Some key drought stress tolerance mechanisms identified in cereals.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 179 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 252 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"5713",leadTitle:null,fullTitle:"Chromosomal Abnormalities - A Hallmark Manifestation of Genomic Instability",title:"Chromosomal Abnormalities",subtitle:"A Hallmark Manifestation of Genomic Instability",reviewType:"peer-reviewed",abstract:"This edited book, Chromosomal Abnormalities - A Hallmark Manifestation of Genomic Instability, contains a series of chapters highlighting several aspects related to the generation of chromosomal abnormalities in genetic material. We are extremely grateful to the authors who had contributed with valuable information about the role of genomic instability in pathological disorders as well as in the evolution process.",isbn:"978-953-51-3474-9",printIsbn:"978-953-51-3473-2",pdfIsbn:"978-953-51-4687-2",doi:"10.5772/65142",price:119,priceEur:129,priceUsd:155,slug:"chromosomal-abnormalities-a-hallmark-manifestation-of-genomic-instability",numberOfPages:204,isOpenForSubmission:!1,isInWos:1,hash:"cedce9580c13738278e91867a964668e",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",publishedDate:"August 30th 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5713.jpg",numberOfDownloads:10317,numberOfWosCitations:9,numberOfCrossrefCitations:4,numberOfDimensionsCitations:10,hasAltmetrics:1,numberOfTotalCitations:23,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 1st 2016",dateEndSecondStepPublish:"September 22nd 2016",dateEndThirdStepPublish:"December 19th 2016",dateEndFourthStepPublish:"March 19th 2017",dateEndFifthStepPublish:"May 18th 2017",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy",profilePictureURL:"https://mts.intechopen.com/storage/users/14764/images/system/14764.jpeg",biography:"Marcelo L. Larramendy, Ph.D., serves as a Professor of Molecular Cell Biology at the School of Natural Sciences and Museum (National University of La Plata, Argentina). He was appointed as Senior Researcher of the National Scientific and Technological Research Council of Argentina. He is a former member of the Executive Committee of the Latin American Association of Environmental Mutagenesis, Teratogenesis, and Carcinogenesis. He is the author of more than 450 contributions, including scientific publications, research communications, and conferences worldwide. He is the recipient of several national and international awards. Prof. Larramendy is a regular lecturer at the international A. Hollaender courses organized by the IAEMS and a former guest scientist at NIH (USA) and the University of Helsinki, (Finland). He is an expert in genetic toxicology and is, or has been, a referee for more than 20 international scientific journals. He was a member of the International Panel of Experts at the International Agency for Research on Cancer (IARC, WHO, Lyon, France) in 2015 for the evaluation of DDT, 2,4-D, and Lindane. Presently, Prof. Dr. Larramendy is Head of the Laboratory of Molecular Cytogenetics and Genotoxicology at the UNLP.",institutionString:"National University of La Plata",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"17",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"14863",title:"Dr.",name:"Sonia",middleName:null,surname:"Soloneski",slug:"sonia-soloneski",fullName:"Sonia Soloneski",profilePictureURL:"https://mts.intechopen.com/storage/users/14863/images/system/14863.jpeg",biography:"Sonia Soloneski has a Ph.D. in Natural Sciences and is an Assistant Professor of Molecular Cell Biology at the School of Natural Sciences and Museum of La Plata, National University of La Plata, Argentina. She is a member of the National Scientific and Technological Research Council (CONICET) of Argentina in the genetic toxicology field, the Latin American Association of Environmental Mutagenesis, Teratogenesis, and Carcinogenesis (ALAMCTA), the Argentinean Society of Toxicology (ATA), the Argentinean Society of Genetics (SAG), the Argentinean Society of Biology (SAB), and the Society of Environmental Toxicology and Chemistry (SETAC). She has authored more than 380 contributions in the field, including scientific publications in peer-reviewed journals and research communications. She has served as a review member for more than 30 scientific international journals. She has been a plenary speaker in scientific conferences and a member of scientific committees. She is a specialist in issues related to genetic toxicology, mutagenesis, and ecotoxicology.",institutionString:"National University of La Plata",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"6",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"404",title:"Molecular Genetics",slug:"karyology-molecular-genetics"}],chapters:[{id:"54502",title:"The Use of Molecular Cytogenetic Techniques for the Identification of Chromosomal Abnormalities",doi:"10.5772/67415",slug:"the-use-of-molecular-cytogenetic-techniques-for-the-identification-of-chromosomal-abnormalities",totalDownloads:1932,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Rasime Kalkan",downloadPdfUrl:"/chapter/pdf-download/54502",previewPdfUrl:"/chapter/pdf-preview/54502",authors:[{id:"195546",title:"Associate Prof.",name:"Rasime",surname:"Kalkan",slug:"rasime-kalkan",fullName:"Rasime Kalkan"}],corrections:null},{id:"54062",title:"Morphological Markers of Chromosomal Instability",doi:"10.5772/67416",slug:"morphological-markers-of-chromosomal-instability",totalDownloads:956,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Yoko Matsuda, Junko Aida, Naoshi Ishikawa, Kaiyo Takubo,\nToshiyuki Ishiwata and Tomio Arai",downloadPdfUrl:"/chapter/pdf-download/54062",previewPdfUrl:"/chapter/pdf-preview/54062",authors:[{id:"195704",title:"Dr.",name:"Yoko",surname:"Matsuda",slug:"yoko-matsuda",fullName:"Yoko Matsuda"}],corrections:null},{id:"54530",title:"Acquired Chromosomal Abnormalities and Their Potential Formation Mechanisms in Solid Tumours",doi:"10.5772/67733",slug:"acquired-chromosomal-abnormalities-and-their-potential-formation-mechanisms-in-solid-tumours",totalDownloads:1055,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Nevim Aygun",downloadPdfUrl:"/chapter/pdf-download/54530",previewPdfUrl:"/chapter/pdf-preview/54530",authors:[{id:"195365",title:"Dr.",name:"Nevim",surname:"Aygun",slug:"nevim-aygun",fullName:"Nevim Aygun"}],corrections:null},{id:"54548",title:"Chromosome Abnormalities and Hematopoietic Stem Cell Transplantation in Acute Leukemias",doi:"10.5772/67802",slug:"chromosome-abnormalities-and-hematopoietic-stem-cell-transplantation-in-acute-leukemias",totalDownloads:816,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Tatiana L. Gindina, Nikolay N. Mamaev and Boris V. Afanasyev",downloadPdfUrl:"/chapter/pdf-download/54548",previewPdfUrl:"/chapter/pdf-preview/54548",authors:[{id:"195367",title:"M.D.",name:"Tatiana",surname:"Gindina",slug:"tatiana-gindina",fullName:"Tatiana Gindina"},{id:"195369",title:"Prof.",name:"Nikolay",surname:"Mamaev",slug:"nikolay-mamaev",fullName:"Nikolay Mamaev"},{id:"195644",title:"Prof.",name:"Boris",surname:"Afanasyev",slug:"boris-afanasyev",fullName:"Boris Afanasyev"}],corrections:null},{id:"54576",title:"Does Aneuploidy in the Brain Play a Role in Neurodegenerative Disease?",doi:"10.5772/67886",slug:"does-aneuploidy-in-the-brain-play-a-role-in-neurodegenerative-disease-",totalDownloads:821,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Hilda van den Bos, Diana C.J. Spierings, Floris Foijer and Peter M.\nLansdorp",downloadPdfUrl:"/chapter/pdf-download/54576",previewPdfUrl:"/chapter/pdf-preview/54576",authors:[{id:"203168",title:"M.Sc.",name:"Hilda",surname:"Van Den Bos",slug:"hilda-van-den-bos",fullName:"Hilda Van Den Bos"},{id:"203169",title:"Dr.",name:"Diana CJ",surname:"Spierings",slug:"diana-cj-spierings",fullName:"Diana CJ Spierings"},{id:"204784",title:"Dr.",name:"Floris",surname:"Foijer",slug:"floris-foijer",fullName:"Floris Foijer"},{id:"204785",title:"Prof.",name:"Peter M",surname:"Lansdorp",slug:"peter-m-lansdorp",fullName:"Peter M Lansdorp"}],corrections:null},{id:"54785",title:"Chromosomal Abnormalities and Menstrual Cycle Disorders",doi:"10.5772/67795",slug:"chromosomal-abnormalities-and-menstrual-cycle-disorders",totalDownloads:1136,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Ksenija Gersak and Ziva Miriam Gersak",downloadPdfUrl:"/chapter/pdf-download/54785",previewPdfUrl:"/chapter/pdf-preview/54785",authors:[{id:"53853",title:"Prof.",name:"Ksenija",surname:"Gersak",slug:"ksenija-gersak",fullName:"Ksenija Gersak"},{id:"196313",title:"Mrs.",name:"Ziva Miriam",surname:"Gersak",slug:"ziva-miriam-gersak",fullName:"Ziva Miriam Gersak"}],corrections:null},{id:"54652",title:"Chromosomal Abnormalities in Preimplantation Embryos and Detection Strategies in PGD and PGS",doi:"10.5772/67419",slug:"chromosomal-abnormalities-in-preimplantation-embryos-and-detection-strategies-in-pgd-and-pgs",totalDownloads:1184,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Pinar Tulay",downloadPdfUrl:"/chapter/pdf-download/54652",previewPdfUrl:"/chapter/pdf-preview/54652",authors:[{id:"195958",title:"Dr.",name:"Pinar",surname:"Tulay",slug:"pinar-tulay",fullName:"Pinar Tulay"}],corrections:null},{id:"53960",title:"The Effect of TBP-Related Factor 2 on Chromocenter Formation and Chromosome Segregation in Drosophila Melanogaster",doi:"10.5772/67314",slug:"the-effect-of-tbp-related-factor-2-on-chromocenter-formation-and-chromosome-segregation-in-drosophil",totalDownloads:867,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Julia Vorontsova, Roman Cherezov and Olga Simonova",downloadPdfUrl:"/chapter/pdf-download/53960",previewPdfUrl:"/chapter/pdf-preview/53960",authors:[{id:"195787",title:"Dr.",name:"Olga",surname:"Simonova",slug:"olga-simonova",fullName:"Olga Simonova"},{id:"195801",title:"Dr.",name:"Julia",surname:"Vorontsova",slug:"julia-vorontsova",fullName:"Julia Vorontsova"},{id:"195802",title:"Dr.",name:"Roman",surname:"Cherezov",slug:"roman-cherezov",fullName:"Roman Cherezov"}],corrections:null},{id:"56518",title:"Reference Karyotypes and Chromosomal Variability: A Journey with Fruit Flies and the Key to Survival",doi:"10.5772/intechopen.69835",slug:"reference-karyotypes-and-chromosomal-variability-a-journey-with-fruit-flies-and-the-key-to-survival",totalDownloads:730,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Alicia Leonor Basso Abraham",downloadPdfUrl:"/chapter/pdf-download/56518",previewPdfUrl:"/chapter/pdf-preview/56518",authors:[{id:"196780",title:"Dr.",name:"Alicia Leonor",surname:"Basso Abraham",slug:"alicia-leonor-basso-abraham",fullName:"Alicia Leonor Basso Abraham"}],corrections:null},{id:"55502",title:"Chromatid Abnormalities in Meiosis: A Brief Review and a Case Study in the Genus Agave (Asparagales, Asparagaceae)",doi:"10.5772/intechopen.68974",slug:"chromatid-abnormalities-in-meiosis-a-brief-review-and-a-case-study-in-the-genus-agave-asparagales-as",totalDownloads:820,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Benjamín Rodríguez‐Garay",downloadPdfUrl:"/chapter/pdf-download/55502",previewPdfUrl:"/chapter/pdf-preview/55502",authors:[{id:"195561",title:"Dr.",name:"Benjamín",surname:"Rodríguez-Garay",slug:"benjamin-rodriguez-garay",fullName:"Benjamín Rodríguez-Garay"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"923",title:"Herbicides",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"54a8eb808c05a5fe01c676e7047d4576",slug:"herbicides-theory-and-applications",bookSignature:"Sonia Soloneski and Marcelo L. Larramendy",coverURL:"https://cdn.intechopen.com/books/images_new/923.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5179",title:"Organic Fertilizers",subtitle:"From Basic Concepts to Applied Outcomes",isOpenForSubmission:!1,hash:"93748f3bd6a9c0240d71ffd350d624b1",slug:"organic-fertilizers-from-basic-concepts-to-applied-outcomes",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/5179.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5170",title:"Green Nanotechnology",subtitle:"Overview and Further Prospects",isOpenForSubmission:!1,hash:"e2d4dc551be023ba3525e6126076af90",slug:"green-nanotechnology-overview-and-further-prospects",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/5170.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4637",title:"Toxicity and Hazard of Agrochemicals",subtitle:null,isOpenForSubmission:!1,hash:"6aff74df1ea32df7f1e20e29c8363ff5",slug:"toxicity-and-hazard-of-agrochemicals",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/4637.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5362",title:"Toxicology",subtitle:"New Aspects to This Scientific Conundrum",isOpenForSubmission:!1,hash:"2061f273c8b3134dffbcb5256969ecab",slug:"toxicology-new-aspects-to-this-scientific-conundrum",bookSignature:"Sonia Soloneski and Marcelo L. Larramendy",coverURL:"https://cdn.intechopen.com/books/images_new/5362.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5184",title:"Environmental Health Risk",subtitle:"Hazardous Factors to Living Species",isOpenForSubmission:!1,hash:"aa20266ad595ce73a9396f4ab0f8112e",slug:"environmental-health-risk-hazardous-factors-to-living-species",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/5184.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5101",title:"Invertebrates",subtitle:"Experimental Models in Toxicity Screening",isOpenForSubmission:!1,hash:"ebef5298af7d87ad3c9c7f5fe808fa2c",slug:"invertebrates-experimental-models-in-toxicity-screening",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/5101.