veracruz reefs [24, 25]. Their depth ranging from 1 to 44 m [35, 36]. The highest part of the submerged banks is between 3 and 15 m below sea level and its maximum depth is 18 m [37, 38] and the coral cover of these reefs ranges from 5 to 25% [25]. The coral reefs located on the west shelf of the Campeche Bank, play the role of a source of biodiversity of an important coral and fish community which supply with larval stages to the coral reef ecosystem of the Veracruz shelf [39, 40].
Finally, the Caribbean coast of Yucatan Peninsula almost lacks of a continental shelf, and the coast is profusely occupied by fringing reefs, from Isla Contoy to the border with Belize. This region also includes insular structures (Cozumel and Banco Chinchorro) and submerged banks (Arrowsmith) [35, 41]. The fringing formations grow parallel to the coast or are separated by a well-defined lagoon. These systems are divided into three major groups: the southern group is made up of well-developed reefs that form channel systems and massif crest reefs whose geographic limit is the 19°05′ coordinate, the central-northern group, which goes from the previous geographic limit to Contoy Island, with well-developed structures in the front, is dominated by gorgonians and algae, and the deep reefs that are located in southwest Cozumel with coral development between 10 and 50 m depth [24] (Figure 1, Table 1). The coral cover of most reefs in this region ranges from 15 to 20% [41].
Zonation of coral reefs of the Mexican Caribbean is related to environmental factors, like wave impact and light penetration [42] and include: a shallow lagoon covered with sand, seagrasses, macroalgae and scarce coral colonies; a shallow back reef covered with coral fragments and massive coral colonies; a shallow reef crest exposed to surf that is covered by branching corals (Acropora palmata), fire coral (Millepora spp) and coralline algae; a reef front with a gentle slope facing the prevailing winds, with a depth of 5 to 25 m. This zone is covered with branching and massive corals, sand and debris, and the reef slope is covered with massive and foliose corals as well as sponges and gorgonians. This zone is an extension of the reef front with a high slope at a depth of 12 to 40 m [13, 14] or more.
As a consequence of habitat morphology, the study of coral reef fish is based upon visual censuses. This way, it makes not easy to compare abundance data of coral reefs with fish faunas caught with trawl and other kind of nets on soft grounds. However, quantitative data provide records of relative abundance and therefore allows to get a picture of fish communities in each habitat.
The current stream on the Mexican Caribbean is one of the factors determining the physical and chemical properties of the marine waters of the Gulf of Mexico [39] and is a decisive factor in the ichthyologic composition [12]. The current system, the rainfall regime and the continental drainage modify the environmental conditions at the regional level [49], leading to the presence of endemic species and influencing the abundance of some others. The fish community associated to the reefs of the southern Gulf of Mexico and the Mexican Caribbean is made up of 776 species belonging to 115 families. The highest species richness corresponds to the Caribbean (579 species) [4, 6, 10, 11, 50], followed by the reefs of Veracruz (509 species) [3, 9, 32, 33, 51, 52, 53, 54] and the Campeche Bank (445 species) [2, 12, 38, 55, 56]. The differences are related in part to the sampling effort carried out and the distance to the center of origin [57], since most of them are of Caribbean origin. On the other hand, regional conditions (turbidity, nutrient concentration, etc.) are determining factors in the fish components [27]. For example, in Veracruz, species that normally inhabit estuarine areas (e.g. Bairdiella veraecrucis) have been recorded in the proximity of the reefs located near the coast [54]. Published data for the reefs of the southern Gulf of Mexico and the Mexican Caribbean [2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 32, 33, 38, 50, 51, 52, 53, 54, 55, 56] reveal that the families with the highest species richness are: Serranidae, Gobiidae, Carangidae, and Labrisomidae (Table 2).
Family | Veracruz Coast | Campeche Bank | Mexican Caribbean | Total |
---|---|---|---|---|
Serranidae | 45 | 39 | 45 | 63 |
Gobiidae | 27 | 30 | 22 | 48 |
Carangidae | 23 | 20 | 24 | 25 |
Labrisomidae | 10 | 16 | 22 | 24 |
Haemulidae | 20 | 15 | 16 | 21 |
Sciaenidae | 19 | 8 | 7 | 19 |
Labridae | 16 | 16 | 16 | 19 |
Pomacentridae | 15 | 15 | 14 | 15 |
Scaridae | 14 | 14 | 14 | 14 |
Species richness of the main fish fauna associated to the reefs of the South Gulf of Mexico and the Mexican Caribbean.
