pH values at which metals in AMD precipitate [21].
\r\n\tIn this book, the different factors of liquefaction, the field methods and laboratory tests to identify a potentially liquefiable soil aim to be reviewed; in addition with history cases (ground behavior during the occurrence of an earthquake, state of stress, deformation, shear strength, flow, etc.).
\r\n\tA very important aspect of this topic is the presentation of the different constructive techniques used to ground improvement (vibrocompaction, dynamic compaction, jet grouting, chemical injection, replacement, etc.), placing special emphasis on those constructive methods used to solve problems on structures already located in areas of low relative density with liquefaction potential, where the installation of monitoring and control equipment is also required (tiltmeters, piezometers, topographic points, seismographs, pressure cells, etc.).
Environment can be referred to the surroundings within which humans exist. These are made up of: the land, the water and the atmosphere of the earth; microorganisms, plant and animal life; any part or combination of the first two items on this list and the interrelationships among and between them and the physical, chemical, aesthetic and cultural properties and conditions of the foregoing that influence human health and well-being. It is also characterised by a number of spheres that influence its behaviour and intrinsic value. The most important sphere of the environment is the biosphere because it harbours the living organisms. This is the sphere where you find living organisms (plants and animals) interacting with each and their nonliving environment (soil, air and water). In the late centuries, industrialisation and globalisation have impaired pristine environments and their ability to foster life. This has introduced components that compromise the holistic functioning of the environment and its intrinsic values [1].
\nAn environment can be polluted or contaminated. Pollution differs from contamination; however, contaminants can be pollutants, and pose detrimental impact on the environment. From literature, pollution is defined as the introduction by man, directly or indirectly, of substances or energy into the environment resulting in such deleterious effects as harm to living resources, hazards to human health, hindrance to environmental activities and impairment of quality for use of the environment and reduction of amenities. Contamination on the other hand is the presence of elevated concentrations of substances in the environment above the natural background level for the area and for the organism. Environmental pollution can be referred to undesirable and unwanted change in physical, chemical and biological characteristics of air, water and soil which is harmful for living organisms—both animal and plants. Pollution can take the form of chemical substances or energy, such as noise, heat or light [2].
\nPollutants, the elements of pollution, can either be foreign substances/energies or naturally occurring contaminants.
\nEnvironmental pollutants continue to be a world concern and one of the great challenges faced by the global society. Pollutants can be naturally occurring compounds or foreign matter which when in contact with the environment cause adverse changes. There are different types of pollutants, namely inorganic, organic and biological. Irrespective of pollutants falling under different categories, they all receive considerable attention due to the impacts they introduce to the environment. The relationship between environmental pollution and world population has become an inarguable directly proportional relationship as it can be seen that the amount of potentially toxic substances released into the environment is increasing with the alarming growth in global population. This issue has led to pollution being a significant problem facing the environment.
\nIndustrial, agricultural and domestic wastes contribute to environmental pollution, which cause adverse harm to human and animal health. From such sources, inorganic pollutants are released. Inorganic pollutants are usually substances of mineral origin, with metals, salts and minerals being examples [2]. Studies have reported inorganic pollutants as material found naturally but have been altered by human production to increase their number in the environment. Inorganic substances enter the environment through different anthropogenic activities such as mine drainage, smelting, metallurgical and chemical processes, as well as natural processes. These pollutants are toxic due to the accumulation in the food chains [3].
\nOrganic pollution can be briefly defined as biodegradable contaminants in an environment. These sources of pollution are naturally found and caused by the environment, but anthropogenic activity has also been contributing to their intensive production to meet the human needs. Some of the common organic pollutants which have been noted to be of special concern are human waste, food waste, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), pesticides, petroleum and organochlorine pesticides (OCPs) [4].
\nOrganic pollutants have gained attention as they have become a major problem in the environment. Properties of organic pollutants, amongst others, such as high lipid solubility, stability, lipophilicity and hydrophobicity have recently made organic pollutants termed persistent. These properties give organic pollutants the ability to easily bioaccumulate in the different spheres of the environment, thus causing toxicological effects [5, 6].
\nBiological pollutants are described as pollutants which exist as a result of humanity’s actions and impact on the quality of aquatic and terrestrial environment. This type of pollutants include bacteria, viruses, moulds, mildew, animal dander and cat saliva, house dust, mites, cockroaches and pollen. Studies have documented different sources of these pollutants, including pollens originating from plants; viruses transmitted by people and animals; bacteria carried by people, animals, and soil and plant debris [7].
\nAlthough there is no specific definition of a heavy metal, literature has defined it as a naturally occurring element having a high atomic weight and high density which is five times greater than that of water [8]. Among all the pollutants, heavy metals have received a paramount attention to environmental chemists due to their toxic nature. Heavy metals are usually present in trace amounts in natural waters but many of them are toxic even at very low concentrations [9]. Metals such as arsenic, lead, cadmium, nickel, mercury, chromium, cobalt, zinc and selenium are highly toxic even in minor quantity. Increasing quantity of heavy metals in our resources is currently an area of greater concern, especially since a large number of industries are discharging their metal containing effluents into fresh water without any adequate treatment [3].
\nHeavy metals become toxic when they are not metabolised by the body and accumulate in the soft tissues. They may enter the human body through food, water, air or absorption through the skin when they come in contact with humans in agriculture, manufacturing, pharmaceutical, industrial or residential settings. Industrial exposure accounts for a common route of exposure for adults. Ingestion is the most common route of exposure in children. Natural and human activities are contaminating the environment and its resources, they are discharging more than what the environment can handle [9, 10] (Figure 1).
\nSources and sinks of heavy metals [11].
Heavy metals can emanate from both natural and anthropogenic processes and end up in different environmental compartments (soil, water, air and their interface) (Figure 2).
\nSources of heavy metals and their cycle in the environment [12].
Many studies have documented different natural sources of heavy metals. Under different and certain environmental conditions, natural emissions of heavy metals occur. Such emissions include volcanic eruptions, sea-salt sprays, forest fires, rock weathering, biogenic sources and wind-borne soil particles. Natural weathering processes can lead to the release of metals from their endemic spheres to different environment compartments. Heavy metals can be found in the form of hydroxides, oxides, sulphides, sulphates, phosphates, silicates and organic compounds. The most common heavy metals are lead (Pb), nickel (Ni), chromium (Cr), cadmium (Cd), arsenic (As), mercury (Hg), zinc (Zn) and copper (Cu). Although the aforementioned heavy metals can be found in traces, they still cause serious health problems to human and other mammals [9].
\nIndustries, agriculture, wastewater, mining and metallurgical processes, and runoffs also lead to the release of pollutants to different environmental compartments. Anthropogenic processes of heavy metals have been noted to go beyond the natural fluxes for some metals. Metals naturally emitted in wind-blown dusts are mostly from industrial areas. Some important anthropogenic sources which significantly contribute to the heavy metal contamination in the environment include automobile exhaust which releases lead; smelting which releases arsenic, copper and zinc; insecticides which release arsenic and burning of fossil fuels which release nickel, vanadium, mercury, selenium and tin. Human activities have been found to contribute more to environmental pollution due to the everyday manufacturing of goods to meet the demands of the large population [10].
\nThe presence of heavy metals in the environment leads to a number of adverse impacts. Such impacts affect all spheres of the environment, that is, hydrosphere, lithosphere, biosphere and atmosphere. Until the impacts are dealt with, health and mortality problems break out, as well as the disturbance of food chains. Figure 3 summarises the health impacts of heavy metals.
\nImpacts of heavy metals on the environment [13].
Heavy metals contamination is becoming a serious issue of concern around the world as it has gained momentum due to the increase in the use and processing of heavy metals during various activities to meet the needs of the rapidly growing population. Soil, water and air are the major environmental compartments which are affected by heavy metals pollution.
\nEmissions from activities and sources such as industrial activities, mine tailings, disposal of high metal wastes, leaded gasoline and paints, land application of fertilisers, animal manures, sewage sludge, pesticides, wastewater irrigation, coal combustion residues and spillage of petrochemicals lead to soil contamination by heavy metals. Soils have been noted to be the major sinks for heavy metals released into the environment by aforementioned anthropogenic activities. Most heavy metals do not undergo microbial or chemical degradation because they are nondegradable, and consequently their total concentrations last for a long time after being released to the environment [5, 14].
\nThe presence of heavy metals in soils is a serious issue due to its residence in food chains, thus destroying the entire ecosystem. As much as organic pollutants can be biodegradable, their biodegradation rate, however, is decreased by the presence of heavy metals in the environment, and this in turn doubles the environmental pollution, that is, organic pollutants and heavy metals thus present. There are various ways through which heavy metals present risks to humans, animals, plants and ecosystems as a whole. Such ways include direct ingestion, absorption by plants, food chains, consumption of contaminated water and alteration of soil pH, porosity, colour and its natural chemistry which in turn impact on the soil quality [15].
\nAlthough there are many sources of water contamination, industrialisation and urbanisation are two of the culprits for the increased level of heavy metal water contamination. Heavy metals are transported by runoff from industries, municipalities and urban areas. Most of these metals end up accumulating in the soil and sediments of water bodies [15].
\nHeavy metals can be found in traces in water sources and still be very toxic and impose serious health problems to humans and other ecosystems. This is because the toxicity level of a metal depends on factors such as the organisms which are exposed to it, its nature, its biological role and the period at which the organisms are exposed to the metal. Food chains and food webs symbolise the relationships amongst organisms. Therefore, the contamination of water by heavy metals actually affects all organisms. Humans, an example of organisms feeding at the highest level, are more prone to serious health problems because the concentrations of heavy metals increase in the food chain [16].
\nIndustrialisation and urbanisation, due to rapid world population growth, have recently made air pollution as a major environmental problem around the world. The air pollution was reported to have been accelerated by dust and particulate matters (PMs) particularly fine particles such as PM2.5 and PM10 which are released through natural and anthropogenic processes. Natural processes which release particulate matters into air include dust storms, soil erosion, volcanic eruptions and rock weathering, while anthropogenic activities are more industrial and transportation related [17].