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4606",title:"Emerging Pollutants in the Environment",subtitle:"Current and Further Implications",isOpenForSubmission:!1,hash:"1502287827685f0b71235bd45fe35ae4",slug:"emerging-pollutants-in-the-environment-current-and-further-implications",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/4606.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4616",title:"Nanomaterials",subtitle:"Toxicity and Risk Assessment",isOpenForSubmission:!1,hash:"a96b5d34ca84aecacbab309ba1e7e563",slug:"nanomaterials-toxicity-and-risk-assessment",bookSignature:"Sonia Soloneski and Marcelo L. Larramendy",coverURL:"https://cdn.intechopen.com/books/images_new/4616.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5358",title:"Soil Contamination",subtitle:"Current Consequences and Further Solutions",isOpenForSubmission:!1,hash:"e4d136df9f1658ae17f3ba7b3c992460",slug:"soil-contamination-current-consequences-and-further-solutions",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/5358.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66066",slug:"erratum-microbial-responses-to-different-operating-practices-for-biogas-production-systems",title:"Erratum - Microbial Responses to Different Operating Practices for Biogas Production Systems",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66066.pdf",downloadPdfUrl:"/chapter/pdf-download/66066",previewPdfUrl:"/chapter/pdf-preview/66066",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66066",risUrl:"/chapter/ris/66066",chapter:{id:"65614",slug:"microbial-responses-to-different-operating-practices-for-biogas-production-systems",signatures:"Maria Westerholm and Anna Schnürer",dateSubmitted:"June 11th 2018",dateReviewed:"November 30th 2018",datePrePublished:"February 12th 2019",datePublished:"September 4th 2019",book:{id:"6839",title:"Anaerobic Digestion",subtitle:null,fullTitle:"Anaerobic Digestion",slug:"anaerobic-digestion",publishedDate:"September 4th 2019",bookSignature:"J. Rajesh Banu",coverURL:"https://cdn.intechopen.com/books/images_new/6839.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"218539",title:"Dr.",name:"Rajesh",middleName:null,surname:"Banu",slug:"rajesh-banu",fullName:"Rajesh Banu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"262546",title:"Prof.",name:"Anna",middleName:null,surname:"Schnürer",fullName:"Anna Schnürer",slug:"anna-schnurer",email:"anna.schnurer@slu.se",position:null,institution:null},{id:"263116",title:"Dr.",name:"Maria",middleName:null,surname:"Westerholm",fullName:"Maria Westerholm",slug:"maria-westerholm",email:"Maria.Westerholm@slu.se",position:null,institution:null}]}},chapter:{id:"65614",slug:"microbial-responses-to-different-operating-practices-for-biogas-production-systems",signatures:"Maria Westerholm and Anna Schnürer",dateSubmitted:"June 11th 2018",dateReviewed:"November 30th 2018",datePrePublished:"February 12th 2019",datePublished:"September 4th 2019",book:{id:"6839",title:"Anaerobic Digestion",subtitle:null,fullTitle:"Anaerobic Digestion",slug:"anaerobic-digestion",publishedDate:"September 4th 2019",bookSignature:"J. Rajesh Banu",coverURL:"https://cdn.intechopen.com/books/images_new/6839.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"218539",title:"Dr.",name:"Rajesh",middleName:null,surname:"Banu",slug:"rajesh-banu",fullName:"Rajesh Banu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"262546",title:"Prof.",name:"Anna",middleName:null,surname:"Schnürer",fullName:"Anna Schnürer",slug:"anna-schnurer",email:"anna.schnurer@slu.se",position:null,institution:null},{id:"263116",title:"Dr.",name:"Maria",middleName:null,surname:"Westerholm",fullName:"Maria Westerholm",slug:"maria-westerholm",email:"Maria.Westerholm@slu.se",position:null,institution:null}]},book:{id:"6839",title:"Anaerobic Digestion",subtitle:null,fullTitle:"Anaerobic Digestion",slug:"anaerobic-digestion",publishedDate:"September 4th 2019",bookSignature:"J. Rajesh Banu",coverURL:"https://cdn.intechopen.com/books/images_new/6839.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"218539",title:"Dr.",name:"Rajesh",middleName:null,surname:"Banu",slug:"rajesh-banu",fullName:"Rajesh Banu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10691",leadTitle:null,title:"Intelligent and Futuristic Computer Animation",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tComputer Animation is a vital component in producing a realistic movie, game or 3D presentation. A conventional method requires a tremendous amount of time and effort, it greatly depends on animator skills to perform rigging, deformation or skin application. This work can be tedious; therefore, artificial intelligence (AI) is expected to help animators build an animation in efficient ways. As an example, artificial intelligence will help animators to synchronize the rigging process from a human actor toward the 3D character. 3D games with Non-Player Character (NPC) strongly correlate with AI because AI can improve an agent's movement and behaviour. A Game Storytelling can be automatically generated based on the player experience or a specific scenario. Besides, the emotional experience can enrich the agent behaviour during the interaction to achieve full mental immersion.
\r\n\r\n\tThis book intends to provide the reader with an inclusive content of computer animation production, motion capture devices, emotional intelligence and behaviour, computer game and finally interactive agent behaviour.
",isbn:"978-1-83969-558-2",printIsbn:"978-1-83969-557-5",pdfIsbn:"978-1-83969-559-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"5496e567e838f1eaeafba5f9a776b13a",bookSignature:"Prof. Ahmad Hoirul Basori and Dr. Andi Besse Firdausiah Mansur",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10691.jpg",keywords:"Rigging, Human Motion, Motion Editor, Storytelling, Artificial Intelligence, NPC Control, Emotional Intelligence, Agent Movement, Crowd Modelling, Emotional Contagion, Motion Synthesis, Behaviour Recording",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 19th 2021",dateEndSecondStepPublish:"March 19th 2021",dateEndThirdStepPublish:"May 18th 2021",dateEndFourthStepPublish:"August 6th 2021",dateEndFifthStepPublish:"October 5th 2021",remainingDaysToSecondStep:"14 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Dr. Basori is a pioneering researcher in Computer Graphics, Facial Animation, Cloth Simulation, Medical Visualization, Haptic Interaction, Man-Machine Interaction, and Robotics. He has one patent and three copyrights registered.",coeditorOneBiosketch:"Dr. Mansur is a pioneering researcher in Artificial Intelligence, Machine Learning, Data Mining, and E-Learning.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"13394",title:"Prof.",name:"Ahmad Hoirul",middleName:null,surname:"Basori",slug:"ahmad-hoirul-basori",fullName:"Ahmad Hoirul Basori",profilePictureURL:"https://mts.intechopen.com/storage/users/13394/images/system/13394.jpg",biography:"Ahmad Hoirul Basori, received B.Sc (Software Engineering) degree from Institut Teknologi Sepuluh Nopember Surabaya in 2004 and the Ph.D (Computer Graphics) from Universiti Teknologi Malaysia, Johor Bahru, Johor, in 2011. In the same year, he has been appointed as Assistant Professor with the Department of Computer Graphics and Multimedia, Universiti Teknologi Malaysia. From 2013-2016, he has worked as an Assistant Professor in Faculty of Computing and Information Technology Rabigh, King Abdulaziz University. In 2016, he was promoted to Associate Professor rank in Faculty of Computing and Information Technology Rabigh, King Abdulaziz University. He is the member of Editorial boards of several international journals, and he has published more than 100 articles. He is also a member of professional membership IEEE, ACM SIGGRAPH, IAENG and Senior Member of IACSIT. His research interests include Computer Graphics, Facial Animation, Cloth Simulation, Medical Visualization, Haptic Interaction, Man Machine Interaction and Robotics.",institutionString:"King Abdulaziz University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],coeditorOne:{id:"345533",title:"Dr.",name:"Andi Besse Firdausiah",middleName:null,surname:"Mansur",slug:"andi-besse-firdausiah-mansur",fullName:"Andi Besse Firdausiah Mansur",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000033qI9UQAU/Profile_Picture_1609752189296",biography:"Andi Besse Firdausiah Mansur received B.Sc (in Mathematics) from Haluoleo University in 2004, Master Degree from Institut Teknologi Sepuluh Nopember Surabaya in 2009 and PhD (in Software Engineering) from Universiti Teknologi Malaysia, Johor Bahru, Johor, in 2013. From 2013 she is working as an Assistant Professor in Faculty of Computing and Information Technology Rabigh, King Abdulaziz University. Her research interests include Artificial Intelligence, Machine Learning, Data Mining and E-Learning.",institutionString:"King Abdulaziz University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"King Abdulaziz University",institutionURL:null,country:{name:"Saudi Arabia"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"9",title:"Computer and Information Science",slug:"computer-and-information-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"346794",firstName:"Mia",lastName:"Miskulin",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/346794/images/15795_n.png",email:"mia@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"72248",title:"Procoagulant Platelets",doi:"10.5772/intechopen.92638",slug:"procoagulant-platelets",body:'Blood has different components, like plasma, red blood cells (RBC), white blood cells (WBC), and platelets. Platelets, although being only “tiny fragments of megakaryocytes (mother cell),” are essential for life. We need them, together with about two dozen of coagulation factors, to keep all that nutrient-rich liquid plasma, infection-fighting WBCs, and oxygen-carrying RBCs in our bodies in the case of trauma and bleeding. Platelets and coagulation get activated immediately upon being exposed to things they normally do not have contact with (e.g., during blood vessel wall rupture, collagen gets exposed and activates platelets). Upon activation, platelets form a mesh-like structure using another plasma protein called fibrinogen as bridges between them. This process forms a so-called “unstable clot.” At later stages of blood clotting, generated thrombin converts soluble fibrinogen to insoluble fibrin, stabilizing the initial platelet plug. These processes are collectively called hemostasis. Every aspect of hemostasis has its history. Although exploring history can sometimes be tedious, studying the bridge between past and present is essential in basic understanding of the subject, the subject of procoagulant platelets in this case.
Unlike WBCs, which exist as functionally and morphologically distinct subpopulations, it has been thought for years that platelets are rather simple in their function, being just “cell particles.” It was later revealed that platelets, although lacking nuclear material, are indeed very complex not only in their nature but also in function. Nowadays, the existence of two different subpopulations of activated platelets, pro-aggregatory and procoagulant, is a widely accepted fact. Pro-aggregatory platelets, historically known as activated, have been a major focus since the initiation of platelet research. The history of procoagulant platelets, on the other hand, can be subdivided into two periods. The first one is the discovery of platelet procoagulant functionality, whereas in the second period, procoagulant platelets were discovered and characterized as a distinct subpopulation of activated platelets.
In 1912, long before we learned that prothrombinase supporting platelets are distinct from pro-aggregatory ones, Howell discovered that unsaturated cephalin is a phospholipid factor that triggers clotting [1]. This discovery was followed by decades of controversial results of what phospholipid or what mixture of phospholipids is responsible for this effect until, in 1960, Karl Slotta demonstrated the presence of phosphatidylserine (PSer) is an absolute requirement [2]. This discovery established the central role of PSer in prothrombinase activity, which in a way, paused research activities in the procoagulant platelet field.
The history was resumed when two decades later, Bevers and colleagues spectrophotometrically showed that thrombin and collagen co-stimulated platelets possessing about 5-fold higher prothrombinase activity than those stimulated with thrombin or collagen alone. This effect was even more pronounced in the presence of exogenous factor Va [3]. Later that year, the same group confirmed their spectrophotometric observations in one-stage prothrombinase assay [4]. In 1985, Rosing et al. more thoroughly described the role of platelet PSer exposure in prothrombin (FII) and factor X (FX) activation [5]. They revealed that collagen and thrombin co-stimulation significantly increases prothrombinase and tenase activity, while this increase was abolished in the presence of phospholipase A2 (PLA2) from N. naja. Also observing no cellular lysis in these conditions, they concluded that PSer exposure, which is followed by thrombin and collagen co-stimulation, is responsible for this phenomenon. In 1993, with the discoveries of annexin V and advancement in flow cytometry, Dachary-Prigent et al. established a protocol to detect PSer exposing platelets, the methodology that has overtime become fundamental in procoagulant platelet field and has been widely used since then [6]. In 1997 Heemskerk and colleagues discovered that a percentage of platelets adhering to collagen, but not fibrinogen, balloon and expose PSer [7]. In parallel to these findings, there was a series of publications determining the extent and ultrastructure of PSer exposure, as well as the essential role of calcium in this process [8, 9, 10].