Regional conditions of salinity, temperature, concentration of nutrients, among others, as well as the heterogeneity of the reef environment, create patterns of differential abundance among the three regions. Thus, the proportions estimated from published [11, 12, 13, 32, 58, 59] and unpublished data show that, Blue tang (Acanthurus coeruleus), Blue chromis (Chromis cyanea), Yellowhead wrasse (Halichoeres garnoti) and Bluehead (Thalassoma bifasciatum) are higher in the Caribbean, while Glass goby/Masked goby (Coryphopterus hyalinus-personatus), Mardi Gras wrasse (Halichoeres burekae), Doctorfish (Acanthurus chirurgus) and Brown chromis (Chromis multilineata) show a higher relative abundance in the reefs of the Gulf of Mexico (Table 3).
Veracruz Coast | Campeche Bank | Mexican Caribbean | |
---|---|---|---|
Abudefduf saxatilis | 2–5% | <1% | 2–5% |
Acanthurus chirurgus | <1% | <1% | 1–2% |
Acanthurus coeruleus | <1% | <1% | 2–5% |
Acanthurus tractus | <1% | <1% | 2–5% |
Bodianus rufus | 2–5% | <1% | |
Chromis cyanea | <1% | <1% | 10–20% |
Chromis multilineata | 10–20% | 1–2% | 1–2% |
Chromis scotti | 2–5% | 2–5% | |
Clepticus parrae | <1% | <1% | 5–10% |
Coryphopterus hyalinus-personatus | 20–30% | 20–30% | <5% |
Elacatinus jarocho | 2–5% | ||
Gramma loreto | 1–2% | 1–2% | |
Haemulon aurolineatum | 5–10% | 1–2% | <1% |
Haemulon flavolineatum | <1% | 2–5% | 2–5% |
Haemulon sciurus | 2–5% | ||
Halichoeres bivittatus | 2–5% | 5–10% | 1–2% |
Halichoeres burekae | >30% | 2–5% | <1% |
Halichoeres garnoti | <1% | 1–2% | 2–5% |
Lujanus apodus | 1–2% | ||
Microspathodon chrysurus | <1% | <1% | 1–2% |
Ocyurus chrysurus | <1% | 1–2% | |
Scarus iseri | 2–5% | 10–20% | 2–5% |
Scarus taeniopterus | 1–2% | ||
Sparisoma aurofrenatum | <1% | 2–5% | 2–5% |
Sparisoma viride | <1% | 1–2% | 2–5% |
Stegastes adustus | 2–5% | 1–2% | 1–2% |
Stegastes partitus | 1–2% | 5–10% | 5–10% |
Stegastes planifrons | 1–2% | 2–5% | 1–2% |
Stegastes xanthurus | 2–5% | 1–2% | <1% |
Thalassoma bifasciatum | 2–5% | 2–5% | 10–20% |
Relative abundance of the most abundant fish species of coral reefs of the South Gulf of Mexico and the Mexican Caribbean.
Environmental heterogeneity has been referred to as a cause of ichthyofaunal diversity [60, 61] and this heterogeneity can be analyzed at various scales: region, reef and reef zone. At the region level, oceanographic processes (currents, gyres, etc.) determine the flow of nutrients and larvae to the reefs [62]. This, together with the availability of physical spaces for recruitment and settlement of larvae as well as the availability of food, participate in the composition and abundance of fish. The conditions of higher environmental stability in the Mexican Caribbean seem to be related to its greater richness. However, the flow of fresh water and sediments on the reefs of Veracruz promotes a mixing of estuarine and marine fishes.