\nParticulate matters are important and require special attention as they can lead to serious health problems such as skin and eyes irritation, respiratory infections, premature mortality and cardiovascular diseases. These pollutants also cause deterioration of infrastructure, corrosion, formation of acid rain, eutrophication and haze [9]. Amongst others, heavy metals such as group 1 metals (Cu, Cd, Pb), group 2 metals (Cr, Mn, Ni, V and Zn) and group 3 metals (Na, K, Ca, Ti, Al, Mg, Fe) originate from industrial areas, traffic and natural sources, respectively [17, 18].
\nTreatment processes for acid mine water typically generate high-density sludge that is heterogeneous due to variety of metals, metalloids and anionic components, and this makes it difficult to dispose the sludge [19]. Recent researches have therefore focused on the recovery of chemical species from acid mine drainage (AMD) and secondary sludge. This is aimed at recovering valuable resources and also enabling easier and safer disposal of the treated sludge, hence reducing their environmental footprints. Disposal of metal ladened waste to landfills and waste retention ponds/heaps lead to secondary pollution of surface and subsurface water resources. It may also lead to soil contamination, hence affecting their productivity [19].
\nIn order to protect the human health, plants, animals, soil and all the compartments of the environment, proper and careful attention should be given to remediation technologies of heavy metals. Most physical and chemical heavy metal remediation technologies require handling of large amounts of sludge, destroy surrounding ecosystems and are very expensive [19] (Figure 4).
\nMechanisms for the removal of heavy metals [20].
A variety of alkaline chemical reagents have been used over the years for neutralisation of acid mine drainage (AMD) in order to increase the pH and consequently precipitate and recover the metals. The most common alkaline reagents used for sequential recovery of minerals resources from AMD are limestone (CaCO3), caustic soda (NaOH), soda ash (Na2CO3), quicklime (CaO), slaked lime (Ca(OH)2) and magnesium hydroxide (Mg(OH)2) [21]. Some processes have recovered metals at varying pH regimes (Table 1) and synthesised commercially valuable materials such as pigments and magnetite [22]. Some minerals are recovered and sold to metallurgical industries, hence off-setting the treatment costs [19].
\nMetal ion | \npH | \nMetal ion | \npH | \nMetal ion | \npH | \n
---|---|---|---|---|---|
Al3+ | \n4.1 | \nHg2+ | \n7.3 | \nCd2+ | \n6.7 | \n
Fe3+ | \n3.5 | \nNa+ | \n6.7 | \nFe2+ | \n5.5 | \n
Mn2+ | \n8.5 | \nPb2+ | \n6.0 | \nCu2+ | \n5.3 | \n
Cr3+ | \n5.3 | \nZn2+ | \n7.0 | \n\n | \n |
pH values at which metals in AMD precipitate [21].
Adsorption occurs when an adsorbate adheres to the surface of an adsorbent. Due to reversibility and desorption capabilities, adsorption is regarded the most effective and economically viable option for the removal of metals from aqueous solution. Although efficient, adsorption is not effective with very concentrated solution as the adsorbent easily gets saturated with the adsorbate. It is only feasible for very dilute solutions, is labour intensive because it requires frequent regeneration and it is not selective in terms of metal attenuation [21]. Adsorption is therefore not applied in a large scale of metal remediation.
\nIon exchange is the exchange of ions between two or more electrolyte solutions. It can also refer to exchange of ions on a solid substrate to soil solution. High cation exchange capacity clay and resins are commonly used for the uptake of metals from aqueous solutions. However, this method requires high labour and is limited to certain concentration of metals in the solution. This system also operates under specific temperature and pH. Natural and synthetic clays, zeolites and synthetic resins have been used for removal and attenuation of metals from wastewater [19, 23].
\nBiosorption refers to the removal of pollutants from water systems using biological materials, and it entails the absorption, adsorption, ion exchange, surface complexation and precipitation. Biosorbents have an advantage of accessibility, efficiency and capacity. This process is readily and easily available. Regeneration is easy, hence making it very favourable. However, when the concentration of the feed solution is very high, the process easily reaches a breakthrough, thus limiting further pollutant removal [24].
\nThe use of membrane technologies for the recovery of acid mine drainage is very effective for water that has high concentration of pollutants. It uses the concentration gradients phenomenon or the opposite which is reverse osmosis. There are different types of membranes that are used for mine water treatment including: ultrafiltration, nano-filtration, reverse osmosis, microfiltration and particle filtration [19, 25, 26].
\nSouth Africa is well endowed by mineral reserves and this has triggered its immense dependence on mineral resources for gross domestic product and economy. However, the legacy of coal and gold mining has left in its wake serious environmental problems. The major problem is acid mine drainage. Acid mine drainage (AMD) is formed from the hydro-geochemical weathering of sulphide-bearing rocks (pyrite, arsenopyrite and marcasite) in contact with water and oxygen [23, 27]. This reaction is also catalysed by iron (Fe) and sulphur-oxidising microorganisms [28, 29]. In a nutshell, the formation of AMD can be summarised as follows [19, 23, 30, 31]:
\nThe oxidation of sulphide to sulphate solubilises the ferrous iron (Fe(II)), which is subsequently oxidised to ferric iron (Fe(III)):
\nEither these reactions can occur spontaneously or can be catalysed by microorganisms (sulphur- and iron-oxidising bacteria) that derive energy from the oxidation reaction [26]. The ferric cations produced can also oxidise additional pyrite into ferrous ions:
\nThe net effect of these reactions is to produce H+ and maintain the solubility of the ferric iron [32]. Because of the high acidity and elevated concentration of toxic and hazardous metals, AMD has been a prime issue of environmental concern that has globally raised public concern [33].
\nThe discharge of metalliferous drainage from mining activities has rendered the environment unfit to foster life [22]. Pragmatic approaches need to be developed to counter for this mining legacy that is perpetually degrading the environment and its precious resources [21]. Researches and piloted studies have indicated that active and passive approaches can be successfully adopted to treat acid mine drainage and remove potentially toxic chemical species [23, 31]. The presence of Al, Fe, Mn and sulphates is a prime concern in addition to the trace of Cu, Ni, Pb and Zn [29]. Metalloids of As and earth alkali metal (Ca and Mg) are also present in significant levels [33]. Several studies have shown the feasibility of treating acid mine drainage to acceptable levels as prescribed by different water quality guidelines, but the resultant sludge has been an issue of public concern due to its heterogeneous and complex nature loaded with metal species [23, 34].
\nBased on that evidence, research studies have been firmly embedded on the recovery of valuable minerals from AMD [19, 23]. There are several mechanisms used for the recovery of chemical components from AMD including: precipitation [35], adsorption [36], biosorption [24], ion exchange [19, 25, 26], desalination [37] and membrane filtration [38, 39]. Out of those techniques, precipitation has been the promising technology due to the ability to handle large volumes of water with very little dosage [35]. Adsorption and ion exchange have a challenge of poor efficiency at elevated concentrations and quick rate of saturation. Membrane technologies have the problem of generating brine that creates another environmental liability. Desalination has a problem of producing salts that has impurities, hence making them unsuitable for utilisation. Freeze desalination has been the promising technology, but it has never been tried in a large scale [19, 23, 34].
\nSouth Africa’s geology is rich in coal and mineral reserves which contain key metals such as gold, platinum and copper. The significant volume of mineral and coal reserves has made mining serve as a backbone in the development and growth of the country’s economy. This is evident from the massive number of mines found around the country. However, mining has been noted to cause inimical impacts to the human health, organisms and environment as a whole, with water resources being the most common victim of the pollution [40].
\nThe mining of coal and gold for multilateral uses exposes pyrite to oxidising agents. Iron hydroxide and sulphuric acid are toxic chemical species to living organisms when introduced into water resources (both surface and underground). This deteriorates the natural form of the water bodies and its ability to foster life. Acid mine drainage has very low pH of about <1.4 to >3 [41, 42]; high TDS, EC and other metals in toxic concentration. Previous studies documented the following concentrations in AMD: < 75 ppm to >47,800 acidity; <3560 to >41,700 SO42- ppm; <460 to >12,270 ppm total Fe; <17,400 to 37,700 μg/L Zn; <270 to >13,000 μg/L Cu; <520 to >1500 μg/L Co; <75 to >360 μg/L Ni; <8 to >30 μg/L Pb and 6 to 30 μg/L Cd [41, 42, 43, 44].
\nHowever, the above-mentioned concentrations depend on the pH of the AMD—concentrations decrease when pH increases. When exposed to such conditions, mortality and diseases are most likely to occur in organisms, as well as other health [45]. In addition, AMD destroys ecosystems of organisms and also negatively impacts on the economy of the country. Heavy metals in active and abandoned mines in South Africa have impacted both surface and underground water.
\nThe National Environmental Management Act (NEMA) 108 of 1998, stipulates that everyone has the right to live in an environment which is safe and unlikely to pose any deleterious effects to their health. The legislative requirements for industrial effluents are primarily governed by the Department of Water Affairs DWS Water Quality Guidelines [46]. This purpose requires that any person who uses water for industrial purposes shall purify or otherwise treat such water in accordance with requirements of DWA [41, 46, 47, 48]. The relevant criteria for discharge of acidic and sulphate-rich water are given in Table 2.