Although numerous studies described platelet procoagulant function in response to dual stimulation [3, 5, 11, 12], a breakthrough discovery that identified procoagulant platelets as a distinct subpopulation of activated platelets is the work by Alberio et al., where they demonstrated that only a certain percentage of activated platelets retain factor Va (FVa) on their surface [13]. This subpopulation was generated by co-stimulation with convulxin/collagen (GPVI agonists) and thrombin; hence they were named CoaT platelets. A few years down the road, Kulkarni and Jackson introduced a new term—‘sustained calcium-induced platelet morphology (SCIP)’ by discovering the fact that procoagulant platelets require prolonged elevation in cytosolic calcium to form [14]. Diversifying terminology of procoagulant platelets did not stop there, in 2005 revealing that procoagulant platelets retain multiple α-granule proteins on their surface in transglutaminase-dependent manner led to the introduction of a new term—‘coated’ (by α-granule proteins) platelets [15, 16]. Further studies by Panteleev et al. revealed that this subpopulation of activated platelets binds high levels of factors IXa and Xa [17]. In 2008, Jobe et al., characterizing molecular mechanisms of procoagulant platelet formation, introduced another term—highly activated platelets [18]. There are few more terms used in the literature like ballooned [7], ballooned and procoagulant-spread [19], and super-activated platelets [20].
Just like in a famous Indian parable, where blind men try to describe an elephant they have never encountered before by touching different parts of it, researchers have been describing different (morphological and functional) features of procoagulant platelets and introducing different terms based on their discoveries. Whereas indeed, everyone has been describing “different parts of the same elephant.”
The discovery of procoagulant platelets as a distinct subpopulation of activated platelets at the beginning of the twenty-first century triggered research activities into cellular and molecular mechanisms of their formation. As shown by Alberio et al. and confirmed in later studies, procoagulant platelets are maximally generated upon co-stimulation of glycoprotein VI and PAR1/4. In 2005, Jobe and colleagues discovered that the absence of FcRγ, a key component responsible for glycoprotein VI signaling, ablates procoagulant platelet formation almost to baseline levels, evidencing GPVI stimulation is the major component of their generation [21]. The same year, Remenyi et al. demonstrated the role of mitochondrial permeability transition (MPT) in procoagulant platelet formation [16]. MPT is a Ca2+-dependent molecular process that leads to mitochondrial swelling and cell death [22, 23]. During the onset of MPT, large pores are formed on the mitochondrial inner membrane making it non-specifically permeable to all solutes and molecules of molecular weight up to 1500 Da [24, 25]. It is a very well-known fact that mitochondrial Ca2+ overload can induce MPT, although the structure of MPT pore remains unknown.
Ca2+, being a key signaling molecule in most cells, is important for many processes including platelet shape change and integrin α2bβ3 activation [26, 27]. In resting platelets, free Ca2+ is tightly regulated and maintained at about 100 nM in both the cytosol and mitochondria through the action of Ca2+-ATPases in the plasma and cell membranes. Thus, platelet cytosolic-free Ca2+ is substantially lower than the blood Ca2+ levels, which are around 2 mM. With stimulation, however, cytosolic Ca2+ increases instantaneously. As outlined in Figure 1, this increase is mediated by activated phospholipase C (PLC). There are two major isoforms of PLC in human platelets, PLCβ and PLCγ. PLCβ is only activated downstream of Gq protein-coupled receptors (GPCRs). Whereas, PLCγ is activated downstream of numerous receptors like GPVI, glycoprotein Ib-IX complex (GPIb-IX), Fcγ receptor IIa (FcγRIIa), and C-type lectin-like receptor 2 (CLEC-2). As illustrated in Figure 1, both isoforms of PLC induce the release of Ca2+ from the dense tubular system (DTS) as well as activating transient receptor potential channel 3 (TRPC3). DTS release of Ca2+, in turn, triggers its extracellular entry through store-operated calcium entry (SOCE). For some time, it remained mysterious on how the release of DTS calcium stores into the cytosol induces more Ca2+ to flow into the cell, further increasing its cytosolic concentrations. However, with the discovery of core components of SOCE, everything falls into place. STIM1 and ORAI1 are parts of the same complex. When STIM1 senses drop in Ca2+ levels within the DTS, it signals to ORAI1 located on a cell membrane to allow Ca2+ passage from extracellular space into the cell. As evidenced by the study in the early 2000s, increased cytosolic Ca2+ levels are one of the requirements of procoagulant formation [14]. Mitochondria, being the major and perhaps the only Ca2+ buffering system within platelets, equilibrate increased cytosolic Ca2+ following PAR and GPVI co-stimulation. The ensuing fate of mitochondrial Ca2+ overload is the opening of the mitochondrial permeability transition pore (MPTP), followed by PSer exposure and integrin deactivation (Figure 1), ultimately leading to a cell death. However, in this case cell death shall be considered physiologic considering the essential role of procoagulant platelets in hemostasis.
Molecular mechanisms of physiologic agonist-induced procoagulant platelet formation. In resting platelets, low cytosolic Ca2+ is maintained by cell and plasma membrane Ca2+-ATP-ases. Co-stimulation of protease-activated receptor 1/4 and glycoprotein VI leads to a sustained increase of cytosolic Ca2+ through activation of PLCβ and PLCγ, respectively. Increased cytosolic Ca2+ drives mitochondrial Ca2+ entry through the mitochondrial calcium uniporter complex. The resulting increase in mitochondrial Ca2+ opens mitochondrial permeability transition pore, which in turn leads to necrotic cell death and exposure of phosphatidylserine accompanied by integrin inactivation. DTS, dense tubular system; GPVI, glycoprotein VI; MCU, mitochondrial calcium uniporter; MPTP, mitochondrial permeability transition pore; PAR, protease-activated receptor; PSer, phosphatidylserine; SOCE, store-operated calcium entry; TRPC3, transient receptor potential channel 3. Adapted from [28] with modifications.
It brings us to another aspect of procoagulant platelet research, debated since their discovery, which is whether procoagulant platelets are necrotic or apoptotic. Cell death, both necrosis and apoptosis, is an essential event in the normal life of many cells in the human body, including platelets. Apoptosis, or programmed cell death, occurs in many organs throughout human lifetime. Necrosis, although considered to be mostly a catastrophic uncontrolled cell death, can also occur physiologically, as in the shedding of decidual endometrium during human menses. Necrosis and apoptosis differ in many aspects. The ultimate event during necrotic cell death is the osmotic swelling of the cell followed by the rupture of a cell membrane, whereas in apoptosis, cell shrinkage with preserved cell membrane is evident in later stages of this process.
Although the proposal that PSer is not homogeneously distributed on the surface of activated platelets was made back in 1985 [5], it took three decades to visualize that experimentally due to the complex nature of procoagulant platelets. In 2016, Podoplelova et al. presented a detailed structure of procoagulant platelets and cellular changes that give them the characteristic morphology. They elegantly demonstrated how the balloon is blown out from the platelet, leaving it as a “cap” [29]. The existence of bulges in a phospholipid bilayer, known as the open canalicular system (OCS), is essential, as it provides platelet a fair amount of surface reserve for ballooning. Morphologic appearance, in this case, resembles the classical osmotic swelling of necrotic cell death, as schematically presented on the left side of Figure 2. Another feature of necrosis, which is a collapse of energy production, is present in procoagulant platelets, as they lack energy-requiring contractile function [18]. Moreover, depletion of oxidative phosphorylation due to MPT, deactivates flippases that normally maintain the asymmetry of phospholipids. After the onset of MPT, contents of mitochondrial matrix get released to the cytosol leading to the second wave of cytosolic Ca2+ increase. This in turn leads to scramblase activation. Synergistically with deactivated flippases, scramblase performs its raison d’etre, which is flipping negatively charged PSer out in order to equilibrate its concentration. And finally, recent work demonstrated that platelets undergoing cell death through necrotic pattern and not apoptotic are functionally procoagulant as measured by prothrombinase support [30].
Cellular mechanisms of platelet cell death. Cyt C, cytochrome C; GPVI, glycoprotein VI; mPTP, mitochondrial permeability transition pore; PSer, phosphatidylserine. PSer exposure is shown in red.
Platelet apoptosis (Figure 2, right side), on the other hand, has been widely implicated in platelet lifespan via the action of the intrinsic mitochondrial apoptosis pathway [31, 32]. Normally, antiapoptotic members of the BCL-2 family (e.g., BCL-xL) restrain the activity of proapoptotic Bax and Bak proteins, which are present within the cytosolic fraction of a platelet. When BCL-xL wears off, oligomerized Bax and Bak translocate to the mitochondrial outer membrane and permeabilize it, which leads to cytochrome C leakage into the cytosol, triggering apoptosome formation and eventually cell death. This is supported by the fact that the genetic ablation of murine BCL-xL reduces platelet life span from about 5 days to 5 hours [33, 34].
Thus, procoagulant platelets are indeed necrotic, while apoptosis is essential in platelet clearance. It should, however, be mentioned that the presence of PSer on the surface of a platelet is a signal for the reticuloendothelial system in the spleen and liver for clearance. Therefore, any procoagulant platelet that happened to escape the site of the active hemostatic process will be cleared out of the system by liver or spleen, just like aged apoptotic platelets do.
The physiological relevance of procoagulant platelets had been questioned for a long time. In recent years, however, after the demonstration of a procoagulant platelet being predictive of bleeding or ischemic complications in patients with coronary artery disease, brain hemorrhage, traumatic brain injury, stroke, etc. [35, 36, 37, 38, 39, 40, 41, 42] it is gaining more and more recognition. The importance of this subpopulation is further highlighted on a novel ex vivo model (which integrates all the core components of hemostasis [43]), where pharmacologic inhibition of platelet transition to a procoagulant state without affecting pro-aggregatory phenotype results in a decreased thrombus stability [44].
It was initially thought that the only function of procoagulant platelets is to support coagulation. However, with recent advances in the field, we learn that depending on their localizations, procoagulant platelets can play different functions within the thrombus. For general consideration, these two functionalities will be discussed separately here.
Coagulation, a cascade of serine protease enzymatic reactions, is achieved by cleaving fibrinogen to fibrin, which transforms blood from a liquid to a gel-like state. Although platelet contribution to coagulation has been known for decades, the exact role of platelet phospholipids has been a matter of major debate. Dependence of hemostasis on biological membranes is very extensive, ranging from subendothelial membranes triggering coagulation and platelet activation to procoagulant platelet surface assembling tenase and prothrombinase complexes. It is very well known that at least two coagulation reactions are highly dependent on phospholipid surface, namely the activation of factor X and prothrombin by intrinsic tenase and prothrombinase, respectively. Both intrinsic tenase and prothrombinase are composed of the serine protease (FIXa for tenase and FXa for prothrombinase) and its protein cofactor (FVIIIa for tenase and FVa for prothrombinase). It is important to know that although both proteases alone are capable of activating their substrates, the presence of cofactors profoundly amplifies the catalytic process for up to 10,000 fold.
The current understanding of this process, based on numerous studies including mathematical modeling, is that phospholipid surface increases the rate of reactions by increasing the local concentration of coagulation factors, and thus increasing the probability of their interaction [29, 45, 46, 47, 48, 49, 50, 51]. This increase in a local concentration of factors, essential for tenase and prothrombinase complexes, is accomplished by the interaction of negatively charged gamma-carboxyglutamic acid (GLA) residues of the coagulation factors with negatively charged phosphatidylserine on the surface of procoagulant platelets. It is supported by the fact that GLA domain-containing (also known as vitamin K-dependent) factors predominantly bind to a procoagulant subpopulation of activated platelets [17, 29, 30]. Both enzymatic factors for intrinsic tenase (FIX) and prothrombinase (FX) are GLA domain-containing proteins and bind to PSer in a calcium-dependent manner. Whereas cofactors (FVIII and FV) structurally are not GLA proteins and bind to a procoagulant surface by different mechanisms.
In the case of FVIII, it has been shown by Gilbert et al. that it is not specific to a procoagulant surface [52]. It was further confirmed by Podoplelova et al. in their efforts exploring procoagulant platelet characteristics, they demonstrated that both (pro-aggregatory and procoagulant) subpopulations of activated platelets bind FVIIIa [29]. The fact that PS increases the catalytic activity of the intrinsic tenase complex by about 1500-fold [53] can be explained by FIXa’s specificity to PSer. As outlined in Figure 3A, initially FIXa and FX bind PSer. This binding reaction is calcium-dependent for all GLA domain-containing proteins. FIXa possesses enzymatic activity to convert X to Xa, whereas in the presence of its cofactor (FVIIIa), the catalytic activity raises 100,000-fold.