At the coral reef scale, the geomorphology, the dimensions of the reef, the depth and its distance to the coast, as well as local current patterns, temperature regime, and salinity, are some of the factors defining the structure of fish communities [8, 28, 63]. At this scale, heterogeneity is related to the dimensions of each reef [25] which diversifies the niches and enhancing specific diversity, for example, in Alacranes reef (Gulf of Mexico) and Chinchorro Bank (Caribbean). The fish richness of the fringing reefs of the Caribbean, is higher in the southern reefs (Mahahual, Yuyum, and Boca Paila) compared to the northern reefs (Punta Nizuc, Puerto Morelos, and Punta Maroma) [15], perhaps because deep fore reefs tend to be smaller and less developed in the north [41], while in the center and southern, the massive coral species appear to determine the structure and diversity of the coral assemblages, influencing fish aggregations [15]. The Figure 2 show the fish richness in some reefs of the south Gulf of Mexico and the Mexican Caribbean [2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 32, 33, 38, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59].
Ichthyologic species richness recorded at some reefs of the southern Gulf of Mexico and the Mexican Caribbean.
The ichthyofaunal components of near-shore reef structures may be influenced by the fauna that inhabit freshwater or estuarine systems. Reefs of central Veracruz that are very close to the mouths of the Jamapa and La Antigua rivers have typically estuarine species, such as: B. veraecrucis [54]. This connection is also observed in Tamiahua Lagoon, Veracruz and Términos Lagoon, Campeche, where typical reef fish species like Aluterus schoepfii and Stephanolepis hispidus have been detected respectively [64, 65]. This proximity provides nutrients to reef areas and limits light penetration due to suspended sediments, which modifies the abundance of some species, such as T. bifasciatum [66].
In the Caribbean, reefs connected to rivers running underground, have components cataloged as freshwater, such as Mayaheros urophthalmus [67] or estuarine species, such as Mugil sp. [68]. On fringing reefs, some fishes (e.g. Lutjanidae, and Haemulidae) move from the reef to the mangrove in search of food or for breeding [69, 70], explaining their high abundance values recorded in the Caribbean reefs especially in shallow areas [13, 68].
At reef zone level, exposure to dominant winds, water transparency, depth and benthic coverage define fish richness and distribution [28, 66]. In the platform-type reefs of Veracruz and Campeche, the greater coral coverage in the leeward slope favors the richness and abundance of fish, particularly those that live closely associated with coral structures. In this reef zone are common Halichoeres burekae, Coryphopterus hyalinus, Haemulon aurolineatum, Stegastes planifrons, Chromis multilineata, Chromis scotti, Scarus iseri, and Sparisoma aurofrenatum. On the windward slope, structural complexity as well as currents concentrate plankton are determinant in the fish community structure. In the deep areas, are frecuent H. burekae, C. multilineata, C. hyalinus, and Abudefduf saxatilis. In the shallow areas of leeward, Stegastes adustus, Ophioblennius macclurei, T. bifasciatum, and Microspathodon chrysurus are the most abundant. In the crest, the fish species adapted to swell like S. adustus, A. saxatilis, O. macclurei, T. bifasciatum, and M. chrysurus dominate. Finally, in the lagoon reef, species like Halichoeres bivittatus, S. adustus, Stegastes leucostictus and Sparisoma radians are common. Figure 3 shows the fish richness by reef zone, estimated from unpublished data on reefs from northern Veracruz, the average richness is higher on the slopes.
Mean fish species richness by reef zone at coral reefs of northern Veracruz, Mexico.
In the Mexican Caribbean, the average ichthyologic species richness is higher in the areas exposed to the waves (slope and terraces) in comparison to the lagoon and the reef front (Figure 4). Distribution of fish species is fitted to the availability of microhabitats as well as to the environmental preferences of each species. In the lagoons, the juvenile stages of Haemulon sciurus, Haemulon flavolineatum, Lutjanus apodus, Ocyurus chrysurus, and Acanthurus chirurgus, among others, are frequent. In addition, species linked to sea grasses and sand (S. radians, Eucinostomus lefroyi, Gerres cinereus, and H. bivittatus) are common too. On the reef crest, where the substrate is covered by branched corals, calcareous algae and turf algae, are common the species adapted to intense wave action as S. adustus, M. chrysurus, and A. saxatilis. In addition, schools of Kyphosus vaigiensis, Acanthurus tractus, A. chirurgus, and S. iseri are transient through this area. On the reef slope, schools of fish that take advantage of the concentration of zooplankton generated by the currents can be observed. Among these species, stand out for their abundance C. scotti, Chromis cyanea, and Clepticus parrae. In the interspaces produced by the coral development, fish species that use the spaces between corals to protect themselves from predators (Haemulon melanorum, Haemulon macrostomum) and species that use these spaces to go unnoticed by the prey (Epinephelus morio) are often seen. Also common are species that transit the water column in search of food (Caranx ruber, and Lutjanus cyanopterus). In the terraces characterized by the presence of gorgonids, Cephalopholis fulva, Epinephelus guttatus, and Stegastes partitus [13] are common.