\nParameter | \nGold AMD* | \nCoal AMD** | \nNeutral drainage† | \nDWS industrial | \nDWS irrigation | \n
---|---|---|---|---|---|
pH | \n2.3 | \n2.5 | \n6.5 | \n5.0–10.0 | \n6.5–8.4 | \n
EC | \n22,713 | \n13,980 | \n500 | \n0–250 | \n>540 | \n
Na | \n248.4 | \n70.5 | \n20.1 | \n— | \n430–460 | \n
K | \n21.6 | \n34.2 | \n29.1 | \n— | \n— | \n
Mg | \n2.3 | \n398.9 | \n861.8 | \n— | \n— | \n
Ca | \n710.8 | \n598.7 | \n537.5 | \n— | \n— | \n
Al | \n134.4 | \n473.9 | \n0.01 | \n— | \n5.0–20 | \n
Fe | \n1243 | \n8158.2 | \n0.07 | \n0.0–10 | \n5.0–20 | \n
Mn | \n91.5 | \n88.2 | \n25.0 | \n0.0–10.0 | \n0.02–10.0 | \n
Cu | \n7.8 | \n— | \n— | \n— | \n0.2–5.0 | \n
Zn | \n7.9 | \n8.36 | \n0.16 | \n— | \n1.0–5.0 | \n
Pb | \n6.3 | \n— | \n— | \n— | \n0.2–2.0 | \n
Co | \n41.3 | \n1.89 | \n0.29 | \n— | \n0.05–5.0 | \n
Ni | \n16.6 | \n2.97 | \n0.21 | \n— | \n0.2–2.0 | \n
SO42− | \n4635 | \n42,862 | \n4603 | \n0–500 | \n— | \n
As shown in Table 2, mine effluents in South Africa are dominated by dissolved Fe, Al, Mn, Ca, Na, Mg and traces of Cu, Co, Zn, Pb and Ni. These concentrations are far above the legal requirements.
\nThe introduction of effluents from mining activities into receiving streams can severely impact aquatic ecosystems through habitat destruction and impairment of water quality. This will eventually lead to reduction in biodiversity of a given aquatic ecosystem and its ability to sustain life. The severity and extent of damage depends on a variety of factors including the frequency of influx, volume and chemistry of the drainage and the buffering capacity of the receiving stream [22, 52, 53, 54, 55, 56, 57, 58].
\nWhen metals in AMD are hydrolysed, they lower the pH of the water making it unsuitable for aquatic organisms to thrive [52]. AMD is highly acidic (pH 2–4), and this promotes the dissolution of toxic metals [44]. Those toxic species exert hazardous effects on terrestrial and aquatic organisms [23]. Also, if the water is highly acidic, only acidophile microorganisms will thrive on such water with the rest of aquatic organisms migrating to other regions which are conducive to their survival. Many streams contaminated with AMD are largely devoid of life for a long way downstream. To some aquatic organisms, if the pH range falls below the tolerance range, probability of death is very high due to respiratory and osmoregulation failure. Acidic conditions are dominated by H+ which is adsorbed and pumps out Na from the body which is important in regulating body fluids [23, 52, 53, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65].
\nExposure of aquatic and terrestrial organisms to potentially toxic metals and metalloids can have devastating impacts to living organisms [44, 66, 67]. Toxic chemical species present in AMD have been reported to be toxic to aquatic and terrestrial organisms. They are associated with numerous diseases including cancers. Some of these chemical species may accumulate and be biomagnified in living organisms, hence threatening the life of higher trophic organisms such as birds [68]. Lead causes blood disorders, kidney damage, miscarriages and reproductive disorders and is linked to various cancers. The exposure of living organisms to toxic chemical species in AMD can also lead to nausea, diarrhoea, liver and kidney damage, dermatitis, internal haemorrhage and respiratory problems. Epidemiological studies have shown a significant increase in the risk of lung, bladder, skin, liver and other cancers on exposure to these chemical species. Effects of Al, Fe, Mn, Cu, Mg and Zn on the health of living organisms are summarised in Table 3 [44, 56, 67].
\nElement | \nDWA limit | \nEcological impacts of AMD | \n
---|---|---|
Al | \n<0.5 mg/L | \nProlonged exposure to aluminium has been implicated in chronic neurological disorders such as dialysis dementia and Alzheimer’s disease. Severe aesthetic effects (discolouration) occur in the presence of iron or manganese | \n
Fe | \n<1 mg/L | \nSevere aesthetic effects (taste) and effects on plumbing (slimy coatings). Slight iron overload possible in some individuals. Chronic health effects in young children and sensitive individuals in the range of 10–20 mg/L, and occasional acute effects towards the upper end of this range | \n
Mn | \n<0.2 mg/L | \nVery severe, aesthetically unacceptable staining. Domestic use unlikely due to adverse aesthetic effects. Some chance of manganese toxicity under unusual conditions | \n
Cu | \n<1 mg/L | \nGastrointestinal irritation, nausea and vomiting. Severe taste and staining problems. Severe poisoning with possible fatalities. Severe taste and staining problems | \n
Mg | \n<200 mg/L | \nWater aesthetically unacceptable because of bitter taste users if sulphate present. Increased scaling problems. Diarrhoea in most new consumers | \n
Zn | \n<5 mg/L | \nBitter taste; milky appearance. Acute toxicity with gastrointestinal irritation, nausea and vomiting. Severe, acute toxicity with electrolyte disturbances and possible renal damage | \n
Effects of selected AMD metals on the health of living organisms.
Port wine is a traditional fortified wine produced in the Douro Demarcated Region (Northeast of Portugal in the Douro Valley, Figure 1) under very specific conditions. There are several Port wine styles being related to the winemaking and ageing process and also to the ageing time, which enhances uniqueness to the wines and recognition throughout the world. The Douro Demarcated Region is located within the Douro River basin, surrounded by mountains, having a total area of approximately 250,000 hectares. This region has singular climate and soil characteristics for the production of selected grape varieties for the Port winemaking that contributes to the distinctive characteristics of Port wines and guarantee that these wines are irreproducible elsewhere. This area is divided into three naturally distinct sub-regions (Figure 1) concerning the climatic as well as socio-economic factors, “Baixo Corgo” (Lower Corgo), “Cima Corgo” (Upper Corgo), and “Douro Superior” (Upper Douro) [1].
Location of the Douro Demarcated Region in the northeast of Portugal and of the three sub-regions: “Baixo Corgo”, “Cima Corgo” and “Douro Superior” according to [1].
Different grape varieties are used in the production of Port wine, being usually produced by their blend. There is evidence that the grape varieties determines the wine character, even after the extended ageing process. The grape varieties that may be cultivated in the Douro Demarcated Region are regulated by Decree-Law n°104/85, 10th of April, 1985 [2]. Accordingly, Port wine is produced only from the authorised grape varieties, being the principal red grape varieties recommended for Port wine production “Touriga Nacional”, “Mourisco Tinto”, “Bastardo”, “Tinta Roriz”, “Tinta Cão”, “Tinta Amarela”, “Tinta Barroca”, “Touriga Franca” and “Tinta Francisca”, since these grape varieties produce wines with stable colour, fruity aroma and sugar content, characteristics required to produce good quality Port wines. The white grape varieties used for White Port wine production are “Malvasia Fina”, “Viosinho”, “Donzelinho Branco”, “Gouveio”, “Rabigato”, and “Códega” [3].
In the Port wine vinification process, the alcoholic fermentation is stopped according to the desired residual sugar content by the addition of a wine spirit known as “aguardente vínica” (with an alcohol content of about 77% (v/v)), to an alcohol content up to 18–22% (v/v) of the final product. Therefore, Port wine is a naturally sweet fortified wine since the natural sugar from the grapes is not completely transformed into alcohol. After the vinification process, Port wine is usually stored and aged in wood barrels of different sizes, from 2 years to many decades in accordance with the intended Port wine style. The Port wine ageing process can take place either in the Douro Valley or in Vila Nova de Gaia (Porto), in order to qualify for a Certificate of Origin from the “Instituto dos Vinhos do Douro e Porto” (IVDP).
Port wine is subjected to an extensive set of legislation and regulations. According to the Decree-Law n°173/2009 of 3rd of August [4], the IVDP, located in Oporto city, has the responsibility of promoting and perform the quality control of Port wine, as well as the amount of Port wine that can be produced annually, regulating all the production process, and the protection of the denominations of origin Douro and Port and the geographical indication of the Douro Region. The panel of expert tasters of IVDP is responsible for the certification and approval of wines and wine spirits, as well as the granting of the guarantee seal [5].
In the Port wine vinification process, the alcoholic fermentation is stopped, between 6% and 9% (v/v) alcohol content, according to the Port wine style and sweetness desired. Therefore, the wine is runoff from the skins, and it is fortified with a wine spirit containing 77% (v/v) of ethanol to raise the alcohol concentration to 18–22% (v/v). The average proportions of wine spirit added are 115 L for each 435 L of fermenting wine. The wine spirit allowed to be used in Port wine production required rigorous quality standards regulated by the laboratories and panel of tasters of IVDP. The sensory characteristics evaluated by the panel are turbidity, colour, aroma, and taste. The analytical parameters (ethyl carbamate, total higher alcohols, acetaldehyde (ethanal), ethyl acetate, methanol, 2-butanol, 1-butanol, allylic acid, cyanidric acid, calcium, copper, iron, alcohol content, total acidity, and density) must be below of the allowed limits described in Regulation n° 84/2010 [6]. Contrasting with most other fortifying spirits, the wine spirit used in Port wine production is not highly rectified; therefore, it contains many flavourants, especially higher alcohols, and aldehydes and this fortification process results in a high concentration of acetaldehyde in these initial wines.
Port wine can be extra dry, dry, semi-dry, sweet or very sweet, according to the levels of unfermented sugars remaining (Table 1) that is dependent on the time of wine spirit addition to stop the alcoholic fermentation [1].
Sweetness | Specific gravity (g/cm3, 20°C) | °Baumé (ºBé) | Sugar content (g/L) |
---|---|---|---|
Extra dry | <0.9980 | 0.0 | <40 |
Dry | 0.9980–1.0079 | 0.0–1.3 | 40–65 |
Semi-dry | 1.0080–1.0179 | 1.4–2.7 | 65–85 |
Sweet | 1.0180–1.0339 | 2.8–5.0 | 85–130 |
Very sweet | >1.0340 | > 5.0 | >130 |
Port wine classification according to their sugar content.