Factor X activation (A) and prothrombinase assembly (B) on the “cap” of procoagulant platelet. (A). Initially FIXa and FX are bound to PSer on the surface of procoagulant platelet in calcium-dependent manner (①), whereas co-factor VIII binding is not specific to PSer and does not require calcium (②). FIXa possesses enzymatic activity to convert X to Xa (③). Although reaction ③ is very slow in the absence of factor VIIIa, it is efficient to generate small amounts of FXa. Initial FXa then activates VIII to VIIIa (④), this leads to intrinsic tenase complex assembly, which in turn amplifies Xa formation (⑤). (B). There are two possibilities for the assembly of prothrombinase on the surface of procoagulant platelet. Pathway Ⓐ forms prothrombinase by the surface Xa reacting with factor Va in solution. Pathway Ⓑ depicts the possibility for prothrombinase complex formation by already bound Xa and Va. In this case, both FVa and FXa form binary complexes with PSer first and then lipid-protein rearrangement leads to prothrombinase formation.
As for the FV—there are two different probabilities of binding to the procoagulant surface, as demonstrated in Figure 3B. In the first one, prothrombinase forms by the surface Xa reacting with factor Va in solution. Whereas, in the second case, both FVa and FXa form binary complexes with PSer first, and then lipid-protein rearrangement leads to prothrombinase formation [50]. The addition of exogenous FVa to procoagulant platelets increases the velocity of prothrombinase reaction [4], whereas in the absence of exogenous FVa, procoagulant platelets are still prothrombinase active [54]. These findings indicate that both pathways are physiologically important.
During hemostasis, there is a time point when a thrombus needs to stop growing in order not to occlude the lumen of the vessel, which may compromise the blood supply to an end organ. Stoppage of the thrombus growth is probably the most intriguing part of thrombogenesis, although being the most understudied at the same time. When coagulation is initiated by subendothelial tissue factor, it leads to the formation of small amounts of thrombin. Thrombin then, via a positive feedback mechanism, by activating FXI and FVIII triggers the contact activation pathway and amplifies its production. This self-accelerating process is essential within the hemostatic plaque as it is the only way to overcome the anticoagulant nature of plasma, which is due to the presence of antithrombin III (ATIII). Besides the presence of ATIII in the active form, other mechanisms limit coagulation beyond its border zone. Another one of high importance is the presence of thrombomodulin, an integral membrane protein that is expressed ubiquitously on the surface of endothelial cells. Thrombomodulin converts procoagulant thrombin to an anticoagulant enzyme. Not only these mechanisms limit coagulation to the injured site but also degrade activated factors that happened to escape the hemostatic plaque. These processes outline the general principles of limiting coagulation to its border zone. However, not only coagulation but also processes of platelet adhesion, aggregation, and activation have to stop in order at a certain timepoint. How and when thrombus stops growing concerning cellular component had been a mystery for a long time.
In 2007, Maroney et al. demonstrated that procoagulant platelets express active tissue factor pathway inhibitor (TFPI) on their surface [55]. But why platelets expressing procoagulant PSer would also need a strong anticoagulant (TFPI) on their surface remained a question for about a decade until in 2019 a breakthrough work by Nechipurenko et al. characterized a phenomenon, together with its mechanisms, of procoagulant platelets translocating to the thrombus periphery [57]. They demonstrated that during clot retraction procoagulant platelets are squeezed out to the periphery of the thrombus, as shown in Figure 4. Another important study in this context is the 2008 work by Jobe et al., which demonstrated that procoagulant platelets do not possess contractile function [18]. This explains why pro-aggregatory and procoagulant platelets have different translocation vectors within the hemostatic plaque (Figure 4). Being bound to the thrombus by its “cap,” procoagulant platelets do not get detached but rather are squeezed out during pro-aggregatory platelets contraction. At the luminal surface of the hemostatic plaque, procoagulant platelets limit its further growth not only by expressing low adhesive and aggregatory surfaces [58, 59, 60], but also with TFPI terminating any extrinsic tenase and prothrombinase activity.
Schematic representation of platelet translocation within the evolving hemostatic plug. After vascular injury, platelets adhere and aggregate at the wound site. A subpopulation of platelets within the hemostatic plug transitions to a procoagulant state. Procoagulant and pro-aggregatory platelets have opposing vectors of translocation. Clot retraction, driven by platelets with a pro-aggregatory phenotype, squeezes procoagulant platelets to the periphery. Adapted from [56] with minor modification.
The fact of procoagulant platelet being non-adhesive, however, gives rise to a legitimate question. If procoagulant platelets are not capable of adhesion and aggregation, how do they get attracted to a thrombus? It turns out to be, as described in recent studies, that procoagulant platelets do not form de novo from a resting state, but rather temporally transitioning from pro-aggregatory phenotype by the onset of the MPT and regulated necrosis within a hemostatic plaque [61, 62].
Many are aware of an ancient Roman god of duality — Janus, who had two faces as he was able to look to the future and the past. Procoagulant platelets can also demonstrate a functional duality by supporting coagulation on one side and limiting thrombus growth on the other, making them be “Janus” of hemostasis.
The author has no conflict of interest to disclose.
APC | activated protein C |
ATIII | antithrombin III |
Cyt C | cytochrome c |
DTS | dense tubular system |
FcRγ | FC receptor gamma |
FV | factor V |
FVa | activated factor V |
FVIII | factor VIII |
FVIIIa | activated factor VIII |
FIX | factor IX |
FIXa | activated factor IX |
FX | factor X |
FXa | activated factor X |
GPIb-IX | glycoprotein Ib and IX complex |
GPVI | glycoprotein VI |
MCU | mitochondrial calcium uniporter |
MPT | mitochondrial permeability transition |
MPTP | mitochondrial permeability transition pore |
OCS | open canalicular system |
PAR | protease-activated receptor |
PC | protein C |
PLA2 | phospholipase A2 |
PS | protein S |
PSer | phosphatidylserine |
RBC | red blood cell |
SOCE | store-operated calcium entry |
TF | tissue factor |
TFPI | tissue factor pathway inhibitor |
TRPC3 | transient receptor potential channel 3 |
WBC | white blood cell |
Drought stress is the primary environmental factor influencing the growth, development and productivity of crops and its significance is expected to increase in the wake of global climate change [1, 2, 3, 4]. This presents a serious challenge to the food and nutrition security of an ever-rising world human population. Moreover, the current transition from carbon/fossil intensive fuel driven economies to modern climate-smart low-carbon economies further strains our crop production systems [5]. Adapting field crops to drought stress therefore becomes critical for sustainable agricultural production under such climate change scenario [6]. To achieve that goal, breeding drought resilient crop cultivars that maintain yield stability under such conditions befits the most economical, effective and sustainable strategy. This is particularly relevant for cereal grain crops.
Cereal grain crops, chiefly rice (Oryza sativa L.), wheat (Triticum aestivum L.), maize (Zea mays L.), sorghum [Sorghum bicolor (L.) Moench], barley (Hordeum vulgare L.), and pearl millet (Pennisetum glaucum L.) provides above 50% of the total food calorie requirements of billions of people in developing countries across the Sub-Saharan Africa, South Asia and Latin America [7, 8, 9]. For instance, the top three cereals; maize, rice, and wheat jointly provide 48% of the total calories and 42% of total protein consumed in developing countries. Additionally, as staple foods, maize and wheat contribute approximately two thirds of the global food energy intake [8]. Further, these cereal crops are important raw materials in the animal feed and bio-fuel manufacturing industries [10]. However, most of these crops are grown across arid and semi-arid regions of the world, where they often endure exposure to recurrent drought episodes throughout their growth cycles. Therefore, understanding how cereal crop plants respond to drought stress is critical for guiding drought tolerance breeding.
In the last century, conventional breeding approach has proven itself capable of sustaining productivity growth in various crops [11]. Meanwhile, modern technological advancements have accelerated the pace and impact of new cultivar development. Such technologies include high throughput omics approaches, identification of quantitative trait loci (QTL) underlying abiotic and biotic stress resistances, marker assisted selection (MAS) and gene cloning [12, 13, 14, 15]. Despite this significant progress in elucidating the mechanisms underlying drought tolerance, considerable challenges remain and our understanding of the crop drought tolerance mechanisms is still abstract.
In this chapter, therefore, we look at various aspects of drought stress in major cereal grain crops such as maize, sorghum, wheat, rice and finger millet. We also discuss the current approaches in identifying drought tolerance genes and metabolic pathways. Further, we highlight the progress made to date on elucidation of key drought stress responses, phenotyping and QTL mapping for drought tolerance, genetic engineering of drought tolerant crops and management of crops. We conclude by offering an integrated strategy for adapting cereal grain crops to drought stress in the context of climate change.
A decrease in water inputs into an agro/ecosystem over time that is sufficient to cause soil water deficit (SWD) is often termed drought, and this encompasses various forms such as rainfall anomalies, irrigation failure, seasonal or annual dry spells [16]. In agricultural context, drought signifies a period of below-average precipitation when the available soil water in the plant rhizosphere drops beyond the thresholds for efficient growth and biomass production [17]. The resultant oxidative stress emanating from such SWD is dubbed drought stress.
Numerous research reports have reflected on the effects of drought stress on cereal crops. Drought stress effects span from morphological to molecular levels, and are exhibited at all phenological growth stages at whatever stage the water deficit takes place. Generally, drought stress impairs seed germination resulting in poor crop stand establishment [1, 18]. Drought stress reduces the plant cellular water potential and turgor pressure, thereby increasing the cytosolic and extracellular matrices solute concentrations. Resultantly, cell growth is diminished due to the reduction in turgor pressure [19]. Additionally, abscisic acid (ABA) and compatible osmolytes such as proline are excessively accumulated, causing plant wilting. Simultaneously, reactive oxygen species (ROS) such as H2O2 are overly produced. Although they function as signal transduction molecules, over-accumulation of ROS could result in extensive cellular oxidative damage and inhibition of photosynthesis [20].
Moreover, when moisture deficit becomes severe, cell elongation becomes inhibited by the interruption of water flow from the xylem vessels to the surrounding elongating cells [21]. Consequently, vegetative growth, dry matter partitioning, reproductive organ development and reproductive processes, grain filling and grain quality are disrupted [22]. In cereal grain crops, reproductive processes and grain filling are more susceptible to water deficit stress, with optimum and ceiling temperatures that are relatively lower than those for seedling and vegetative growth stages [21, 23, 24, 25]. Moisture deficit stress reduces yield by delaying silking, thus increasing the anthesis-to-silking interval [11]. Drought stress at flowering period is critical as it can increase pollen sterility resulting in hampered grain set [26].
Drought stress induced yield reduction in cereal crops depends upon the severity and duration of the stress period. The reduction in photosynthesis, emanating from the decrease in leaf expansion, impaired photosynthesis machinery, premature leaf senescence and related food production decreases, is the major contributing factor on yield reduction [21, 23]. Drought stress induced yield reductions have been reported and reviewed in maize [1, 21, 26, 27, 28, 29], wheat [26, 27, 30, 31], rice [1], sorghum [32, 33] and pearl millet [25].
Plants have evolved numerous dynamic acclimation and adaptive ways of responding to and surviving short-term and long-term drought stresses [34]. The physiology of plants’ drought response at the whole plant level is complicated as it encompasses lethal and adaptive alterations. Moreover, how plants respond to drought stress differ significantly at various organizational levels, and this is generally dependent on plant species; the nature, duration and intensity of the drought stress; plant growth and phenological state at the time of stress exposure [19].
Drought stress triggers a wide range of plant structural changes which are essential for plants to respond to such drought stress conditions. These adjustments include morphological adaptations such as reduced growth rate, deepened rooting system, and root-to-shoot ratio modifications. The increased root-to-shoot ratio under drought stress conditions enables water and nutrient uptake and maintenance of osmotic pressure [19, 26, 35]. Additionally, in their response to moisture fluctuations in the soil rhizosphere, plants alter their physiology, modify their root growth and architecture, and regulate the closure of stomata on their aboveground structures. Such tissue-specific responses adjust the cell signals flux, consequently inducing stunted growth or premature flowering, and generally reduced yield [36]. Thus, drought stress is associated with alterations in leaf anatomy and ultrastructure. Reduced leaf size, decreased number of stomata; thickened leaf cell walls and induced premature senescence are some of those morphological changes [19].
Plants resist drought stress through a combination of strategies, which have been widely classified as drought escape, drought avoidance and drought tolerance [18, 21, 37, 38]. Drought escape is achieved by matching the duration of the crop cycle to water supply through genetic variation in phenology [39]. Plants prioritize early flowering and completing their life cycles before the effects of drought cause harm [21].
Drought avoidance denotes plant’s ability to maintain high tissue water potential under drought conditions. Usually, plants achieve drought avoidance through morphological and physiological alterations, including reduced stomatal conductance, decreased leaf area, promotion of extensive rooting systems and increased root to shoot ratios [38]. Drought avoidance mechanisms help in maintaining favorable cellular water balance, by enhancing water absorption, decreasing water loss, or allowing desiccation tolerance at low leaf water potential [34]. Stomatal closure, reduction of leaf growth and increased root length and density all contribute to increased water use efficiency under drought stress conditions. Further, water flux into the plant is reduced or water uptake enhanced to achieve drought avoidance [19].