Mean ichthyologic richness by reef zone in Mexican Caribbean reefs. Data sources [13, 15].
The structure of coral reef fish communities could be influenced by natural and anthropogenic sources. The climate change may affect small sedentary fish more than large species [71]. However, the former might allow faster adaptation to new environmental conditions [72]. Given the general deterioration of reefs, a lower abundance is expected, not only of large carnivores but also of small specialist fishes [50].
The fishing pressure over fishes in coral reefs of the Gulf of Mexico and the Mexican Caribbean has produced changes in the richness and abundance of fishes [16, 50, 73]. For example, the fishing of groupers in the Mexican Caribbean caused the disappearance of the aggregation of Nassau grouper off Mahahual [74]. On the other hand, the scarcity of commercial fish species (e.g. snappers and groupers), become the parrotfish as a target group of spear-gun fishing as a result of the increasing of tourism along this area [73]. In the southern Mexican Caribbean there are a decreasing of coral reef fishes that is more evident in the large piscivores [50].
The anthropogenic disturbances, the tourism and river discharges are related to high nutrient levels on reef systems [21, 75], and could be linked to observed seagrass and hard coral cover loss over the last decades as in the Gulf of Mexico [21, 76] as in the Mexican Caribbean [77, 78]. The sediments and nutrients in coral reefs increase the turbidity and modify the richness and abundance of herbivorous fishes [66, 79].
An examination of exploited fish stocks of the southern Mexico and the Mexican Caribbean suggests that the main fisheries are composed by transient species, whose distribution extends to the warm-temperate region of the East and South Eastern USA; on the south side, fish fauna share components of Caribbean species whose distribution range up to the Brazilian coast in many cases. The main components of the exploited stocks are species dwelling the shelf grounds, and a smaller component is based on coral reef dwelling species. The general perception is that overfishing is a major concern for many reef-fish populations, and this activity may be one of the most important activities contributing to degradation of coral reefs in the southern Gulf of Mexico [17] and the Mexican Caribbean [16]. In the reefs of Veracruz, around 50 out of the 550 reef-fish recorded, are often used for fisheries. Some of them are caught directly on the coral reefs using hooks and harpoons [80, 81].
An overview of the fisheries of the Gulf of México [82] allows to conclude that the fisheries of the south and north Gulf display rather independent trends, being the Gulf menhaden (Brevoortia patronus) on the northern Gulf, the species ruling this trend, and representing more than 90% of the whole catch. In the southern Gulf the whole catch is more stable over time than the one of the northern Gulf and the Gulf menhaden does not appear in catch records, whose volume ranges between 50,000 and 100,000 t in the northern Gulf. On both sides, at the north and south Gulf, mullets became more abundant over the recent years, which together with shrimp and crabs as scavengers, suggest a probable increase of debris, caused by the intensity of fisheries trawling of the shrimp grounds. Other important exploited stocks deserving to be mentioned are the Spanish mackerel (Scomberomorus maculatus) and the King mackerel (Scomberomorus cavalla), two migratory species up in the food web as predators, running along the coasts of the state of Veracruz, with catch volumes of +5200 and 2300 t per year respectively. These two species also are important for fisheries on the north Gulf.
The fish species associated with reef and rocky areas (Gulf of Mexico and Mexican Caribbean) are usually reported in a group called “escama (scale fish)”. They include groupers (e.g. Epinephelus morio), snappers (e.g. Lutjanus jocu), porgies (e.g. Calamus bajonado), grunts (e.g. Haemulon plumierii), hogfish (Lachnolaimus maximus), and tilefish (Lopholatilus chamaeleonticeps) among others [83].