There are four main different styles of Port wine, designated as Tawny, Ruby, White and Rosé (Figure 2). Port wine intended for Tawny style are obtained from different wines in different stages of ageing. During the ageing in the wood barrels, the red colour of the wines gradually develops into tawny, medium tawny or light tawny, with an aroma of dried fruits and wood [1]. In this style, there are some special categories like Tawny Reserve, Tawny with Indication of Age (10, 20, 30 and 40 years) and “Colheita”. This last category is an exception, as these wines are from a single vintage [7]. All these wines are ready to drink when they are bottled [1]. Port wines that belong to Ruby style are wines that the evolution of their deep red colour is limited and the fruity character is maintained [1]. Within this Port style, special categories can be found like Crusted, Reserve, Late Bottled Vintage (LBV) and Vintage [7]. Crusted Ports are high quality, very full-bodied, deep coloured wines, obtained by blending wines from numerous vintages, aged for a minimum of 2 years in wood barrels and then bottled and aged during further 3 years. The year in which the wine was bottled must be indicated on the bottle label [1, 7]. LBV is a special single harvest and it is bottled after 4 to 6 years from the harvest, with the previous ageing in vats (wood or stainless steel) and has a deep ruby red colour, extremely full body and rich in the mouth. To be recognised as Vintage, the wines must present an outstanding quality and with a very full bodied and have a deep colour. Vintage and LBV are good for storing since they age well in the bottle [1]. The types of Port wines made from red grape varieties vary in colour from deep purple to light gold, with transitional hues like tawny, golden tawny, golden and light gold. White Port wines differ according to shorter or longer periods of ageing and different degrees of sweetness. The colour of White Port wines varies from pale yellow, straw to golden white. However, when aged in wood barrels for many years, white Port wines develop, through natural oxidation, a golden hue that is very similar to that of a very old Tawny Port wine made from red grapes [1]. The special categories inside this style are similar to those of Tawny Port wines [7]. White Port wine is a Port wine style with increasing market expression. Nowadays it represents 33% of the total Port wine sales with a higher market value (+6.2%) when compared to Tawny Port wine, and nearly 80% of the production is exported [1]. Rosé Port wine is a recent Port wine style, first released in the market in 2008 by Croft, part of the Taylor Fladgate Partnership. It is technically a Ruby Port but fermented in a similar way to a Rosé wine, with limited grape skin maceration, thus producing the pink colour. Croft came up with Rosé Port as a way to introduce the pleasures of Port wine to a younger market. The colour of this type of Port wine may go from light ruby to pale salmon. This style is commonly described as a light and fresh style of Port wine that is very fruity and enjoyable [1]. Different ageing processes leads to numerous Port wines quality categories, presenting different colours (from white to deep purple), sweetness (sweet to dry) and a wide range of flavours. The Port wines styles and categories are summarised in Figure 2.
Port wines styles and categories according to [1, 7].
The ageing process is an important period for this wine and includes storage, ageing in wood barrels or vat tanks and/or bottle ageing. When aged in old wood barrels their size depends on the Port wine style. Wine intended for Ruby and Vintage Port wine production will be aged in large wood barrels and that intended for Tawnies will be aged in small ones. The Tawny Port wine undergoes an oxidative ageing process, while Ruby and Vintage Port have a much less oxidative ageing termed reductive ageing process [1, 7].
Ruby, Reserve and LBV Port wines usually age in large wood barrels for two, three years or even six years (LBV) and have a deep red youthful colour and intense fruity flavours, evocative of cherry and blackberry. Tawny Port wines (10, 20, 30 and 40 years old) age for longer periods in small wood barrels and show nuttiness and aroma of butterscotch. White Port wines usually age for two or three years in large wood barrels. Traditionally, White Port wines are fermented with skin contact like Red Port wines; in this case, the wines are aged in conditions that results in its oxidation. Nevertheless, the trend is for a shorter maceration period, to obtain White Port wines with a pale colour and fresh aromas [1]. Like Red Port wines, most White Port wines are fortified when half of the grape sugar concentration has been fermented. Semi-dry and dry White Port wines are fortified later, or when alcoholic fermentation is finished [8].
The fortification process gives a high concentration of acetaldehyde to the wines. Acetaldehyde is probably responsible for the colour stability by favouring the production of anthocyanin-tannin polymers (discussed below) [9, 10]. The high sugar concentration retained tends to mask the bitterness of small flavanols, but not their astringency [8, 11]. Young Port wines are generally sweet, intensely red with a high concentration in tannins and with a fruity aroma. The colour, aroma and flavour of young Port wines are due to compounds from the grape, from the alcoholic fermentation and from the wine spirit used for the fortification. These wines need to age to develop the complex sensory attributes typically associated with the several Port wine styles. Port wines can be aged for a minimum of three years to a decade or more in old wood barrels to develop their character; normally it is aged in an old wood barrel, ranging from 525 or 600 L capacity up to 200,000 L. The type and length of the ageing process, as well as the capacity of the ageing barrel, and the oxygenation during racking, influenced the Port wine style that will be developed depending mainly on the wine style planned. Therefore, wines destined for Ruby and Vintage Port wines will be usually aged in large wood barrels, while those intended for the production of Tawny Port wines will be aged in small wood barrels (Figure 2). Racking is a very important operation during Port wine ageing and may be performed periodically. Slight fortification after each racking operation to adjust the alcoholic content up to 22% (v/v), compensating the volume lost via evaporation from the wood barrels [8].
The value of aged Tawny Port wine is linked to the characteristic aroma compounds developed during the ageing process in small wood barrels that allow the admission of oxygen. This oxidative ageing is influenced by factors such as oxygen levels, temperature, and pH. The high quality Tawny Port wines generally have an ‘indication of age (10, 20, 30, or over 40 years old)’ on the bottle, and are a blend of wines aged in wood barrels from different years. The age indicated on the label corresponds to a wine that has the sensory characteristics recognised by the IVDP of a wine aged in wood with 10, 20, 30, or over 40 years, obtained by blending wines with different ages. Tawny Port wines produced from a single vintage are referred to as ‘Colheita’ Port wines, aged in wood barrels for a minimum of 7 years [1].
Ruby Port wines have red colour, full-bodied structure and often still quite fruity in character when the wines are ready to drink. Ruby Port wines are aged between 3 to 5 years before blending and bottling in old large wood barrels known as “balseiros” of larger capacity, between 10.000 and 100.000 L, and do not usually have any wood-aged characteristics. The flavour modifies from an intensely fruity, even spirity character when the wines are very young to a rich fruity ruby wine after 3 to 5 years ageing in wood. They are used to age full-bodies and fruity wines such as Ruby, LBV and Vintage Port wine. These wines age more slowly than those aged in smaller wood barrels, retaining their structure and fresh fruity aromas that are the main characteristics of these wines. Some special Ruby Port wines (the so called Vintage Port wines) have a considerable bottle ageing process, giving lighter red wines, with often a very fruity character, despite having aged for two decades or more. Vintage Port wines are aged in wood barrels for two or three years, followed by a considerable ageing time in a bottle in the so called reductive ageing (10 to 50 years or more before consumption), and so it develops a different character from those wines aged exclusively in wood barrels. These wines remain fruity and with a red colour. Consequently, Vintage Port wines develop much of its distinctive bouquet from a long process of reductive ageing in bottle.
After the initial period in wood, LBV wines are aged in dark glass bottles in cool dark cellars with controlled temperature, ventilation and relative humidity. The vintage year is always indicated on the label [1].
White Port wine is made in the same way as red Port wines. However, there is a tendency to reduce the skin contact time, and even to ferment clarified grape juice at a lower temperature (18–20°C), to obtain wines with fruity aromas. The wines are aged in small size old wood barrels for a minimum of three years before its commercialisation depending on the desired White Port wine colour type.
The colour of red and white Port wines is one of the main quality parameters of the different Port wines styles. For Port wines made from red grape varieties, the initial wine colour is mainly due to the anthocyanins extracted from grape skins during vinification. Nevertheless, in a young Port wine, the percentage of colour due to the so called polymeric pigments is already 23 to 30% indicating that changes in the compounds responsible for the colour have already started during the short alcoholic fermentation and wine spirit addition to stop the alcoholic fermentation. The red Port wine colour increases up to 80% during the first months of ageing depending on the concentration of free acetaldehyde present in the young wine. After 46 weeks of ageing, the polymeric pigments can make up 78 and 98% of the wine colour [12]. The colour evolution during ageing is explained by the involvement of anthocyanins in different equilibria in solution and their simultaneous transformation through various concurring chemical reactions to a range of other pigments, many of them still unknown (Figure 3). These changes are dependent on the wine composition like anthocyanin, flavonol and tannin concentrations, different processing parameters like temperature, oxygen level, pH and the presence of other compounds either produced during alcoholic fermentation, added during processing or formed during the ageing process. On the other hand, no studies have been reported about the colour changes occurring during White Port wine ageing.
Colour evolution during ageing by the involvement of anthocyanins in different equilibria and their simultaneous transformation through various concurring chemical reactions to a range of other pigments (references are listed in Table 2).
Anthocyanins in aqueous solution, depending on the pH, occur in different forms present in equilibria [13, 14, 15]. At pH < 2, the red flavylium cation is the main structure present (I in Figure 3). With increasing pH, for values between 3 and 6, after hydration of the flavylium cation, the colourless hemiketal (II) structure is formed, this last being in equilibrium with the pale yellow cis-chalcone (III) through tautomerisation. This chalcone isomer is also in equilibrium with the trans-chalcone isomer (IV). With the pH increase, the flavylium cation is deprotonated to the corresponding violet neutral quinoidal bases (V and VI) that at higher pH yields the blue anionic quinoidal bases after further deprotonation (VII and VIII, Figure 3) [15]. When sulphur dioxide (SO2) is present, there is observed reversible bleaching of anthocyanins that occurs due to the formation of the colourless anthocyanin-4-bisulphite adducts [16] (IX).