On the other hand, plants attain a state of drought tolerance by cell and tissue specific physiological, biochemical, and molecular mechanisms. Drought tolerance is a complex trait which refers to the capacity of the plant to be more productive under drought stress [40]. In other words, it denotes the potential of crop plants to maintain their growth and development under drought stress [21]. The main aspects of plant drought tolerance mechanism include homeostasis maintenance, via ionic balance and osmotic adjustment; ROS scavenging and antioxidant enzyme activation; growth regulation and recovery by way of phytohormones; specific gene expression; and accumulation of specific stress responsive proteins [1, 2, 19, 21, 26].
To protect themselves against ROS induced oxidative stress and photo inhibition, plants activate an efficient antioxidant (enzymatic and non-enzymatic) defense system [17, 18, 21, 41]. Enzymatic antioxidant enzymes include superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX) and glutathione S-transferase (GST) among others. SOD acts as the first line of defense by converting singlet oxygen into H2O2. APX and GSTs then detoxify H2O2 [42]. Non-enzymatic antioxidants including glutathione (GSH), ascorbic acid (AsA), carotenoids, tocopherols and flavonoids are also crucial for ROS homeostasis in plants [43].
At the molecular level, our current knowledge thus far regarding drought stress response pathway suggest that, sequentially, the stress is relayed through the following chain: signal perception, signal transduction, transcriptional control by way of transcription factors (TFs), stress responsive genes activation, and in-turn activation of physiological and metabolic responses [1, 19, 37, 44].
Stress signal perception in plants has revealed the role of plasma membrane in perceiving and transmitting signals to the cell interior, where molecules such as receptor-like kinases and G-proteins function as primary receptor molecules [45]. The roles of Ca+ and ROS as secondary messengers in stress perception and signaling have also been well acknowledged [4]. These secondary messengers adjust the calcium levels and activate protein phosphorylation. Then, phosphorylation of inactive proteins may be directly involved in cellular protection by protein folding or activation of stress specific genes. The dominant plant signal transduction pathways involve the mitogen activated protein kinase (MAPK) and calcium dependent protein kinases (CDPK) cascades, and their role in abiotic stress response have been well reviewed [38, 42, 46].
Upon drought exposure, the resulting signal transduction triggers the production of several biochemicals, including phytohormones, to respond and adapt to the ensuing drought stress [47]. Phytohormones are molecules produced in low concentrations but are critical in regulating plant growth, development, response to biotic and abiotic stresses, and other physiological processes [48]. These phytohormones include ABA, salicylic acid (SA), ethylene (ET), cytokinins (CKs), gibberellin acid (GA), jasmonic acid (JA) and brassinosteroids (BRs) among others. Among these, ABA is the key and most extensively studied hormone that regulates drought resistance in plants [38, 49]. ABA acts as the second messenger coordinating hormonal cross-talk between several stresses signaling cascades, thereby leading to adaptations to changing physiological and environmental conditions [50]. Additionally, SA, ET, JA, CKs, GA, and BRs play vital roles in regulating various phenomena in plants acclimatization to drought stress [51].
At the molecular level, plants institute stress responsive proteins, TFs and signaling pathways among other strategies. Several studies [52, 53] have identified conserved and species-specific drought responsive genes, including membrane stabilizing proteins and late embryogenic abundant (LEA) proteins, which increase cells’ water binding capacity [1, 14]. Several heat shock proteins (HSPs), which play a major role in stabilizing protein structure, were also identified [54, 55]. The HSPs are chiefly involved in unwinding some folded proteins and averting protein denaturation under abiotic stress conditions. The membrane stabilizing proteins, LEA proteins, detoxification enzymes, water channel proteins and ion transporter genes all constitute a group of functional proteins, that is, a group of important enzymes and metabolic proteins which directly function to protect cells from stress [37, 56]. Besides functional genes, regulatory genes are also critical for drought tolerance. These encodes various regulatory proteins such as transcriptional factors (TFs), protein kinases and protein phosphatases – involved in regulating signal transduction and gene expression in response to stress [57, 58]. Several TFs that regulate a large spectrum of downstream stress-responsive genes and provide adaptive response under drought stress have been identified and reviewed, including myeloblastosis (MYB), abscisic acid responsive elements binding factor (ABF), ABRE binding (AREB), dehydration responsive element binding (DREB), C-repeat binding factor (CBF), [NAM, ATAF1/2, and CUC2 containing proteins] (NAC) and WRKYs [59, 60, 61, 62, 63].
Additionally, protein kinases and protein phosphatases mediate phosphorylation and dephosphorylation of proteins, respectively. In several signal transduction pathways; they are vital and an effective mechanism for stress signal relaying [19, 56, 63]. At the phosphorylation cascade terminals, protein kinases or phosphatases activate or suppress TFs, respectively. The TFs further specifically bind to cis-elements in the promoters of stress responsive genes, thereby modulating their transcription [64]. The TFs are further subjected to post translational modifications (PTMs), including ubiquitination and sumoylation, thereby forming an intricate regulatory network to modulate stress responsive genes, which consequently trigger the activation of appropriate physiological and metabolic responses [62, 65].
The recent convergence of crop physiology, next generation sequencing and molecular biology approaches has offered us convenience in deciphering mechanisms underlying plants’ response to various abiotic stresses [13, 15, 66]. Whereas plant physiology enhances our understanding of the complex network of traits related to drought tolerance and improving selection efficiency, genomics and molecular biology methods identify the candidate genes and quantitative trait loci (QTLs) underlying these traits [11, 13]. The classical cDNA and oligonucleotide microarrays have been widely employed to identify candidate genes for drought tolerance in several cereal grain crops including maize [67, 68], rice [69, 70] and barley [71]. Additionally, the use of tilling microarrays has allowed for the identification of differentially expressed DNA sequences at the whole genome level [72]. Other techniques such as differential display; cDNA amplified fragment length polymorphism (cDNA-AFLP); and serial analysis of gene expression (SAGE) have been essential in analyzing global gene expression profiles in functional genomics studies [56, 73, 74].
Analysis of large scale, high throughput sequencing data is now facilitating the identification and cloning of important genes at target QTLs. Additionally, the ‘omics’ analysis approaches are showing monumental capacity to quicken and broaden our understanding of the molecular, genetic and functional basis of crop drought stress tolerance [12, 75]. Encouragingly, some novel insights meant to help us develop new drought tolerant cultivars are being generated [76]. Due to its low cost, high-throughput, and high sensitivity, RNA sequencing (RNA-seq) has offered us breakthrough in performing transcriptome analysis of plants’ drought stress responses [77]. Resultantly, we have obtained transcripts from RNA in a tissue- or cell-specific manner, and transcribed at a different developmental stage or functional state; this has been fundamental to fishing out functional genes [78]. Therefore, our knowledge pertaining to gene expression networks modulating drought stress tolerance has been significantly improved. RNA-seq technology has been used in several drought stress response studies in cereal crops and numerous genes have been identified [79, 80, 81].
Recently, large scale, high-throughput proteomics has become a very powerful tool for performing comprehensive analysis of crop proteins and identification of stress responsive proteins in comparative abiotic stress studies [82, 83]. Proteomic approaches, particularly gel free methods, that is, those involving digestion of intact proteins into peptides prior to separation, have now become very popular in proteome profiling, comparative expression analysis of two or more protein samples, localization and identification of post translational modifications (PTMs) [14]. For instance, isobaric tags for relative and absolute quantitation (iTRAQ) and isotope-coded affinity tags (ICAT) based methods have become widely used in descriptive and comparative drought stress proteomic studies in cereals [84, 85, 86, 87]. The iTRAQ- based method allows for the time-dependent analysis of plant stress responses or biological replicates in a single experiment [88]. Besides, proteomics offers complementarity to genomics; providing clues on the molecular mechanisms underlying plant growth and stress responses, as well as being a crucial link between transcriptomics and metabolomics [82]. Moreover, genomics based methods offer access to agronomically desirable alleles localized at QTLs that affect particular physiological responses. This helps us to effectively improve the drought resilience and yield of crops. Additionally, MAS has aided us in improving drought-related traits [12, 89].
Further, a systems biology approach, premised on the advancement and integration of omics (genomics, transcriptomics, metabolomics, phonomics and proteomics) methods to establish a meaningful relationship between the genotype, phenotype and subsequent abiotic stress tolerance, has also become prominent [76]. Integrated knowledge of the morphological, physiological, biochemical, genetic and molecular events in plants allows for in depth understanding of the complex physiological and cellular processes involved in drought stress adaptation. Thus, meaningful interpretations from complex networks and component integrations can be developed from voluminous omics data, which helps us better decipher the mechanisms underlying cereal crops drought tolerance [63].
Meanwhile, the physiological analysis on contrasting genotypes provides information on the mechanisms underlying drought tolerance and aids as a useful screening strategy for drought tolerance [41]. Therefore, it is important to realize that physiological analysis remains essential in corroborating the molecular analyses in abiotic stress response studies. Thus, it would be essential that, going forward, we build on the progress made to date by harnessing the full potential of genomics-assisted breeding, and integrating our knowledge on the physiological and molecular basis of drought tolerance. This calls for crop physiologists, molecular geneticists, breeders and cytogeneticists to collaborate in a multidisciplinary manner [12].
By applying genetic, biochemical and molecular approaches, we have identified essential genes central in plant responses to drought stress. For instance, several physiological responses contributing to drought tolerance in cereal crops have been identified including thermal dissipation of light energy, stomatal closure, decreased hydraulic conductance, altered source-sink relations and carbon partitioning, ABA biosynthesis, among others (Table 1).
No. | Physiological response | Purpose | Reference |
---|---|---|---|
1 | Thermal dissipation of light energy | Uncoupling of photophosphorylation and electron transport | [41, 90] |
2 | Activation of photosynthesis (PSII) proteins | Preventing photoinhibition of the PSII and improving leaf photosynthetic capacity | [81, 91] |
3 | Altered source–sink relations and carbon partitioning | Induction of root growth | [92] |
4 | Prioritized supply of CHOs to rapidly growing or metabolically hyperactive cells or tissues | Promotion of early seedling/hypoctyle growth | [80] |
5 | Cell wall biosynthesis | Enhancing cellular contents preservation | [81, 93, 94] |
6 | Cell wall remodeling | Increasing cell wall elasticity to maintain tissue turgidity | [80] |
7 | Amino acid biosynthesis | Enhanced protein biogenesis | [80] |
8 | Osmotic adjustment through increased synthesis of soluble solutes (proline, soluble sugars, etc.) | Increased cellular homeostasis maintenance | [11, 40, 95, 96] |
9 | Changes in ROS scavenging and enzyme activities | Prevention of cellular oxidative damage | [18, 81] |
10 | ABA biosynthesis | Stomatal closure regulation and improved stress signaling | [11, 40] |
11 | Stomatal closure and reduced hydraulic conductance | Prevention of water loss through transpiration | [97] |
12 | Alteration in root morphology and physiology | Increased water and nutrient absorption under drought conditions | [98, 99] |
13 | Reduced stomatal density and enhanced control of stomatal opening and closure | Improved cellular water conservation | [100] |
14 | Alternative oxidase pathway, uncoupling proteins, NADPH dehydrogenases down-regulated | Uncoupling of oxidative phosphorylation and electron transport | [101] |
Some key drought stress tolerance mechanisms identified in cereals.
Besides the mechanisms highlighted in Table 1, several drought responsive genes have been identified and validated in different crop species. For instance, recent excellent reviews [4, 26, 102, 103, 104, 105, 106] provide highly informative details about some crop drought tolerance conferring genes that have been functionally validated to date. Some of these genes are listed in Table 2.
No. | Gene name | Donor | Host | Physiological change | References |
---|---|---|---|---|---|
1 | ZmVPP1 | Arabidopsis thaliana L. (Arabidopsis) | Maize | Enhanced photosynthetic efficiency and root development | [81, 107] |
2 | ZmPP2C-A10 | Arabidopsis | Maize | ABA signaling | [108] |
3 | Zeaxanthin epoxidase (ZEP) | Arabidopsis | Maize | Improved ABA biosynthesis | [104, 109] |
4 | Mannitol-1-phosphate dehydrogenase (mtlD) | Escherichia coli | Wheat | Improved fresh and dry weights, plant height, and flag leaf length | [110] |
5 | AtNF-YB1 | Arabidopsis | Maize | Higher photosynthesis capacity | [102, 111] |
6 | AtABF3 | Arabidopsis | Rice | Higher Fv/fm | [112] |
7 | OsDREB1A | Arabidopsis | Rice, wheat | Shoot growth retardation at the expense of root growth | [102] |
8 | AtHARDY | Arabidopsis | Rice | Enhanced WUE and photosynthesis efficiency | [113] |
9 | OsWRKY11 | Rice | Rice | Sluggish water loss and lessened leaf wilting | [114] |
10 | AtLOS5 (LOS5/ABA3) | Arabidopsis | Maize | Increased ABA biosynthesis | [115] |
11 | HVA1 | Barley | Rice | Higher WUE | [116] |
12 | HVA1 | Barley | Wheat | Enhanced biomass accumulation and WUE | [26, 117] |
13 | Beta | Escherichia coli | Wheat | Accumulation of glycine betaine | [118] |
14 | Nicotiana protein kinase (NPK1) | Tobacco | Maize | Preventing dehydration damage to the photosynthesis machinery | [119] |
15 | AtSNAC1 | Arabidopsis | Rice | ABA-hypersensitive, stomatal shutdown | [120, 121] |
16 | SbER2–1 | Sorghum | Maize | Increased Pn rate and higher WUE | [122] |
17 | Light harvest complex related genes (LHCA1, LHCB, LHCA3, LHCA2) | Maize | Maize | Balancing light capture in the PSII | [91, 93] |
Examples of drought tolerance conferring genes that have been functionally validated in cereal crops.