In the 1970s, large predatory fishes such as sharks, and groupers were among the most important catches at the Mexican Caribbean reefs. The reduction of their populations led to new target species, such as Parrotfish, Whitefish, Spotted snapper, Tilefish and Creolefish [83]. Some of these fish species have been overfished [84]. Data by Arias-González [16] revealed that the biomass of large, predatory fish (Serranidae, Lutjanidae, Carangidae, and Sphyraenidae) was lesser in non-protected areas of the Mexican Caribbean.
In regard to the impact of climate of fish stocks, there is evidence [85] of a strong influence of climate indices, in particular the Southern Oscillation Index and the North Atlantic Oscillation Index on the catch of 66 species over historical records, finding that climate plays a significant role, in particular short-lived species. Some species respond with positive and others with negative sign respecting to the variability of these signs. This indicates the strong influence of climate. In some cases, trends help suggesting the most likely expectations of the catch in the near future, whilst others with declining trends make it difficult to forecast the effects of fishing intensity or other human impacts.
Species diversity of the Gulf of Mexico despite it does not show any evidence of being limiting for the Caribbean species, it somehow constrains the entrance to all typical Caribbean forms and in many zoological groups there are some species that are not found inside the Gulf and is known that some of these penetrate a far as the Campeche Bank reefs, or as occurs in some cases, they display very low abundances, like the Red grouper (E. morio), the Nassau grouper (Epinephelus striatus), the Gag (Mycteroperca microlepis). By contrast, there are a few fish species which are endemic to the Gulf of Mexico, like the Black snook (Centropomus poeyi), and Jarocho goby (Elacatinus jarocho), to just mention a few. After these examples, we can state that the Gulf of México contains some characteristics restricting the penetration of some Caribbean forms. It is pertinent to mention that in this chapter, mixohaline species associated to the brackish-waters are not considered.
In regard to the exploited fish stocks, two explanations are given respecting to significant changes of their biomasses, one is attributable to fishing intensity, and the other is to climatic variability. We consider that under certain circumstances, both factors may be responsible for these changes, especially if we look into particular fish stocks. Environmental variability is responsible of sudden changes in the biomass of short-lived species like sardine and related life forms, enhancing sudden increase or dramatic reductions [86] affecting productivity and the carrying capacity of the habitat. In contrast, long-lived stocks usually are able to support the effects of north winds occurring in winter, excepting those cases causing mass mortalities, and their biomasses are more related to their life spans and carrying capacity. The catch in the south Gulf of Mexico is estimated in 0.11 t/km2 [87], and it was found a positive correlation of one year delay between yield and Chlorophyll a concentration.
Coral reefs of the Mexican Caribbean as well as those of the south of Gulf of Mexico have drastically changed over the last decades [41]. Recent studies showed an increase of macroalgae coverage and a decrease of coral cover [88] impacting coralline assemblages like herbivorous fish [73] by the lost of habitats and fishing pressure [16, 84]. The effects of fishing were detected in individual fish size and there were more evident on the unprotected reefs [16], where the commercially important species belonging to Serranidae, Lutjanidae, Carangidae, and Sphyraenidae were recorded by these authors in small quantities.
The authors would like to acknowledge the Mexican Ministry of Public Education (Secretaría de Educación Pública) for funding the project “Bases para el Análisis y Síntesis de los Sistemas Costeros de Veracruz” as part of the project “Analysis and Synthesis of the Coastal Zone of Veracruz, Gulf of Mexico”.
The authors declare no conflict of interest.