Considering all these equilibriums, at wine pH (3–4) these pigments would be expected to be present mainly in their non-coloured hemiketal form (II). However, the flavylium cation (I) is the main form present in young red wines. This is the result of its stabilisation by different copigmentation mechanisms such as self-association and interaction with other wine components [17, 18, 19, 20]. In the copigmentation process, anthocyanins and other colourless organic compounds, such as flavonoids, amino acids, organic acids, polysaccharides, anthocyanins, or metallic ions, form molecular or complex associations [21]. The copigmentation is based in two effects [22]: (1) the formation of the π–π complex which causes changes in the spectral properties of the molecules in the flavylium ion, increasing the absorption intensity (hyperchromic effect) and its wavelength (bathochromic shift); and (2) the stabilisation of the flavylium form by the π complex displaces the equilibrium in such way that the red colour increases. This association also gives protection for the water nucleophilic attack in the 2 position of the flavylium cation [23] and for other species such as peroxides and sulphur dioxide in the 4 position [24, 25], so that the balance is displaced from hydrated forms towards the red flavylium cations. If the copigment is other anthocyanin, a self-association is formed (X); in the case of copigments with free electron pairs, an intermolecular copigmentation takes place (XI) finally, in the most complex case, the copigmentation can be carried out by a part of the structure itself (usually one of the aromatic acyl group substituents) (Figure 3).
During wine ageing, the concentration of monomeric anthocyanins starts to decrease leading to the formation of new anthocyanin derived pigments with different colour features and greater colour expression at high pH, important for the long-term colour stability of aged red wines [21]. The formation of most of the anthocyanin-derived pigments occurs in the first months of ageing, as the oxidative conditions in oak barrels favour their formation [26, 27]. Copigmentation has been hypothesised as the first mechanism involved in the formation of polymeric anthocyanin-derived pigments in red wines during ageing [19]. Numerous pigments have been characterised in wines and wine-like model solutions, and can be classified into three groups with respect to their formation pathways: 1) Direct condensation between anthocyanins and flavonols; 2) Condensation between anthocyanins and flavonols mediated by aldehydes, mainly acetaldehyde; and 3) Pyroanthocyanins (Figure 3). Although some of these pigments have only been detected in very small quantities in red wines, they have unique spectroscopic features that may, in some way, contribute together to the overall colour of aged red wines. In the first case, free anthocyanins can condense directly with flavan-3-ols and oligomeric proanthocyanins generating tannin-anthocyanins condensation products (T-A+, XII) or anthocyanin-tannin condensation products (A+-T, XIII) [8, 28, 29, 30, 31, 32, 33]. The T-A+ formation begins with the acid cleavage of the interflavanic bond of a procyanidin, giving a carbocation T+ which reacts with the hydrated form of the anthocyanin (II). This mechanism leads to a colourless compound (T-AOH) which easily dehydrates to the coloured flavylium form T-A+ [34]. In the formation of A+-T pigments, nucleophilic addition of the flavanol takes place onto the flavylium form of the anthocyanin, yielding a colourless compound with the anthocyanin in flavene form. This flavene can be oxidised, resulting in a coloured flavylium A+-T pigment (XIII) or in a colourless compound A(-O-)T with a type-A bond (XIV) [31] (Figure 3). As described for the monomeric anthocyanins, these pigments can also occur in a dynamic equilibrium among some molecular forms, mainly the quinoidal base, the flavylium cation and the hemiketal or carbinol pseudobase [30]. Both T-A+ pigments and colourless A(-O-)T have been detected in wines [35]. Dimeric anthocyanins (XVI) consisting of one unit under flavylium cation and the other one under hydrated hemiketal form (A+-AOH) were also characterised by mass spectrometry in wine like solutions [36] (Figure 3).
The A+-T adducts can generate yellow-orange xanthylium pigments (XV) by further structural rearrangements. After the dehydration, a new heterocyclic pyran ring is formed and the xanthylium structure is generated [17, 37, 38, 39, 40] (Figure 3). However, xanthylium pigments are also proposed to be formed directly from oligomeric flavan-3-ols [41, 42].
On the other hand, the acetaldehyde-mediated polymerisation between either only flavanols or with anthocyanins is the most well documented reaction in the literature [31, 37, 43, 44, 45, 46, 47, 48, 49, 50, 51]. Acetaldehyde is the main aldehyde (90%) present in wines as a result of yeast metabolism during the first stages of alcoholic fermentation, being also produced throughout the wine ageing process from ethanol oxidation [52]. In fortified wines like Port wines, this compound and other aldehydes (propionaldehyde, 2-methylbutyraldehyde, isovaleraldehyde, methylglyoxal, benzaldehyde) are present in higher amounts due to the addition of wine spirit (40–260 mg/L of acetaldehyde) to stop the alcoholic fermentation [53]. Ethyl-linked products, including ethyl-linked flavanols [54, 55] and ethyl-linked anthocyanin-flavanol pigments (XVII) [55] have been detected in wines (Figure 2). The formation of ethyl-linked anthocyanin oligomers (A+-Et-AOH, XVIII) was also shown to occur both in model solution and in wine [56]. The ethyl-linked 8,8-malvidin-3-glucoside dimer was characterised by NMR under biflavylium cation forms [56]. However, physicochemical studies carried out on this pigment showed that the dimer under monoflavylium cation is the most abundant form at wine pH [57].
Another important group of anthocyanin derived pigments formed during ageing, also found in red Port wines, are the pyranoanthocyanins (XIX) (Figure 3). Pyranoanthocyanins are a group of anthocyanin-derived pigments [58, 59], which were first discovered in red wine by Cameira-dos-Santos et al. [60]. Pyranoanthocyanins are structurally characterised by the presence of a fourth ring between C-4 and the 5-hydroxyl group of an anthocyanin moiety, differing from each other on the type of group or molecule linked to the C-10 of the new ring [58, 61, 62]. The pyranic ring in pyranoanthocyanins provides protection against the nucleophilic attack from water or bisulphite, increasing their stability [63], making these compounds exceptionally stable pigments towards sulphite bleaching and pH variations. Both anthocyanin-flavanol derived pigments, direct ones and ethyl-linked ones, show less stability during ageing than pyranoanthocyanins. Through the reaction of anthocyanins with acetaldehyde [61, 63], pyruvic acid [58, 64], cinnamic acids [65, 66], acetoacetic acid [64], and procyanidins in the presence of acetaldehyde [67], several different classes of these pigments have been identified in the past decade such as vitisins [58, 59, 61, 68, 69], hydroxyphenyl-pyranoanthocyanins (pinotins) [59, 64, 70, 71, 72], methylpyranoanthocyanins [59, 73], vinylflavanol-pyranoanthocyanins [59], portisins [58, 59, 61, 66, 67, 74, 75], and more recently a new family of pyranoanthocyanin dimers [28, 73, 76, 77] (Table 2).
Pyroanthocyanins | Precursors | References |
---|---|---|
R1 and R2 = OCH3; R3 = Glucose | ||
(I) In Figure 3 | ||
Malvidin-3-glucoside (Oenin) | [13, 14, 15] | |
(XIX) In Figure 3 | ||
R4 = H | ||
Non-substituted pyroanthocyanins (Vitisin B) | Oenin+acetaldehyde | [58, 59, 60, 61, 68, 69] |
R4 = COOH | ||
Carboxypyroanthocyanins (Vitisin A) | Oenin+pyruvic acid | [58, 59, 60, 61, 68, 69] |
R4 = CH3 | ||
Methylpyroanthocyanins | Oenin+acetoacetic acid or acetone | [59, 73] |
R4 = COCH3 | ||
Acetylpyroanthocyanins | Oenin+diacetyl | [8, 28, 29, 30, 31, 32, 33] |
R4 = hydroxyphenyl | ||
Hidroxyphenylpyroanthocyanins | Oenin+p-coumaric acid or vinylphenol | [59, 64, 70, 71, 72] |
R4 = dihydroxyphenyl | ||
Pinotin A | Oenin + caffeic acid or vinylcatechol | [59, 64, 70, 71, 72] |
R4 = flavanol | ||
Flavanol-pyroanthocyanins | Oenin+vinylflavanols or flavan-3-ols + acetaldehyde | [59] |
(XX) In Figure 3 | ||
Pyranone-anthocyanins (oxovitisins) | Carboxypyroanthocyanins + water | [90] |
(XXI) In Figure 3 | ||
R6 = hydroxyphenyl | ||
Vinylphenyl-pyroanthocyanins (Portisin B) | Carboxypyroanthocyanins+hydroxycinnamic acids or vinylphenols | [58, 59, 61, 66, 67, 74, 75] |
R6 = flavanol | ||
Vinylflavanol-pyroanthocyanins (Portisin A) | Carboxypyroanthocyanins + vinylflavanols or flavan-3-ols and acetaldehyde | [58, 59, 61, 66, 67, 74, 75] |
(XXII) in Figure 3 | ||
Pyroanthocyanins dimers | Carboxypyroanthocyanins + methylpyroanthocyanins | [28, 73, 76, 77] |
Pyranoanthocyanins identified in wines and precursors.
Pyruvic acid leads to the major pyranoanthocyanins determined in wines, i.e. carboxy-pyranoanthocyanins (R = COOH), sometimes referred to as vitisin A [58, 59, 61, 68, 69]. In red Port wines, it is the main pigment found during ageing. Due to its particular vinification process, the concentration of vitisin A is very high: 51.2 mg/L for Touriga Nacional Port wines, for example [78]. Indeed, wine fortification after alcoholic fermentation allows greater availability of pyruvic acid [79], which leads to reaching the highest contents shortly after fermentation and during the first year of ageing, followed by a slow decline [80]. After one year of ageing in barrels, the contents decrease by about 15–25% and about 70% after two years, whereas it is not so much important during bottle ageing (9–18%). Romero and Bakker [81] have demonstrated that the addition of pyruvic acid to finished Port wines from four different grape varieties resulted in an increase of malvidin-pyruvic acid adducts. It was also found that the concentration of anthocyanin-pyruvic acid adducts in wines was directly related to the original grape anthocyanin profile; the higher the initial anthocyanin precursor forms, the higher the concentration of corresponding adducts [81, 82, 83]. Morata et al. [84] have reported that the yeast strain used in the alcoholic fermentation (inoculated or not) also affects the production of malvidin-3-glucoside-pyruvate, existing a direct relation between the concentration of the pigment and the production of pyruvic acid by the yeast.