Further, several metabolic pathways implicated in drought stress tolerance in cereal grain crops have been identified through comparative physiological and omic analysis approaches. Chief among these pathways are those related to photosynthesis, secondary metabolites biosynthesis, plant hormone signaling, starch and sucrose metabolism, and nitrogen metabolism. Chloroplasts, particularly the thylakoid membranes—PSII reaction centers, are one of the organelles most influenced by drought stress [123, 124]. Photosynthesis (antenna protein) pathway related genes lhcb5-1 and lhcb5-2 are part of the light harvesting complexes (LHCs) and the electron transport components of the PSII of the plant photosynthesis machinery, where they participate as peripheral antenna systems enabling more efficient absorption of light energy [125, 126]. Further, Lhch5-1 is involved in the intracellular non-photochemical quenching and the cysteine biosynthesis processes [91]. Previously, the photosynthesis pathway has been significantly enriched in drought stress response in maize, with chlorophyll a-b binding proteins being up-regulated in an ABA-dependent manner [87, 91], and pearl millet [127]. This photosynthesis related pathway plays a critical role in balancing light capture and utilization to avoid photoinhibition of the PSII [87].
Phenylpropanoid metabolism is the first step of the secondary metabolites (flavonoids, phenylpropanoids, phenolic compounds and lignin) biosynthesis and phenylpropanoids act as antioxidants to protect plants against oxidative damage [128, 129]. Flavonoids play different molecular functions in plants, including stress protection. All these compounds are widely synthetized in response to several abiotic stresses, including drought [130]. In wheat leaves, an increase in flavonoid and phenolic acids content was shown together with stimulation of genes involved in flavonoid biosynthesis pathway in response to drought stress [131]. Moreover, secondary metabolites biosynthesis related pathways were found to be significantly enriched in response to drought stress in maize [80] and sorghum [37], suggesting their involvement in plant protection. A coordinated reaction of the genes and pathways involved in secondary metabolite biosynthesis is therefore vital for improved drought stress tolerance in plants [80]. Plant hormone signaling pathway participates in drought stress response via either ubiquitin-mediated proteolysis or ABA-mediated response [132], and was observed to be significantly enriched in pearl millet response to drought stress [127].
Sucrose is widely acknowledged to play a crucial role as a key molecule in energy transduction and as a regulator of cellular metabolism [130]. Additionally, sucrose and other sugars are energy and carbon sources required for defense response and are necessary for plant survival under drought stress conditions [133]. Further, sucrose can act as primary messenger controlling the expression of several sugar metabolism related genes [134]. Nitrogen metabolism pathway, being the most basic and central physiological metabolic process during plants’ growth period, directly influences the formation of cellular components and regulation of cellular activities, as well as the transformation of photosynthetic products, mineral nutrient absorption and protein synthesis. It therefore follows that the nitrogen pathway is directly affected by drought, hence its significant enrichment under such conditions [80, 127]. These key identified drought responsive pathways should be used as targets for future genetic engineering of drought stress tolerant genotypes.
Most yield-related traits in cereal crops are quantitative. Therefore, cloning of the causal genes and deciphering the underlying mechanisms influencing these traits remains critical for continuous genetic improvement [135]. Precisely, drought tolerance is a complex quantitative trait that is multi-genic in its expression and one of the most challenging traits to study and characterize [11]. In comparison to conventional approaches, genomics offers unparalleled opportunities for dissecting quantitative traits into their single genetic determinants, known as QTL, thereby facilitating MAS, gene cloning and their direct manipulation via genetic engineering [12]. Through advances in next generation sequencing, identification of major QTLs regulating specific drought responses has been made possible, via the development of large numbers of genetic markers such as single nucleotide polymorphisms (SNPs) and insertion-deletions (InDels), thereby opening the doors for an efficient way to improving drought tolerance in cereal crops [89]. Additionally, large-scale genome-wide association studies (GWAS) have been conducted to detect genomic regions and candidate genes for various agronomic traits, including drought tolerance in cereals [13, 136, 137]. Resultantly, hundreds of studies reporting thousands of major drought-responsive genes and QTLs in cereal grain crops can be found in the literature, including those for maize [13, 138, 139, 140], rice [12, 13, 105, 138, 141, 142], wheat [13, 31, 137, 138, 143], sorghum [138, 144, 145], barley [138, 146], and pearl millet [136, 147, 148]. The high number of studies on QTL mapping suggests that for the past decade, QTL has been the focal target of research to identify the genetic loci regulating the adaptive response of crops to drought stress. Although several QTLs for drought tolerance have already been mapped in these cereal crops, there has been little success in introgression of those QTLs and the number of causal genes that have been confirmed within these QTL regions remains relatively small as compared to Arabidopsis and rice [11, 106].
Going forward, MAS remains a useful tool for major QTL, whereas QTL cloning is increasingly becoming a more routine activity. This has been necessitated by increased use of high-throughput sequencing, precise phenotyping and identification of appropriate candidate genes through omics approaches [89, 136, 137]. Cloned QTL facilitate a more targeted search for novel alleles and will offer novel insights for genetic engineering of drought resilient cereal crops [13]. Moreover, compared to other crops, research in millets is still lagging behind. However, with millets considered predominantly climate resilient crops, millets could serve as valuable source of novel genes, alleles and QTLs for drought tolerance. Therefore, the identification and functional characterization of these genes, alleles and QTLs in millets is critical for their introgression and drought tolerance improvement in cereal grain crops [89].
Phenotyping has become an integral component of the crop improvement programme by contributing towards understanding of the genetics behind crop drought tolerance [105, 149]. Since many component traits of drought tolerance are controlled quantitatively, improving the accuracy of phenotyping has become more important to improve the heritability of the traits, and the target traits would require rapid and precise measurement [106]. High throughput phenotyping now provides an essential link in translating laboratory research to the field. This is vital in developing novel genotypes that incorporate gene(s) expressing promising trait (s) into breeding lines adapted to target field environments [150].
Auspiciously, the recent advances in phenotyping technology and robotics for measuring large number of plants means that large numbers of genotypes could be readily phenotyped [34, 151, 152, 153]. More promising approaches that target complex traits tailored to specific requirements at the different main crop growth stages are now available [150]. Precise phenotyping of drought-related physiological traits often requires the utilization of sophisticated and expensive techniques. These include magnetic resonance imaging (MRI) and positron emission tomography (PET), near-infrared (NIR) spectroscopy on agricultural harvesters, canopy spectral reflectance (SR) and infrared thermography (IRT), nuclear magnetic resonance, hyperspectral imaging, laser imaging, 3D imaging and geographical information systems (GIS), among others [34, 138, 154, 155]. For example, 3D visual modeling can be used to determine the plasticity of the canopy architecture, and to evaluate the architectural and physiological characteristics that contribute to the higher productivity of the super rice varieties under drought stress conditions [156]. Though currently expensive, up scaling the use of these phenotyping platforms will eventually enhance our understanding of crop growth kinetics and aid us improve crop models for systems biology and drought tolerance breeding programs.
Selection of primary (grain yield and yield contributing traits) and secondary agronomically important traits (ASI, root architecture, stay green, etc.) is the way to achieve drought tolerance in cereal grain crops [31, 35, 106, 152]. Yield and yield attributing factors are targeted for direct selection whilst secondary traits are vital in conferring drought tolerance and contributing to final yield indirectly [157]. Crucially, considering that under drought stress conditions, the genetic correlation between grain yield and some secondary traits increases meaningfully, and the heritability of some secondary traits remains high, identification and selection of those highly heritable secondary traits that are positively correlated with yield related traits in the target environment, and responsive to high throughput phenotyping, will be critical in achieving the desired drought tolerance goals [11, 152, 158]. Managed stress screening approaches through the utilization of phenomics offers an opportunity to keep heritability high and phenotyping under controlled environments can be helpful in large-scale characterization studies such as trait mapping experiments [13]. However, great caution needs to be taken when phenotyping for drought stress tolerance since controlled environments may fail to mimic the real field conditions, thereby becoming less useful to study the genotype × environment interactions which are very essential to dissect the drought tolerance mechanisms [106].
The development of tolerant crops by genetic engineering requires the identification of key genetic determinants underlying stress tolerance in plants, and introducing these genes into crops [159, 160]. The momentous progress garnered in abiotic stress response research in the model plant Arabidopsis has created an avenue for the identification of drought tolerance conferring genes and the development of transgenics carrying these genes in other crop species. Therefore, genetic engineering approach has opened the door to the development of new crop genotypes with improved drought tolerance [103]. Over the past decade, numerous articles and reviews on drought stress tolerant transgenic crop species have been gathered [4, 26, 102, 103, 104, 105, 106, 160]. A selected list of transgenic cereal grain crops, which includes information on transgenes used for the transformations and the resultant drought stress tolerance mechanisms, has already been provided above in Table 2. Despite the availability of numerous reports in the scientific literature of transgenic approaches to improving drought tolerance, restrictions on the establishment of transgenic plants in the field presents a bottleneck in true testing of the effectiveness of transgenic approaches to improve crop drought tolerance [161].
In recent years, transgenesis has taken center stage in our crop improvement efforts. Advances in genome engineering has made it possible to precisely alter DNA sequences in living cells, providing unprecedented control over a plant’s genetic material [162]. The genome engineering approaches, also known as gene editing or genome editing techniques, involve the use of programmable site-directed nucleases (SDNs) engineered to modify target genes at desirable locations on the genome [163]. These SDNs cleave the double-stranded DNA at a particular location by means of clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9), zinc finger nucleases (ZFNs), or transcriptional activator-like effector nucleases (TALENs). The double-stranded DNA break then undergoes natural reparation either via homologous recombination or non-homologous end joining [105, 164]. The restoration of the DNA break can be directed to create a variety of targeted DNA sequence modifications such as DNA deletions or insertions of large arrays of transgenes [162].
Among the several genome editing methods developed to date, CRISPR-Cas9 is the most advanced and has received much attention because of its great accuracy, quickness, adaptability and simplicity [165, 166]. This technique has been successfully used in major food crops [167, 168, 169]. Whereas convectional genomics and breeding approaches alone cannot resolve the global food security challenge [170], genetic engineering approaches have great potential to improve crops that feed the burgeoning populations of developing countries [162, 166, 171]. However, the extent of regulation imposed upon crop cultivars generated through genetic engineering will have a huge impact on the cost of their development itself and how rapidly they will be deployed into the food supply chain. Linked to that, the readiness with which the public will accept food products made from genetically engineered crops will also play a role in the extent to which this new technology will be fully utilized for crop improvement, particularly in the developing countries where cereal grain crops are staple diets [162].
Genetic and management strategies that are aimed at improving grain yields under water constrained environments target three variables, which are the amount of water captured by the plant (W), the efficiency with which that water is converted to biomass (water use efficiency, WUE), and the harvest index (HI) or the proportion of biomass forming grain. Interestingly, each of these variables can be altered [172]. For instance, WUE can be maximized by early planting of crops, and by maintaining healthy leaves with high levels of nutrients [173]. Additionally, extending leaves` longevity through selection for delayed leaf senescence is commonly regarded important for maintaining WUE and root health, as well as increasing the kernel filling duration [172]. Supplementation of irrigation, where available, would be the major means for combating drought stress condition, besides being a prime approach to the intensification of agriculture and the generation of stable income for farmers [174]. However, its uptake will depend on various environmental, economic and social factors on both micro and macro levels [175].
Additionally, agronomic interventions, that is, improved crop management methods can complement the use of drought tolerant cultivars, contributing meaningfully to enhanced and stabilized yields under water constrained environments. Conservation agriculture (CA), a collection of practices embodying the use of reduced tillage and mulch to reduce evaporation of soil water, is an obvious means of increasing water available to the plants [172, 176]. Scaling up CA, which has recently gained wider acceptance in developing countries, offers a great potential of increasing drought resilience and sustainability of cropping systems and ensuring food security. The use of plastic mulch in semi-arid cooler areas on the Loess Plateau of China has significantly increased WUE in maize [177]. Moreover, CA has become the cornerstone of dryland systems in some regions of USA, Canada and Australia [174]. Recently, the application of melatonin with date (Phoenix dactylifera L.) residue and wheat straw biochars has enhanced biochar efficiency for drought tolerance in maize cultivars [178]. This can be a game changer in CA farming systems where biochar is a key component for ground cover. Therefore, the management of a sustainable dryland farming system would require that farmers apply good agronomic practices (GAPs) such as improved soil and water conservation and the associated reduced tillage practices, holistic weed and pathogen control, soil fertility management with respect to water regimes, optimized plant population densities and effective control of soil biotic stress factors that may inhibit root development, as well as practicing crop diversification in order to reduce the risks associated with farming in unpredictable environments. Further, governments should increase investments in weather forecasting and cloud seeding.