IntechOpen's Authorship Policy is based on ICMJE criteria for authorship. An Author, one must:
',metaTitle:"Authorship Policy",metaDescription:"IN TECH's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, one must:",metaKeywords:null,canonicalURL:"/page/authorship-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\\n\\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\\n\\nCHANGES IN AUTHORSHIP
\\n\\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\\n\\nAFFILIATION
\\n\\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\\n\\nPolicy last updated: 2017-05-29
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\n\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\n\nCHANGES IN AUTHORSHIP
\n\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\n\nAFFILIATION
\n\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\n\nPolicy last updated: 2017-05-29
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10366},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118187},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"966"},books:[{type:"book",id:"6216",title:"Complexity in Biological and Physical Systems",subtitle:"Bifurcations, Solitons and Fractals",isOpenForSubmission:!0,hash:"c511a26efc1b9c0638c8f9244240cb93",slug:"complexity-in-biological-and-physical-systems-bifurcations-solitons-and-fractals",bookSignature:"Ricardo López-Ruiz",coverURL:"https://cdn.intechopen.com/books/images_new/6216.jpg",editedByType:"Edited by",editors:[{id:"9849",title:"Prof.",name:"Ricardo",surname:"Lopez-Ruiz",slug:"ricardo-lopez-ruiz",fullName:"Ricardo Lopez-Ruiz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:15},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:25},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1},{group:"topic",caption:"Environmental Pollution",value:133,count:1},{group:"topic",caption:"Dynamical Systems Theory",value:966,count:1}],offset:12,limit:12,total:1},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5227},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"426",title:"Tissue Engineering",slug:"biochemistry-genetics-and-molecular-biology-microbiology-tissue-engineering",parent:{title:"Microbiology",slug:"biochemistry-genetics-and-molecular-biology-microbiology"},numberOfBooks:1,numberOfAuthorsAndEditors:19,numberOfWosCitations:60,numberOfCrossrefCitations:28,numberOfDimensionsCitations:65,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"biochemistry-genetics-and-molecular-biology-microbiology-tissue-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"2699",title:"Biomedical Tissue Culture",subtitle:null,isOpenForSubmission:!1,hash:"b345913b3b70ffad10e21a734991271c",slug:"biomedical-tissue-culture",bookSignature:"Luca Ceccherini-Nelli and Barbara Matteoli",coverURL:"https://cdn.intechopen.com/books/images_new/2699.jpg",editedByType:"Edited by",editors:[{id:"137865",title:"Dr.",name:"Luca",middleName:null,surname:"Ceccherini-Nelli",slug:"luca-ceccherini-nelli",fullName:"Luca Ceccherini-Nelli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"40247",doi:"10.5772/52301",title:"Culture Conditions and Types of Growth Media for Mammalian Cells",slug:"culture-conditions-and-types-of-growth-media-for-mammalian-cells",totalDownloads:33949,totalCrossrefCites:15,totalDimensionsCites:24,book:{slug:"biomedical-tissue-culture",title:"Biomedical Tissue Culture",fullTitle:"Biomedical Tissue Culture"},signatures:"Zhanqiu Yang and Hai-Rong Xiong",authors:[{id:"145281",title:"Prof.",name:"Zhanqiu",middleName:null,surname:"Yang",slug:"zhanqiu-yang",fullName:"Zhanqiu Yang"},{id:"145939",title:"Dr.",name:"Hai-Rong",middleName:null,surname:"Xiong",slug:"hai-rong-xiong",fullName:"Hai-Rong Xiong"}]},{id:"40228",doi:"10.5772/51518",title:"Contamination of Tissue Cultures by