Moreover, the content of SO2 in must can also influence the production of malvidin-3-glucoside-pyruvate, since SO2 regulates the concentration of pyruvic acid through the formation of a weak bisulphite addition compound [85].
Romero and Bakker [68] have reported that malvidin-derived pyruvic acids adduct in model solutions provided approximately 11-fold (at pH 3) and 14-fold (at pH 2) more colour than grape anthocyanins.
Flavanol pyranoanthocyanins are formed by the cycloaddition between anthocyanins and 8-vinylflavanol adducts initially derived from the cleavage of ethyl-linked flavanol oligomers [46] or pigments [86, 87]. In red Port wines, pyranoanthocyanin-procyanidin dimers were identified in higher concentrations than the corresponding pyranoanthocyanin-catechins, representing up to 80% of the total pyranomalvidin-flavanols. This postulate is concordant with the fact that procyanidin dimers are more abundant than catechin monomers in grapes and wines from the Douro region [88, 89]. Furthermore, their concentrations decreased in older wines for both malvidin-3-glucoside derived-pigments (10.59 mg/L in 3 year aged wines, 9.16 mg/L in 4 year aged wines and 7.86 mg/L in 6 year aged wines) and associated coumaroyl pigments (6.62, 5.51 and 3.33 mg/L in 3, 4 and 6 year aged wines, respectively).
A second generation of pyranoanthocyanins can be formed by the reaction between a vitisin A and other metabolites. For example, oxovitisins (XX) are neutral yellowish pyranone structures involving the nucleophilic attack of water at the C-10 position of vitisin A [90].
In 2003 Mateus et al. [74] reported a new group of pyranoanthocyanins-vinylpyranoanthocyanins-which were named portisins (XXI), because of their occurrence in aged red Port wine [61, 67, 74, 75], Figure 3. The structure of these compounds consists of a pyranoanthocyanin moiety linked through a vinyl bridge to a flavanol or phenol unit. Their pathway of formation involves the carboxypyranoanthocyanins and vinylphenolic compounds. The first of these compounds reported in the literature arise from reaction of 8-vinylflavanol with carbon C-10 of the carboxypyranoanthocyanins, followed by loss of a formic acid group yielding the vinyl bridge. Portisins have been shown to have very high colouring capacity, much higher than that of their anthocyanin or pyruvic acid adduct counterparts [91, 92, 93]. Later, other portisins (B type) were detected in aged Port wines. In these, the flavanol moiety is replaced by a phenolic moiety with different hydroxylation and methoxylation patterns [61, 67, 74, 75]. These compounds were reported to result from the reaction of carboxypyranoanthocyanins with vinylphenols and cinnamic acids, following a mechanism similar to that of vinylflavanols and involving a further decarboxylation. However, the colour features of these portisins are different from those of the portisins discussed above because they have a λmax hypsochromically shifted from that of vinylpyranoanthocyanin-catechins, and are only slightly affected by the substitution pattern of the new phenolic ring (between 533 and 540 nm at aqueous pH 1) [91].
The condensation between A-type vitisins and methylpyroanthocyanins results in the formation of pyranoanthocyanin dimers (XXII), Figure 3. These turquoise blue pigments were found in a 9 year aged Port wine [73].
The volatile compounds present in Port wines have their origin on the grapes used, are produced during the alcoholic fermentation and being also added as part of the wine spirit used for Port wine production that contains trace volatile compounds such as esters (ethyl hexanoate, ethyl octanoate, ethyl decanoate) and terpenes (α-terpineol, linalool) that can affect the quality of the Port wines, contributing to a fruity, balsamic and spicy aroma [94]. In addition, wine spirits are rich in aldehydes such as acetaldehyde, propionaldehyde, isovaleraldehyde, isobutyraldehyde, and benzaldehyde [94]. The volatile profile of young Port wines is significantly different from that of aged Tawny Port wines or bottle-aged Port wines. Producers blend wines from several vintages and vineyards to produce wines with a consistent character. The final aroma character of the Port wine is to a considerable extent determined by the processes that take place during the oxidative ageing process of these wines, such as oxidation, carbohydrate degradation, formation and hydrolysis of esters, formation of acetals and to a lesser extent extraction of components from wood [11]. More than 200 volatile components have been detected in Port wines, 141 of which have been entirely or partially identified, however, the sensory importance of the various groups of volatile compounds does not entirely explain the sensory properties of Ruby or Tawny Port wines [95]. For the Ruby Port wine sensory profile, the attributes are ‘Ruby’, ‘Persistence’, ‘Red fruits’, ‘Fruity flavour’, ‘Astringency’ and ‘Floral’ were dominant, whereas in the White Port wine attributes like ‘Honey’, ‘Sweet taste’, ‘Alcoholic sensation’, ‘Balance’, ‘Acid taste’ and ‘Moscatel’ are the ones that better characterise these wines, Tawny Port wines are characterised by the attributes ‘Dried fruits flavour’, ‘Dried fruits’, ‘Spices’, ‘Wood’ and ‘Sweet/Honey’ [96, 97]. The Pink Port wines sensory attributes are characterised by the attributes ‘Red fruit aroma’, ‘Body’, ‘Fruit aroma’, ‘Fruity flavour’, ‘Spicy sensation’ and ‘Persistence’ [98].
Norisoprenoids have been found to contribute significantly to the aroma of young and aged Port wines [76, 99, 100, 101]. In a one year aged Port wine produced from Touriga Franca and Touriga Nacional grape varieties the norisoprenoid, 2,6,6-trimethylcyclohex-2-ene-1,4-dione, described as having sweet honey aroma, was identified by Rogerson et al. [102]. In a young Port wine produced from Tinto Cão and Tinta Barroca grape varieties, Rogerson et al. [103] identified the 1,3-dimethoxybenzene and 2-ene-1,4-dione. Falqué-Lopez et al. [104] characterised a one year aged Touriga Nacional monovarietal Port wine as having ‘plum brandy’, ‘mulberry’, ‘cherry’, ‘wild fruits’ and ‘dry raisin’ aromas and Guedes de Pinho et al. [105] identified linalool and linalyl acetate as being the responsible for the bergamot descriptor.
Ferreira et al. [100] have studied the influence of several factors on the levels of norisoprenoid in Port wines such as dissolved oxygen levels, free sulphur dioxide concentration, pH, and time/temperature of ageing. These authors observed that temperature and pH had a major influence on norisoprenoids levels and oxygen saturation reduced these compounds.
The concentration of several norisoprenoids increases during ageing, as for example β-ionone and β-damascenone in Vintage Port wines, and vitispirane, 2,2,6-trimethylcyclohexanone (TCH) and 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) in Tawny Port wines [99]. Ferreira and Pinho [99] showed that the occurrence of β-damascenone, β-ionone, TCH, TDN, and vitispirane was distinct in young or aged Port wines. It was observed that in wood barrel ageing TDN, vitispirane, and TCH increased, however, the concentration of β-ionone and β-damascenone decreased. Freitas et al. [106] described that TCH was responsible for the “rock-rose-like” aroma. According to several authors, in Port wines due to the short fermentation time precursors of norisoprenoids such as carotenoids, β-carotene, lutein, neoxanthin and violaxanthin can be present [104, 107, 108]. Carotenoids are the precursor of norisoprenoids and in Port wine carotenoids persist after the vinification process [108]. Grape varieties used for Port wine production are rich in certain carotenoids and viticultural practices, such as bunch shading [108, 109] and grapevine water status [110] can influence the concentration of carotenoids in the grape berries.
Acetals, derived from glycerol and acetaldehyde, also appear to be involved in the flavour of aged Tawny Port wines [111]. The levels of aldehydes and methyl ketones increase during the oxidative ageing of Port wines. The major aliphatic aldehyde is acetaldehyde with a clear trend of increasing with the time of storage in wood barrels. Glycerol is present in wines in large amounts, in particular with concentration from 4 to 8 g/L in Port wines and therefore the formation of acetal can be high. At wine pH, four isomers are formed by condensation of glycerol and acetaldehyde: cis- and trans-5-hydroxy-2-methyl-1,3-dioxane and cis- and trans-4-hydroxymethyl-2-methyl-1,3-dioxolane. These four acetals have been studied in more detail in order to understand their impact on wine aroma and if these substances can be used as indicators of Port wines age with oxidative ageing conditions. These four isomers are found in Port wine at high concentrations. Nevertheless, this reaction is strongly dependent on free sulphur dioxide levels. When there is no free sulphur dioxide, the level of four isomers increases with the extent of ageing. On the other hand, when sulphur dioxide combines with acetaldehyde, the acetals cannot be formed because of the formation of the acetaldehyde-bisulphite adduct. The concentrations of the four acetals increases consistently with age due to the constant increase of acetaldehyde content and the nonexistence of free sulphur dioxide during Port wine storage. The acetal with the highest intensity aroma described as sweet and Port-like is trans-5-hydroxy-2- methyl-1,3-dioxane and the aroma threshold limit of the total concentration of the four acetals was determined as 100 mg/L [111]. Many acetals have been isolated from Tawny Port wines, but their contribution to the oxidised character of the wine is unclear [8].
Port wines with extensive wood-ageing have higher concentrations of diethyl and other succinate esters that contribute to the Port wine bouquet. Oak lactones (β-methyl-γ-octalactone isomers) and other oxygen-containing heterocycles have also been isolated. Some of the latter are furan derivatives, such as dihydro-2-(3H)-furanone and may contribute to a sugary oxidised bouquet [8]. Esters of 2-phenylethanol may contribute to the fruity, sweet bouquet of Port wines, and diacetyl can contribute to its caramel odour [99]. Some aldehydes and ketones are associated with the oxidative aged Port wines, conferring “rancio” odour to wines [112, 113].