All these approaches and decision support systems, when integrated, would birth a more holistic strategy for adapting cereal grain crops to future climate change induced drought stress as summarized in Figure 1.
Proposed holistic approach to cereal crop drought stress adaptation.
Currently, crop improvement efforts are shifting focus from solely yield, quality, or abiotic stress resistance to a holistic approach integrating breeding for a combination of these factors. For example, targeting breeding for combined drought and heat stress tolerance [179, 180], drought tolerance and nutritional quality [161] or drought tolerance and disease resistance [3, 181] are being underlined. Drought-tolerant micro-nutrient dense cereal crop cultivars have been developed [8]. In that regard, future-proofing of global food security would call for double-pronged transformation aimed at developing high yielding cultivars possessing both adaptability to abiotic or biotic stresses and higher nutritional quality. Thus, going forward, it is necessary that more breeding programs use high-priority abiotic stresses in their portfolios [11]. In the wake of addressing malnutrition challenges in developing countries, breeding for bio-fortified drought tolerant cultivars should be strengthened [8, 182]. In addition, promising genotypes in trials for fall armyworm (Spodoptera frugiperda L.) resistance, once approved, should be screened for drought tolerance and improved cultivars harboring both traits be developed. Though seemingly a daunting task, combined efforts from crop physiologists, molecular geneticists, breeders and pathologists would make this a reality.
In our ‘omics research’, future proteomics studies should intensify the identification, quantification and analysis of stress-responsive proteins PTMs, since PTMs can affect protein functions, interactions, subcellular targeting and stability [183]. Moreover, breeding for resource use efficiency, for instance, nitrogen use efficiency (NUE) should be integrated in future drought tolerance breeding programs. Previously, researchers have revealed that improving NUE in crops such as paddy rice and cotton will be critical in greenhouse gas emission management [184, 185, 186, 187, 188]. Additionally, application of biochar, either singly [189] or in combination with P [190] has been shown to alleviate heat-induced oxidative stress damage on the cellular physiological processes in rice plants. Thus, as we navigate the future, breeding for NUE and its proper management in the field remains essential in helping adapting crop plants to abiotic stresses such as drought.
Another area of focus will be crop physiology. Since photosynthesis is the basis of plant growth, improving photosynthesis can significantly contribute towards greater food security in the future. Multiple targets for manipulation of crop photosynthesis have been extensively reviewed. These include improving Rubisco kinetic properties and improving canopy architecture to enhance light penetration [191]. Therefore, harnessing the benefits of improved photosynthesis for greater yield potential will require that we intensify manipulation of these targets.
Furthermore, the microbes resident in the rhizosphere can potentially improve plant growth and enhance crop resilience to abiotic stresses [192]. For instance, phosphate-solubilizing bacteria can nullify the antagonistic effect of soil calcification on bioavailable phosphorus in alkaline soils, and thus, can be one of the best options for improving soil P nutrition [193]. It would be crucial to investigate, understand and quantify the complex feedback mechanisms occurring between root and microbial responses to drought stress, particularly in cereal crops. Integrating crop ecology, physiology and molecular methodologies in a multi-disciplinary approach would be central [194].
In the short to medium term, exogenous application of plant growth regulators at different crop growth phases would be an important strategy in inducing drought resistance. In a very short term, seed priming will be of value [3]. The crucial roles of plant phytohormones and growth-promoting rhizobacteria in abiotic stress responses have been extensively reviewed [195, 196, 197]. Particularly, the exogenously applied plant growth regulators can enhance morpho-physiological, growth and abiotic stress responses of crops such as rice [198, 199, 200, 201, 202, 203]. Recently, Saleem et al. [204] have shown that exogenously applied gibberrellic acid (GA3) can reduce metal toxicity induced oxidative stress in jute (C. capsularis L.) seedlings. Moreover, exogenous application of salicicic acid (SA) has been shown to ameliorate the adverse effects of salinity on maize plants [205]. Further, silicon (Si) application improved plant water relations, photosynthesis and drought tolerance in Kentucky bluegrass [206, 207], and Si enhanced germination, growth, P and arsenic uptake in rice [208]. Therefore, targeting the modification of hormone biosynthetic pathways may be a gateway to the development of drought tolerant transgenic plants.
Meanwhile, the potential of transgenic technologies across developing countries, particularly in Sub-Saharan Africa, is being hampered by uncoordinated over-regulation by authorities. Unfortunately, the biosafety framework leading to ordered testing and deregulation in such countries is being developed on individual countries basis, instead of a more efficient resource-use regional approach. Moreso, present systems are modeled on overestimated, not science-evidence-based risks [172]. There is need for policy makers to revisit their stance on genetically modified organisms (GMOs) with science guaranteed evidence, not political grand-standing, guiding formulation, adoption and utilization of GMO related polices for food and nutritional security.
Though a daunting task, breeding for drought tolerance in cereal crops remains the most economical, effective and sustainable strategy for ensuring food security for the ever increasing human population. While a significant progress has been made to date towards achieving that goal, our understanding of the mechanisms underpinning plant drought stress tolerance remains fragmentary. In the face of global climate change, a multi-disciplinary research strategy becomes obligatory to integrate physiological, genotypic, omics and epigenetics data essential to dissect the complex networks regulating plant drought tolerance, which can then be manipulated through genetic engineering to develop drought resilient crops. Additionally, cereal crop breeding programs should integrate high-priority abiotic stresses, particularly drought and heat, with other goals such as resource use efficiency, biotic resistance, and nutritional improvement. Further, formulation and effective deployment of efficient screening and precise phenotyping approaches at both laboratory and field levels to identify drought tolerant genotypes or mutants remains critical. Promisingly, our new cultivar development thrusts are now endowed with some innovative methodologies that include high-throughput phenotyping, doubled haploidy, mutation and speed breeding, as well as CRISP-Cas 9 technologies. Going forward, we should harness the potential of these technologies. Eventually, our understanding of the crop drought tolerance mechanisms will be quickened and broadened, greatly assisting our development of new drought-resilient cereal crop cultivars. This should be supported by robust, science-evidence-based and progressive policy frameworks that recognize the centrality of GMOs and modern biotechnology in increasing food production. Consequently, this would lead to improved sustainable crop productivity and global food security.
We acknowledge the funding received from the National Key Research and Development Project of China (Selection and Efficient Combination Model of Wheat and Maize Water Saving, High Yield and High Quality Varieties; Grant No. 2017YFD0300901).
Authors declare that they have no conflict of interests.
.
",metaTitle:"Order Print Copies - Terms",metaDescription:".",metaKeywords:null,canonicalURL:"page/order-print-copies-terms/",contentRaw:'[{"type":"htmlEditorComponent","content":"Orders have to be prepaid in advance and before printing. We accept payment in GBP, EUR and USD. Payments can be made by bank transfer or cheque, by credit card (Visa, MasterCard, American Express, Discover Card) and PayPal worldwide online payments system. In accordance with the best security practice, we do not accept card orders via email.
\\n\\nThe combined printing and delivery times for orders vary from 12-20 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\\n\\nMy order has not arrived, what do I do?
\\n\\nIf you do not receive your order within 30 days, please contact us to inquire about the shipping status at orders@intechopen.com.
\\n\\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us. Inspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\\n\\nTaxes: Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nCustoms: Shipping costs do not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Orders have to be prepaid in advance and before printing. We accept payment in GBP, EUR and USD. Payments can be made by bank transfer or cheque, by credit card (Visa, MasterCard, American Express, Discover Card) and PayPal worldwide online payments system. In accordance with the best security practice, we do not accept card orders via email.
\n\nThe combined printing and delivery times for orders vary from 12-20 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\n\nMy order has not arrived, what do I do?
\n\nIf you do not receive your order within 30 days, please contact us to inquire about the shipping status at orders@intechopen.com.
\n\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us. Inspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\n\nTaxes: Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us their VAT registration number. This is made possible by the EU reverse charge method.
\n\nCustoms: Shipping costs do not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5775},{group:"region",caption:"Middle and South America",value:2,count:5238},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10409},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15805}],offset:12,limit:12,total:118374},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:5},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5247},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"82",title:"Biochemistry",slug:"chemistry-biochemistry",parent:{title:"Chemistry",slug:"chemistry"},numberOfBooks:4,numberOfAuthorsAndEditors:133,numberOfWosCitations:102,numberOfCrossrefCitations:48,numberOfDimensionsCitations:156,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"chemistry-biochemistry",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7238",title:"Fuel Ethanol Production from Sugarcane",subtitle:null,isOpenForSubmission:!1,hash:"f3b4eb4ac5837543b99bd6e1a1a4cacc",slug:"fuel-ethanol-production-from-sugarcane",bookSignature:"Thalita Peixoto Basso and Luiz Carlos Basso",coverURL:"https://cdn.intechopen.com/books/images_new/7238.jpg",editedByType:"Edited by",editors:[{id:"139174",title:"Ph.D.",name:"Thalita",middleName:null,surname:"Peixoto Basso",slug:"thalita-peixoto-basso",fullName:"Thalita Peixoto Basso"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,isOpenForSubmission:!1,hash:"c93a00abd68b5eba67e5e719f67fd20b",slug:"biochemistry-and-health-benefits-of-fatty-acids",bookSignature:"Viduranga Waisundara",coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",editedByType:"Edited by",editors:[{id:"194281",title:"Dr.",name:"Viduranga Yashasvi",middleName:null,surname:"Waisundara",slug:"viduranga-yashasvi-waisundara",fullName:"Viduranga Yashasvi Waisundara"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5283",title:"Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5d879e015ea226a3cf4633c0a187c830",slug:"applications-of-molecular-spectroscopy-to-current-research-in-the-chemical-and-biological-sciences",bookSignature:"Mark T. Stauffer",coverURL:"https://cdn.intechopen.com/books/images_new/5283.jpg",editedByType:"Edited by",editors:[{id:"97565",title:"Dr.",name:"Mark",middleName:"Thomas",surname:"Stauffer",slug:"mark-stauffer",fullName:"Mark Stauffer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3586",title:"Agricultural Chemistry",subtitle:null,isOpenForSubmission:!1,hash:"a05731d42f4d1009e8a0f51e0f483081",slug:"agricultural-chemistry",bookSignature:"Margarita Stoytcheva and Roumen Zlatev",coverURL:"https://cdn.intechopen.com/books/images_new/3586.jpg",editedByType:"Edited by",editors:[{id:"6375",title:"Prof.",name:"Margarita",middleName:null,surname:"Stoytcheva",slug:"margarita-stoytcheva",fullName:"Margarita Stoytcheva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,mostCitedChapters:[{id:"43080",doi:"10.5772/55287",title:"Grain Yield Determination and Resource