Mycoplasmas",slug:"contamination-of-tissue-cultures-by-mycoplasmas",totalDownloads:6207,totalCrossrefCites:7,totalDimensionsCites:14,book:{slug:"biomedical-tissue-culture",title:"Biomedical Tissue Culture",fullTitle:"Biomedical Tissue Culture"},signatures:"Shlomo Rottem, Nechama S. Kosower and Jonathan D. Kornspan",authors:[{id:"144824",title:"Prof.",name:"Shlomo",middleName:null,surname:"Rottem",slug:"shlomo-rottem",fullName:"Shlomo Rottem"}]},{id:"40221",doi:"10.5772/51215",title:"The Art of Animal Cell Culture for Virus Isolation",slug:"the-art-of-animal-cell-culture-for-virus-isolation",totalDownloads:6631,totalCrossrefCites:0,totalDimensionsCites:8,book:{slug:"biomedical-tissue-culture",title:"Biomedical Tissue Culture",fullTitle:"Biomedical Tissue Culture"},signatures:"John A. Lednicky and Diane E. Wyatt",authors:[{id:"146243",title:"Dr.",name:"John",middleName:null,surname:"Lednicky",slug:"john-lednicky",fullName:"John Lednicky"},{id:"146250",title:"MSc.",name:"Diane",middleName:null,surname:"Wyatt",slug:"diane-wyatt",fullName:"Diane Wyatt"}]}],mostDownloadedChaptersLast30Days:[{id:"40247",title:"Culture Conditions and Types of Growth Media for Mammalian Cells",slug:"culture-conditions-and-types-of-growth-media-for-mammalian-cells",totalDownloads:33952,totalCrossrefCites:15,totalDimensionsCites:24,book:{slug:"biomedical-tissue-culture",title:"Biomedical Tissue Culture",fullTitle:"Biomedical Tissue Culture"},signatures:"Zhanqiu Yang and Hai-Rong Xiong",authors:[{id:"145281",title:"Prof.",name:"Zhanqiu",middleName:null,surname:"Yang",slug:"zhanqiu-yang",fullName:"Zhanqiu Yang"},{id:"145939",title:"Dr.",name:"Hai-Rong",middleName:null,surname:"Xiong",slug:"hai-rong-xiong",fullName:"Hai-Rong Xiong"}]},{id:"40221",title:"The Art of Animal Cell Culture for Virus Isolation",slug:"the-art-of-animal-cell-culture-for-virus-isolation",totalDownloads:6644,totalCrossrefCites:0,totalDimensionsCites:8,book:{slug:"biomedical-tissue-culture",title:"Biomedical Tissue Culture",fullTitle:"Biomedical Tissue Culture"},signatures:"John A. Lednicky and Diane E. Wyatt",authors:[{id:"146243",title:"Dr.",name:"John",middleName:null,surname:"Lednicky",slug:"john-lednicky",fullName:"John Lednicky"},{id:"146250",title:"MSc.",name:"Diane",middleName:null,surname:"Wyatt",slug:"diane-wyatt",fullName:"Diane Wyatt"}]},{id:"40228",title:"Contamination of Tissue Cultures by Mycoplasmas",slug:"contamination-of-tissue-cultures-by-mycoplasmas",totalDownloads:6215,totalCrossrefCites:7,totalDimensionsCites:14,book:{slug:"biomedical-tissue-culture",title:"Biomedical Tissue Culture",fullTitle:"Biomedical Tissue Culture"},signatures:"Shlomo Rottem, Nechama S. Kosower and Jonathan D. Kornspan",authors:[{id:"144824",title:"Prof.",name:"Shlomo",middleName:null,surname:"Rottem",slug:"shlomo-rottem",fullName:"Shlomo Rottem"}]},{id:"40224",title:"Use of Cell Culture to Prove Syncytial Connection and Fusion of Neurons",slug:"use-of-cell-culture-to-prove-syncytial-connection-and-fusion-of-neurons",totalDownloads:1968,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"biomedical-tissue-culture",title:"Biomedical Tissue Culture",fullTitle:"Biomedical Tissue Culture"},signatures:"O.S. Sotnikov",authors:[{id:"143484",title:"Prof.",name:"Oleg",middleName:null,surname:"Sotnikov",slug:"oleg-sotnikov",fullName:"Oleg Sotnikov"}]},{id:"40222",title:"Viral DNA and cDNA Array in the Diagnosis of Respiratory Tract Infections",slug:"viral-dna-and-cdna-array-in-the-diagnosis-of-respiratory-tract-infections",totalDownloads:1722,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"biomedical-tissue-culture",title:"Biomedical Tissue Culture",fullTitle:"Biomedical Tissue Culture"},signatures:"B. Matteoli and L. Ceccherini-Nelli",authors:[{id:"137865",title:"Dr.",name:"Luca",middleName:null,surname:"Ceccherini-Nelli",slug:"luca-ceccherini-nelli",fullName:"Luca