However, in wood barrel aged Port wine the 3-hydroxy-4,5-dimethyl-2(5H)-furanone (sotolon) seems to be the most significant volatile compound [112, 113]. Some works suggested that sotolon contributes to the characteristic barrel aged aroma of Port wines [114], being the fundamental molecule to understand the “perceived age” of Port wines. The levels of sotolon were measured in “Colheita” and Tawny categories and were shown that it increases with ageing time being present in a range of concentration of some dozen μg/L in a young wine, to about 100 μg/L in wines with 10 years ageing, and to about 1000 μg/L in Port wines older than 50 years [112, 113, 114]. Albeit being a compound with an apparently important role in Port wine aged aroma, the mechanism of sotolon formation in wine is not yet fully understood. However, different pathways have been proposed, such as aldol condensation between α-ketobutyric acid and acetaldehyde [115, 116, 117] (Pathway 1 – Figure 4) and the reaction between ethanol and ascorbic acid [118] (Pathway 2 – Figure 4). The formation of sotolon in Port wines is dependent on the temperature and oxygen levels [112, 113], which are crucial parameters during the oxidative ageing of Tawny Port wines. The sensory threshold limit of sotolon was determined as 19 μg/L, which is above the amount present in Port wines older than 10 years [112, 113].
Pathway 1: Reaction between α-ketobutyric acid (1) and acetaldehyde (2); pathway 2: Reaction between ascorbic acid (3) and ethanol (3). These reactions can lead to the formation of sotolon (8) according to [115, 116, 117, 118].
Young Port wines show higher levels of volatile sulphur compounds than aged Port wines [119]. Sulphur compounds, such as 2-mercaptoethanol, 2-(methylthio) ethanol, ethyl 3-(methylthio) propionate, 3-(methylthio)-1-propanol, cis-(odourless), and trans-2-methyltetrahydrothiophen-3-ol, 3-(ethylthio)-1-propanol, 4-(methylthio)-1-butanol, dimethyl sulfone, benzothiazole, 3-(methylthio)-1-propionic acid and N-3-(methylthiopropyl) acetamide are not present or are present in lower concentrations in aged Tawny Port wines when compared to young Tawny Port wines [119].
The changes observed in the volatile composition of Port wines during the oxidative ageing results in a complex, oxidised character defined as nutty, nuts, raisins and crisp apples with a slightly oaky note’ giving an impression of dryness. According to Falqué et al. [104] and Ferreira et al. [120] floral, bergamot-like, violet or jasmine notes are present in young Port wines that are changed during the ageing process in wood barrels. Freitas et al. [106] and Ferreira et al. [121] have described the flavours developed during ageing of Port wines as woody, burnt, dry fruit, nutty, and spicy.
Port wine is one of the most famous and old fortified wine in the world, produced in the Douro Demarcated Region (Portugal), a region with a singular “terroir”. It is a traditional product with more than 250 years old and commercialised all around the world for many centuries. However, more knowledge is still needed in order to understand and control its composition and its evolution during the wine ageing process. Port wine presents a complex physicochemical matrix that results from complex and concurrent chemical reactions that occur during the ageing process significantly changing its sensory profile. Different Port wine styles are obtained using different ageing processes, related to different oxygen levels, temperature and sulphur dioxide variations. The two main Port wine styles are the Ruby and Tawny Port wines, with the first style being obtained by a reductive ageing process resulting in a ruby colour and fruity aroma, while Tawnies Port wine styles shows a brown colour and an intense dry fruit aroma. The colour of the different Port wines styles is one of their main quality parameters. For the Port wines produced with red grapes, colour changes are related to the changes in the anthocyanins composition during the ageing process. The colour attributes of the Port wines made with white grapes is still largely unknown. Sotolon plays an important role in aged Port wines aroma obtained by oxidative ageing, due to its low olfactory threshold and pleasant and potent aroma. Sotolon levels increase during Port wine oxidative ageing. The intense government legislation and specific production rules protect this important product produced in a world protected region (Unesco) in order to reduce adulterations or even imitations. However, more studies are still needed to deepen our knowledge in order to understand and control the reactions involved in Port wine ageing process that contribute to its uniqueness.
We appreciate the financial support provided to the Research Unit in Vila Real (UIDB/00616/2020 and UIDP/00616/2020) by FCT and COMPETE and JM acknowledges the financial support provided by the FCT grant PD/BD/135331/2017.
The authors declare no conflict of interest.
You have been successfully unsubscribed.
",metaTitle:"Unsubscribe Successful",metaDescription:"You have been successfully unsubscribed.",metaKeywords:null,canonicalURL:"/page/unsubscribe-successful",contentRaw:'[{"type":"htmlEditorComponent","content":""}]'},components:[{type:"htmlEditorComponent",content:""}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5775},{group:"region",caption:"Middle and South America",value:2,count:5238},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10409},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15805}],offset:12,limit:12,total:118374},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:20},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:26},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5247},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1152",title:"Reconstructive Surgery",slug:"reconstructive-surgery",parent:{title:"Surgery",slug:"surgery"},numberOfBooks:7,numberOfAuthorsAndEditors:219,numberOfWosCitations:79,numberOfCrossrefCitations:47,numberOfDimensionsCitations:113,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"reconstructive-surgery",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8853",title:"Breast Cancer and Breast Reconstruction",subtitle:null,isOpenForSubmission:!1,hash:"5947d4ba7ac1e9c39c9083e89201275c",slug:"breast-cancer-and-breast-reconstruction",bookSignature:"Luis Tejedor, Susana Gómez Modet, Lachezar Manchev and Arli Aditya Parikesit",coverURL:"https://cdn.intechopen.com/books/images_new/8853.jpg",editedByType:"Edited by",editors:[{id:"81170",title:"Dr.",name:"Luis",middleName:null,surname:"Tejedor",slug:"luis-tejedor",fullName:"Luis Tejedor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5428",title:"Designing Strategies for Cleft Lip and Palate Care",subtitle:null,isOpenForSubmission:!1,hash:"20bcf2aa877c04447d31d6e0db2e437e",slug:"designing-strategies-for-cleft-lip-and-palate-care",bookSignature:"Mazen Ahmad Almasri",coverURL:"https://cdn.intechopen.com/books/images_new/5428.jpg",editedByType:"Edited by",editors:[{id:"150413",title:"Dr.",name:"Mazen Ahmad",middleName:null,surname:"Almasri",slug:"mazen-ahmad-almasri",fullName:"Mazen Ahmad Almasri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3283",title:"Skin Grafts",subtitle:null,isOpenForSubmission:!1,hash:"51201608d5c5d7ff6f47e5afd2abdb9f",slug:"skin-grafts",bookSignature:"Madhuri Gore",coverURL:"https://cdn.intechopen.com/books/images_new/3283.jpg",editedByType:"Edited by",editors:[{id:"157243",title:"Dr.",name:"Madhuri",middleName:null,surname:"Gore",slug:"madhuri-gore",fullName:"Madhuri Gore"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"984",title:"Current Concepts in Plastic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"46fb663adfdfb9ceeb2df2013b08038f",slug:"current-concepts-in-plastic-surgery",bookSignature:"Francisco J. Agullo",coverURL:"https://cdn.intechopen.com/books/images_new/984.jpg",editedByType:"Edited by",editors:[{id:"49319",title:"Dr.",name:"Frank",middleName:null,surname:"Agullo",slug:"frank-agullo",fullName:"Frank Agullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"943",title:"Bone Grafting",subtitle:null,isOpenForSubmission:!1,hash:"9afab8beeb4879b2751907783a3de842",slug:"bone-grafting",bookSignature:"Alessandro Zorzi and Joao Batista de Miranda",coverURL:"https://cdn.intechopen.com/books/images_new/943.jpg",editedByType:"Edited by",editors:[{id:"80871",title:"M.D.",name:"Alessandro Rozim",middleName:null,surname:"Zorzi",slug:"alessandro-rozim-zorzi",fullName:"Alessandro Rozim Zorzi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1007",title:"Xenotransplantation",subtitle:null,isOpenForSubmission:!1,hash:"45fde91777f91583197a5b5dfecb207a",slug:"xenotransplantation",bookSignature:"Shuji Miyagawa",coverURL:"https://cdn.intechopen.com/books/images_new/1007.jpg",editedByType:"Edited by",editors:[{id:"73965",title:"Prof.",name:"Shuji",middleName:null,surname:"Miyagawa",slug:"shuji-miyagawa",fullName:"Shuji Miyagawa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1305",title:"Advances in Endoscopic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"84236c28c671a83f6cd1cd8bb84d873f",slug:"advances-in-endoscopic-surgery",bookSignature:"Cornel Iancu",coverURL:"https://cdn.intechopen.com/books/images_new/1305.jpg",editedByType:"Edited by",editors:[{id:"33183",title:"Prof.",name:"Cornel",middleName:null,surname:"Iancu",slug:"cornel-iancu",fullName:"Cornel Iancu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:7,mostCitedChapters:[{id:"33456",doi:"10.5772/30442",title:"Basic