Use Efficiency in Maize Hybrids Released in Different Decades",slug:"grain-yield-determination-and-resource-use-efficiency-in-maize-hybrids-released-in-different-decades",totalDownloads:4363,totalCrossrefCites:3,totalDimensionsCites:13,book:{slug:"agricultural-chemistry",title:"Agricultural Chemistry",fullTitle:"Agricultural Chemistry"},signatures:"Laura Echarte, Lujan Nagore, Javier Di Matteo, Matías Cambareri, Mariana Robles and Aída Della Maggiora",authors:[{id:"164811",title:"Dr.",name:"Laura",middleName:null,surname:"Echarte",slug:"laura-echarte",fullName:"Laura Echarte"},{id:"165595",title:"Dr.",name:"Maria",middleName:"Lujan",surname:"Nagore",slug:"maria-nagore",fullName:"Maria Nagore"},{id:"165596",title:"BSc.",name:"Javier",middleName:null,surname:"Di Matteo",slug:"javier-di-matteo",fullName:"Javier Di Matteo"},{id:"165598",title:"BSc.",name:"Mariana",middleName:null,surname:"Robles",slug:"mariana-robles",fullName:"Mariana Robles"},{id:"165599",title:"MSc.",name:"Aída",middleName:null,surname:"Della Maggiora",slug:"aida-della-maggiora",fullName:"Aída Della Maggiora"},{id:"167765",title:"Dr.",name:"Matias",middleName:null,surname:"Cambareri",slug:"matias-cambareri",fullName:"Matias Cambareri"}]},{id:"43053",doi:"10.5772/55416",title:"In vitro Antioxidant Analysis and the DNA Damage Protective Activity of Leaf Extract of the Excoecaria agallocha Linn Mangrove Plant",slug:"in-vitro-antioxidant-analysis-and-the-dna-damage-protective-activity-of-leaf-extract-of-the-excoecar",totalDownloads:2913,totalCrossrefCites:1,totalDimensionsCites:12,book:{slug:"agricultural-chemistry",title:"Agricultural Chemistry",fullTitle:"Agricultural Chemistry"},signatures:"C. Asha Poorna, M.S. Resmi and E.V. Soniya",authors:[{id:"148913",title:"Dr.",name:"Soniya",middleName:null,surname:"E V",slug:"soniya-e-v",fullName:"Soniya E V"}]},{id:"52212",doi:"10.5772/64477",title:"Fourier Transform Infrared and Raman Characterization of Silica-Based Materials",slug:"fourier-transform-infrared-and-raman-characterization-of-silica-based-materials",totalDownloads:2416,totalCrossrefCites:5,totalDimensionsCites:10,book:{slug:"applications-of-molecular-spectroscopy-to-current-research-in-the-chemical-and-biological-sciences",title:"Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences",fullTitle:"Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences"},signatures:"Larissa Brentano Capeletti and João Henrique Zimnoch",authors:[{id:"178200",title:"Prof.",name:"Joao Henrique",middleName:null,surname:"Zimnoch Dos Santos",slug:"joao-henrique-zimnoch-dos-santos",fullName:"Joao Henrique Zimnoch Dos Santos"},{id:"186947",title:"Dr.",name:"Larissa",middleName:null,surname:"Brentano Capeletti",slug:"larissa-brentano-capeletti",fullName:"Larissa Brentano Capeletti"}]}],mostDownloadedChaptersLast30Days:[{id:"43057",title:"Heavy Metal Content in Bitter Leaf (Vernonia amygdalina) Grown Along Heavy Traffic Routes in Port Harcourt",slug:"heavy-metal-content-in-bitter-leaf-vernonia-amygdalina-grown-along-heavy-traffic-routes-in-port-harc",totalDownloads:5851,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"agricultural-chemistry",title:"Agricultural Chemistry",fullTitle:"Agricultural Chemistry"},signatures:"Ogbonda G. Echem and L. G. Kabari",authors:[{id:"26433",title:"Dr.",name:"Ledisi",middleName:"Giok",surname:"Kabari",slug:"ledisi-kabari",fullName:"Ledisi Kabari"}]},{id:"52212",title:"Fourier Transform Infrared and Raman Characterization of Silica-Based Materials",slug:"fourier-transform-infrared-and-raman-characterization-of-silica-based-materials",totalDownloads:2415,totalCrossrefCites:5,totalDimensionsCites:10,book:{slug:"applications-of-molecular-spectroscopy-to-current-research-in-the-chemical-and-biological-sciences",title:"Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences",fullTitle:"Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences"},signatures:"Larissa Brentano Capeletti and João Henrique Zimnoch",authors:[{id:"178200",title:"Prof.",name:"Joao Henrique",middleName:null,surname:"Zimnoch Dos Santos",slug:"joao-henrique-zimnoch-dos-santos",fullName:"Joao Henrique Zimnoch Dos Santos"},{id:"186947",title:"Dr.",name:"Larissa",middleName:null,surname:"Brentano Capeletti",slug:"larissa-brentano-capeletti",fullName:"Larissa Brentano Capeletti"}]},{id:"63140",title:"Lipids and Fatty Acids in Human Milk: Benefits and Analysis",slug:"lipids-and-fatty-acids-in-human-milk-benefits-and-analysis",totalDownloads:1061,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"biochemistry-and-health-benefits-of-fatty-acids",title:"Biochemistry and Health Benefits of Fatty Acids",fullTitle:"Biochemistry and Health Benefits of Fatty Acids"},signatures:"Jesui Vergilio Visentainer, Oscar Oliveira Santos, Liane Maldaner, Caroline Zappielo, Vanessa Neia, Lorena Visentainer, Luciana Pelissari, Jessica Pizzo, Adriela Rydlewski, Roberta Silveira, Marilia Galuch and Jeane Laguila Visentainer",authors:[{id:"170125",title:"Dr.",name:"Jeane",middleName:"Eliete Laguila",surname:"Visentainer",slug:"jeane-visentainer",fullName:"Jeane Visentainer"},{id:"256644",title:"Dr.",name:"Oscar",middleName:null,surname:"Santos",slug:"oscar-santos",fullName:"Oscar Santos"},{id:"258900",title:"Ph.D.",name:"Jesui",middleName:null,surname:"Vergilio Visentainer",slug:"jesui-vergilio-visentainer",fullName:"Jesui Vergilio Visentainer"},{id:"267803",title:"MSc.",name:"Caroline",middleName:null,surname:"Zappielo",slug:"caroline-zappielo",fullName:"Caroline Zappielo"},{id:"267804",title:"MSc.",name:"Vanessa",middleName:null,surname:"Javera Neia",slug:"vanessa-javera-neia",fullName:"Vanessa Javera Neia"},{id:"267807",title:"MSc.",name:"Luciana",middleName:null,surname:"Pelissari",slug:"luciana-pelissari",fullName:"Luciana Pelissari"},{id:"267808",title:"MSc.",name:"Jessica",middleName:null,surname:"Pizzo",slug:"jessica-pizzo",fullName:"Jessica Pizzo"},{id:"267812",title:"Dr.",name:"Liane",middleName:null,surname:"Maldaner",slug:"liane-maldaner",fullName:"Liane Maldaner"},{id:"267813",title:"MSc.",name:"Lorena",middleName:null,surname:"Visentainer",slug:"lorena-visentainer",fullName:"Lorena Visentainer"},{id:"267814",title:"MSc.",name:"Adriela",middleName:null,surname:"Rydlewski Ito",slug:"adriela-rydlewski-ito",fullName:"Adriela Rydlewski Ito"},{id:"267815",title:"MSc.",name:"Roberta",middleName:null,surname:"Silveira",slug:"roberta-silveira",fullName:"Roberta Silveira"},{id:"267816",title:"MSc.",name:"Marilia",middleName:null,surname:"Galuch",slug:"marilia-galuch",fullName:"Marilia Galuch"}]},{id:"63324",title:"Fatty Acids: From Membrane Ingredients to Signaling Molecules",slug:"fatty-acids-from-membrane-ingredients-to-signaling-molecules",totalDownloads:844,totalCrossrefCites:3,totalDimensionsCites:9,book:{slug:"biochemistry-and-health-benefits-of-fatty-acids",title:"Biochemistry and Health Benefits of Fatty Acids",fullTitle:"Biochemistry and Health Benefits of Fatty Acids"},signatures:"Michio Hashimoto and Shahdat Hossain",authors:[{id:"260006",title:"Prof.",name:"Shahdat",middleName:null,surname:"Hossain",slug:"shahdat-hossain",fullName:"Shahdat Hossain"},{id:"260206",title:"Prof.",name:"Michio",middleName:null,surname:"Hashimoto",slug:"michio-hashimoto",fullName:"Michio Hashimoto"}]},{id:"63663",title:"Fatty Acids, Gut Microbiota, and the Genesis of Obesity",slug:"fatty-acids-gut-microbiota-and-the-genesis-of-obesity",totalDownloads:868,totalCrossrefCites:2,totalDimensionsCites:7,book:{slug:"biochemistry-and-health-benefits-of-fatty-acids",title:"Biochemistry and Health Benefits of Fatty Acids",fullTitle:"Biochemistry and Health Benefits of Fatty Acids"},signatures:"Patricia de Velasco, Amanda Ferreira, Louise Crovesy, Tarsis Marine and Maria das Graças Tavares do Carmo",authors:[{id:"259177",title:"Prof.",name:"Maria Das Graças",middleName:null,surname:"Tavares Do Carmo",slug:"maria-das-gracas-tavares-do-carmo",fullName:"Maria Das Graças Tavares Do Carmo"},{id:"259178",title:"Dr.",name:"Patricia",middleName:null,surname:"De Velasco",slug:"patricia-de-velasco",fullName:"Patricia De Velasco"},{id:"259181",title:"MSc.",name:"Amanda",middleName:null,surname:"Ferreira",slug:"amanda-ferreira",fullName:"Amanda Ferreira"},{id:"259182",title:"Dr.",name:"Tarsis",middleName:null,surname:"Marine Ferreira",slug:"tarsis-marine-ferreira",fullName:"Tarsis Marine Ferreira"},{id:"259183",title:"MSc.",name:"Louise",middleName:null,surname:"Crovesy De Oliveira",slug:"louise-crovesy-de-oliveira",fullName:"Louise Crovesy De Oliveira"}]},{id:"50766",title:"Using Fluorescence Spectroscopy to Diagnose Breast Cancer",slug:"using-fluorescence-spectroscopy-to-diagnose-breast-cancer",totalDownloads:1587,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"applications-of-molecular-spectroscopy-to-current-research-in-the-chemical-and-biological-sciences",title:"Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences",fullTitle:"Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences"},signatures:"Tatjana Dramićanin and Miroslav Dramićanin",authors:[{id:"183261",title:"Prof.",name:"Miroslav",middleName:null,surname:"Dramicanin",slug:"miroslav-dramicanin",fullName:"Miroslav Dramicanin"},{id:"183280",title:"Dr.",name:"Tatjana",middleName:null,surname:"Dramicanin",slug:"tatjana-dramicanin",fullName:"Tatjana Dramicanin"}]},{id:"62041",title:"Assessment of Sugarcane-Based Ethanol Production",slug:"assessment-of-sugarcane-based-ethanol-production",totalDownloads:1354,totalCrossrefCites:2,totalDimensionsCites:5,book:{slug:"fuel-ethanol-production-from-sugarcane",title:"Fuel Ethanol Production from Sugarcane",fullTitle:"Fuel Ethanol Production from Sugarcane"},signatures:"Rubens Eliseu Nicula de Castro, Rita Maria de Brito Alves,\nCláudio Augusto Oller do Nascimento and Reinaldo Giudici",authors:[{id:"50350",title:"Prof.",name:"Claudio",middleName:null,surname:"Oller Do Nascimento",slug:"claudio-oller-do-nascimento",fullName:"Claudio Oller Do Nascimento"},{id:"98033",title:"Dr.",name:"Rita Maria",middleName:null,surname:"De Brito Alves",slug:"rita-maria-de-brito-alves",fullName:"Rita Maria De Brito Alves"},{id:"248441",title:"BSc.",name:"Rubens E",middleName:null,surname:"N De Castro",slug:"rubens-e-n-de-castro",fullName:"Rubens E N De Castro"},{id:"248442",title:"Prof.",name:"Reinaldo",middleName:null,surname:"Giudici",slug:"reinaldo-giudici",fullName:"Reinaldo Giudici"}]},{id:"64502",title:"Introductory Chapter: Fatty Acids in Modern Times",slug:"introductory-chapter-fatty-acids-in-modern-times",totalDownloads:701,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"biochemistry-and-health-benefits-of-fatty-acids",title:"Biochemistry and Health Benefits of Fatty Acids",fullTitle:"Biochemistry and Health Benefits of Fatty Acids"},signatures:"Viduranga Y. Waisundara",authors:[{id:"194281",title:"Dr.",name:"Viduranga Yashasvi",middleName:null,surname:"Waisundara",slug:"viduranga-yashasvi-waisundara",fullName:"Viduranga Yashasvi Waisundara"}]},{id:"51767",title:"Applications of Molecular Spectroscopic Methods to the Elucidation of Lignin Structure",slug:"applications-of-molecular-spectroscopic-methods-to-the-elucidation-of-lignin-structure",totalDownloads:2213,totalCrossrefCites:2,totalDimensionsCites:9,book:{slug:"applications-of-molecular-spectroscopy-to-current-research-in-the-chemical-and-biological-sciences",title:"Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences",fullTitle:"Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences"},signatures:"Tingting You and Feng Xu",authors:[{id:"174103",title:"Prof.",name:"Feng",middleName:null,surname:"Xu",slug:"feng-xu",fullName:"Feng Xu"},{id:"182550",title:"Dr.",name:"Tingting",middleName:null,surname:"You",slug:"tingting-you",fullName:"Tingting You"}]},{id:"52007",title:"Improving Food Safety by Using One- and Two-Photon- Induced Fluorescence Spectroscopy for the Detection of Mycotoxins",slug:"improving-food-safety-by-using-one-and-two-photon-induced-fluorescence-spectroscopy-for-the-detectio",totalDownloads:1709,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"applications-of-molecular-spectroscopy-to-current-research-in-the-chemical-and-biological-sciences",title:"Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences",fullTitle:"Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences"},signatures:"Lien Smeesters, Wendy Meulebroeck and Hugo Thienpont",authors:[{id:"182428",title:"Ph.D.",name:"Lien",middleName:null,surname:"Smeesters",slug:"lien-smeesters",fullName:"Lien Smeesters"},{id:"183268",title:"Prof.",name:"Wendy",middleName:null,surname:"Meulebroeck",slug:"wendy-meulebroeck",fullName:"Wendy Meulebroeck"},{id:"183270",title:"Prof.",name:"Hugo",middleName:null,surname:"Thienpont",slug:"hugo-thienpont",fullName:"Hugo Thienpont"}]}],onlineFirstChaptersFilter:{topicSlug:"chemistry-biochemistry",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/221546/ahmed-khedr",hash:"",query:{},params:{id:"221546",slug:"ahmed-khedr"},fullPath:"/profiles/221546/ahmed-khedr",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()