Ceccherini-Nelli"},{id:"146532",title:"Dr.",name:"Barbara",middleName:null,surname:"Matteoli",slug:"barbara-matteoli",fullName:"Barbara Matteoli"}]},{id:"40227",title:"Tissue Culture to Assess Bacterial Enteropathogenicity",slug:"tissue-culture-to-assess-bacterial-enteropathogenicity",totalDownloads:1958,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"biomedical-tissue-culture",title:"Biomedical Tissue Culture",fullTitle:"Biomedical Tissue Culture"},signatures:"Aurora Longa Briceño, Zulma Peña Contreras, Delsy Dávila Vera, Rosa Mendoza Briceño and Ernesto Palacios Pru",authors:[{id:"147912",title:"Dr.",name:"Aurora",middleName:"Del Valle",surname:"Longa-Briceño",slug:"aurora-longa-briceno",fullName:"Aurora Longa-Briceño"}]},{id:"40229",title:"Isolation of Breast Cancer Stem Cells by Single-Cell Sorting",slug:"isolation-of-breast-cancer-stem-cells-by-single-cell-sorting",totalDownloads:6384,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"biomedical-tissue-culture",title:"Biomedical Tissue Culture",fullTitle:"Biomedical Tissue Culture"},signatures:"Phuc Van Pham, Binh Thanh Vu, Nhan Lu Chinh Phan, Thuy Thanh Duong, Tue Gia Vuong, Giang Do Thuy Nguyen, Thiep Van Tran, Dung Xuan Pham, Minh Hoang Le and Ngoc Kim Phan",authors:[{id:"28799",title:"Ph.D.",name:"Phuc Van",middleName:"Van",surname:"Pham",slug:"phuc-van-pham",fullName:"Phuc Van Pham"}]},{id:"40225",title:"Placental Structure and Biological Aspects of Fetal Membranes Cultured in vitro",slug:"placental-structure-and-biological-aspects-of-fetal-membranes-cultured-in-vitro",totalDownloads:2711,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"biomedical-tissue-culture",title:"Biomedical Tissue Culture",fullTitle:"Biomedical Tissue Culture"},signatures:"João Bosco Barreto Filho and Maira Souza Oliveira",authors:[{id:"141185",title:"Prof.",name:"João Bosco",middleName:null,surname:"Barreto Filho",slug:"joao-bosco-barreto-filho",fullName:"João Bosco Barreto Filho"},{id:"146391",title:"Dr.",name:"Maira Souza",middleName:null,surname:"Oliveira",slug:"maira-souza-oliveira",fullName:"Maira Souza Oliveira"}]},{id:"40251",title:"Tissue Development and Mechanical Property in the Regenerated-Cartilage Tissue",slug:"tissue-development-and-mechanical-property-in-the-regenerated-cartilage-tissue",totalDownloads:1868,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"biomedical-tissue-culture",title:"Biomedical Tissue Culture",fullTitle:"Biomedical Tissue Culture"},signatures:"Seiji Omata, Yoshinori Sawae and Teruo Murakami",authors:[{id:"141146",title:"Dr.",name:"Seiji",middleName:null,surname:"Omata",slug:"seiji-omata",fullName:"Seiji Omata"},{id:"146280",title:"Prof.",name:"Yoshinori",middleName:null,surname:"Sawae",slug:"yoshinori-sawae",fullName:"Yoshinori Sawae"},{id:"146281",title:"Prof.",name:"Teruo",middleName:null,surname:"Murakami",slug:"teruo-murakami",fullName:"Teruo Murakami"}]},{id:"40230",title:"Cell Handling and Culture Under Controlled Oxygen Concentration",slug:"cell-handling-and-culture-under-controlled-oxygen-concentration",totalDownloads:5879,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"biomedical-tissue-culture",title:"Biomedical Tissue Culture",fullTitle:"Biomedical Tissue Culture"},signatures:"Satoru Kaneko and Kiyoshi Takamatsu",authors:[{id:"145453",title:"Dr.",name:"Satoru",middleName:null,surname:"Kaneko",slug:"satoru-kaneko",fullName:"Satoru Kaneko"},{id:"163783",title:"Prof.",name:"Kiyoshi",middleName:null,surname:"Takamatsu",slug:"kiyoshi-takamatsu",fullName:"Kiyoshi Takamatsu"}]}],onlineFirstChaptersFilter:{topicSlug:"biochemistry-genetics-and-molecular-biology-microbiology-tissue-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/222209/felix-meutchieye",hash:"",query:{},params:{id:"222209",slug:"felix-meutchieye"},fullPath:"/profiles/222209/felix-meutchieye",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()