Knowledge of Bone Grafting",slug:"basic-knowledge-of-bone-grafting",totalDownloads:27429,totalCrossrefCites:6,totalDimensionsCites:9,book:{slug:"bone-grafting",title:"Bone Grafting",fullTitle:"Bone Grafting"},signatures:"Nguyen Ngoc Hung",authors:[{id:"82591",title:"Prof.",name:"Nguyen",middleName:null,surname:"Ngoc Hung",slug:"nguyen-ngoc-hung",fullName:"Nguyen Ngoc Hung"}]},{id:"33460",doi:"10.5772/31149",title:"Congenital Pseudarthrosis of the Tibia: Combined Pharmacologic and Surgical Treatment Using Biphosphonate Intravenous Infusion and Bone Morphogenic Protein with Periosteal and Cancellous Autogenous Bone Grafting, Tibio-Fibular Cross Union, Intramedullary",slug:"treatment-of-congenital-pseudarthrosis-with-periosteal-and-cancellous-bone-grafting-",totalDownloads:3003,totalCrossrefCites:4,totalDimensionsCites:9,book:{slug:"bone-grafting",title:"Bone Grafting",fullTitle:"Bone Grafting"},signatures:"Dror Paley",authors:[{id:"85789",title:"Dr.",name:"Dror",middleName:null,surname:"Paley",slug:"dror-paley",fullName:"Dror Paley"}]},{id:"39014",doi:"10.5772/51852",title:"Treatment of Leg Chronic Wounds with Dermal Substitutes and Thin Skin Grafts",slug:"treatment-of-leg-chronic-wounds-with-dermal-substitutes-and-thin-skin-grafts",totalDownloads:3144,totalCrossrefCites:0,totalDimensionsCites:6,book:{slug:"skin-grafts",title:"Skin Grafts",fullTitle:"Skin Grafts"},signatures:"Silvestro Canonico, Ferdinando Campitiello, Angela Della Corte, Vincenzo Padovano and Gianluca Pellino",authors:[{id:"68551",title:"Dr.",name:"Gianluca",middleName:null,surname:"Pellino",slug:"gianluca-pellino",fullName:"Gianluca Pellino"},{id:"157129",title:"Prof.",name:"Silvestro",middleName:null,surname:"Canonico",slug:"silvestro-canonico",fullName:"Silvestro Canonico"},{id:"157133",title:"Dr.",name:"Ferdinando",middleName:null,surname:"Campitiello",slug:"ferdinando-campitiello",fullName:"Ferdinando Campitiello"},{id:"165428",title:"Dr.",name:"Angela",middleName:null,surname:"Della Corte",slug:"angela-della-corte",fullName:"Angela Della Corte"},{id:"165429",title:"Dr.",name:"Vincenzo",middleName:null,surname:"Padovano",slug:"vincenzo-padovano",fullName:"Vincenzo Padovano"}]}],mostDownloadedChaptersLast30Days:[{id:"53788",title:"Surgical Techniques for Treatment of Unilateral Cleft Lip",slug:"surgical-techniques-for-treatment-of-unilateral-cleft-lip",totalDownloads:3042,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"designing-strategies-for-cleft-lip-and-palate-care",title:"Designing Strategies for Cleft Lip and Palate Care",fullTitle:"Designing Strategies for Cleft Lip and Palate Care"},signatures:"Mustafa Chopan, Lohrasb Sayadi and Donald R. Laub",authors:[{id:"67264",title:"Dr.",name:"Donald",middleName:"R",surname:"Laub Jr.",slug:"donald-laub-jr.",fullName:"Donald Laub Jr."},{id:"189368",title:"Mr.",name:"Mustafa",middleName:null,surname:"Chopan",slug:"mustafa-chopan",fullName:"Mustafa Chopan"},{id:"189370",title:"Mr.",name:"Lorasb",middleName:null,surname:"Sayadi",slug:"lorasb-sayadi",fullName:"Lorasb Sayadi"}]},{id:"53858",title:"Surgical Strategy of Cleft Palate Repair and Nasometric Results",slug:"surgical-strategy-of-cleft-palate-repair-and-nasometric-results",totalDownloads:1249,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"designing-strategies-for-cleft-lip-and-palate-care",title:"Designing Strategies for Cleft Lip and Palate Care",fullTitle:"Designing Strategies for Cleft Lip and Palate Care"},signatures:"Norifumi Nakamura and Masahiro Tezuka",authors:[{id:"72560",title:"Prof.",name:"Norifumi",middleName:null,surname:"Nakamura",slug:"norifumi-nakamura",fullName:"Norifumi Nakamura"},{id:"189479",title:"Dr.",name:"Masahiro",middleName:null,surname:"Tezuka",slug:"masahiro-tezuka",fullName:"Masahiro Tezuka"}]},{id:"67059",title:"Oncoplastic Surgery in Breast Cancer",slug:"oncoplastic-surgery-in-breast-cancer",totalDownloads:392,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"breast-cancer-and-breast-reconstruction",title:"Breast Cancer and Breast Reconstruction",fullTitle:"Breast Cancer and Breast Reconstruction"},signatures:"Atallah David, Moubarak Malak and Abdallah Abdallah",authors:[{id:"219535",title:"Associate Prof.",name:"David",middleName:null,surname:"Atallah",slug:"david-atallah",fullName:"David Atallah"},{id:"221488",title:"Dr.",name:"Malak",middleName:null,surname:"Moubarak",slug:"malak-moubarak",fullName:"Malak Moubarak"},{id:"299454",title:"Dr.",name:"Abdallah",middleName:null,surname:"Abdallah",slug:"abdallah-abdallah",fullName:"Abdallah Abdallah"}]},{id:"54055",title:"Cleft Lip and Palate Patients: Diagnosis and Treatment",slug:"cleft-lip-and-palate-patients-diagnosis-and-treatment",totalDownloads:1864,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"designing-strategies-for-cleft-lip-and-palate-care",title:"Designing Strategies for Cleft Lip and Palate Care",fullTitle:"Designing Strategies for Cleft Lip and Palate Care"},signatures:"Letizia Perillo, Fabrizia d’Apuzzo, Sara Eslami and Abdolreza\nJamilian",authors:[{id:"171777",title:"Prof.",name:"Abdolreza",middleName:null,surname:"Jamilian",slug:"abdolreza-jamilian",fullName:"Abdolreza Jamilian"},{id:"173044",title:"Prof.",name:"Letizia",middleName:null,surname:"Perillo",slug:"letizia-perillo",fullName:"Letizia Perillo"},{id:"197679",title:"Dr.",name:"Sara",middleName:null,surname:"Eslami",slug:"sara-eslami",fullName:"Sara Eslami"},{id:"198961",title:"MSc.",name:"Fabrizia",middleName:null,surname:"D'Apuzzo",slug:"fabrizia-d'apuzzo",fullName:"Fabrizia D'Apuzzo"}]},{id:"33481",title:"Tuberous Breast: Clinical Evaluation and Surgical Treatment",slug:"tuberous-breast-clinical-evaluation-and-surgical-treatment",totalDownloads:13769,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"current-concepts-in-plastic-surgery",title:"Current Concepts in Plastic Surgery",fullTitle:"Current Concepts in Plastic Surgery"},signatures:"Giovanni Zoccali and Maurizio Giuliani",authors:[{id:"75465",title:"Prof.",name:"Maurizio",middleName:null,surname:"Giuliani",slug:"maurizio-giuliani",fullName:"Maurizio Giuliani"},{id:"76973",title:"Dr.",name:"Giovanni",middleName:null,surname:"Zoccali",slug:"giovanni-zoccali",fullName:"Giovanni Zoccali"}]},{id:"33456",title:"Basic Knowledge of Bone Grafting",slug:"basic-knowledge-of-bone-grafting",totalDownloads:27425,totalCrossrefCites:6,totalDimensionsCites:9,book:{slug:"bone-grafting",title:"Bone Grafting",fullTitle:"Bone Grafting"},signatures:"Nguyen Ngoc Hung",authors:[{id:"82591",title:"Prof.",name:"Nguyen",middleName:null,surname:"Ngoc Hung",slug:"nguyen-ngoc-hung",fullName:"Nguyen Ngoc Hung"}]},{id:"33455",title:"Introduction",slug:"introduction1",totalDownloads:1630,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"bone-grafting",title:"Bone Grafting",fullTitle:"Bone Grafting"},signatures:"Alessandro Rozim Zorzi and João Batista de Miranda",authors:[{id:"80871",title:"M.D.",name:"Alessandro Rozim",middleName:null,surname:"Zorzi",slug:"alessandro-rozim-zorzi",fullName:"Alessandro Rozim Zorzi"},{id:"84386",title:"Prof.",name:"João",middleName:null,surname:"Batista de Miranda",slug:"joao-batista-de-miranda",fullName:"João Batista de Miranda"}]},{id:"53715",title:"Cleft Lip and Palate in the Dog: Medical and Genetic Aspects",slug:"cleft-lip-and-palate-in-the-dog-medical-and-genetic-aspects",totalDownloads:6438,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"designing-strategies-for-cleft-lip-and-palate-care",title:"Designing Strategies for Cleft Lip and Palate Care",fullTitle:"Designing Strategies for Cleft Lip and Palate Care"},signatures:"Enio Moura and Cláudia Turra Pimpão",authors:[{id:"91097",title:"Prof.",name:"Enio",middleName:null,surname:"Moura",slug:"enio-moura",fullName:"Enio Moura"},{id:"194711",title:"Dr.",name:"Cláudia",middleName:null,surname:"Pimpão",slug:"claudia-pimpao",fullName:"Cláudia Pimpão"}]},{id:"42570",title:"Polyethylene Surgical Drape Dressing for Split Thickness Skin Graft Donor Areas",slug:"polyethylene-surgical-drape-dressing-for-split-thickness-skin-graft-donor-areas",totalDownloads:1564,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"skin-grafts",title:"Skin Grafts",fullTitle:"Skin Grafts"},signatures:"Madhuri A. Gore, Kabeer Umakumar and Sandhya P. Iyer",authors:[{id:"157243",title:"Dr.",name:"Madhuri",middleName:null,surname:"Gore",slug:"madhuri-gore",fullName:"Madhuri Gore"}]},{id:"53918",title:"Epidemiology of Cleft Lip and Palate",slug:"epidemiology-of-cleft-lip-and-palate",totalDownloads:2032,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"designing-strategies-for-cleft-lip-and-palate-care",title:"Designing Strategies for Cleft Lip and Palate Care",fullTitle:"Designing Strategies for Cleft Lip and Palate Care"},signatures:"Mairaj K. Ahmed, Anthony H. Bui and Emanuela Taioli",authors:[{id:"188212",title:"Dr.",name:"Mairaj K.",middleName:null,surname:"Ahmed",slug:"mairaj-k.-ahmed",fullName:"Mairaj K. Ahmed"},{id:"194367",title:"Dr.",name:"Emanuela",middleName:null,surname:"Taioli",slug:"emanuela-taioli",fullName:"Emanuela Taioli"},{id:"203416",title:"Dr.",name:"Anthony",middleName:null,surname:"Bui",slug:"anthony-bui",fullName:"Anthony Bui"}]}],onlineFirstChaptersFilter:{topicSlug:"reconstructive-surgery",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/221734/seda-genc",hash:"",query:{},params:{id:"221734",slug:"seda-genc"},fullPath:"/profiles/221734/seda-genc",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()