Size of bone defect per patient and average of the group
\r\n\t
",isbn:"978-1-83968-571-2",printIsbn:"978-1-83968-570-5",pdfIsbn:"978-1-83968-599-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"dd81bc60e806fddc63d1ae22da1c779a",bookSignature:"Dr. Sebahattin Demirkan",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10818.jpg",keywords:"Decision Making, Blockchain, Accounting, Earnings Management, Strategic Alliances, Innovation, Performance, Corporate Governance, Accounting Quality, Digital Assets, Internationalization, MNCs",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 28th 2021",dateEndSecondStepPublish:"February 25th 2021",dateEndThirdStepPublish:"April 26th 2021",dateEndFourthStepPublish:"July 15th 2021",dateEndFifthStepPublish:"September 13th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Academician in the area of accounting who believes in the impact of interdisciplinary research. Dr. Sebahattin Demirkan's research interests are in the areas of financial accounting, capital markets, auditing, corporate governance, strategic alliances, taxation, CSR, and data analytics.",coeditorOneBiosketch:"Researcher of strategic management, corporate entrepreneurship, and international business; specific interests include innovation, the ambidexterity framework, inter-organizational relationships, and networks. Experienced in teaching graduate and undergraduate courses in strategy, entrepreneurship, and international business and management areas.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"336397",title:"Dr.",name:"S",middleName:null,surname:"D",slug:"s-d",fullName:"S D",profilePictureURL:"https://mts.intechopen.com/storage/users/336397/images/system/336397.jpg",biography:"Dr. Sebahattin Demirkan is a Professor of Accounting. He earned his Ph.D. in Accounting/Management Science at Jindal School of Management of the University of Texas at Dallas where he got his MS in Accounting, MSA Supply Chain, and MBA degrees. He got his BA in Economics and Management at the Faculty of Economics and Administrative Sciences at Bogazici University, Istanbul. He worked at Koc Holding, a private venture capital firm, and the University of California, Berkeley during and after his education at Bogazici University. His research interests are in the areas of financial accounting, capital markets, auditing, corporate governance, strategic alliances, taxation, CSR, and data analytics. Dr. Sebahattin Demirkan has published articles in Contemporary Accounting Research, JAPP, JAAF, TEM, Journal of Management, and other top academic journals. He teaches several different classes in both undergraduate and graduate levels in Accounting and Analytics programs. He is a treasurer and vice president of the TASSA, board member of the BURCIN and member of the American Accounting Association.",institutionString:"Manhattan College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Manhattan College",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"7",title:"Business, Management and Economics",slug:"business-management-and-economics"}],chapters:[{id:"75977",title:"The Economic Effect of Bitcoin Halving Events on the U.S. Capital Market",slug:"the-economic-effect-of-bitcoin-halving-events-on-the-u-s-capital-market",totalDownloads:26,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"301331",firstName:"Mia",lastName:"Vulovic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/301331/images/8498_n.jpg",email:"mia.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"44620",title:"Treatment of Bone Defects — Allogenic Platelet Gel and Autologous Bone Technique",doi:"10.5772/55987",slug:"treatment-of-bone-defects-allogenic-platelet-gel-and-autologous-bone-technique",body:'\n\t\tBone defects are a serious illness that can result after a pathological process has destroyed vital components of the bone. Most commonly the causative event is extensive trauma and subsequent infection. It can be also osteomyelitis that destroys the bone and leaves non-vital bone sequesters along the length of the bone. This damage to the bone and soft tissues heals slowly and restitution can be only expected after some time of rest and procedures of debridement.
\n\t\t\tBone defect by definition is a lack of bone tissue in a body area, where bone should normally be. Lack of bone tissue results in a pseudarthrosis, artificial joint that has no physiological importance. In that area, two parts of diseased bone are joined with a fibrous tissue. That area also lacks appropriate vascularization and is usually covered with scarred or fibrotic skin [1].
Bone defects can be treated by various surgical methods. One is always constrained with fibrosis that healed a wound or the site of infection [2]. Often there are factors that impair bone healing like diabetes mellitus [3, 4], immunosuppressive therapy [5, 6], poor locomotory status and others that one has to take in account when a procedure is planned.
There are some common methods of bone defect reconstruction, like decortication, excision and fixation, cancellous bone grafting [7] and the Ilizarov intercalary bone transport method [1]. The application of these methods results in successful final outcomes as far as the bone restitution is concerned.
However, one must consider repeated surgical procedures and often long hospitalization time or frequent outpatient visits for these patients. It is also common for patients to have prolonged ambulatory impairment with suboptimal functional and aesthetic results [8, 9].
\n\t\t\tTissue engineering involves the restoration of tissue structure or function through the use of living cells. The general process consists of cell isolation and proliferation, followed by a re-implantation procedure in which a scaffold material is used. Cell sources can be autologous or allogenic cells. Autologous cells are usually the better choice, because the allogenic cells could incite immune rejection by the recipient. Mesenchymal stem cells provide a good alternative to cells from mature tissue and have a number of advantages as a cell source for bone and cartilage tissue regeneration [10].
Some authors report that most tissue engineering applications in the head and neck area would probably involve the use of chondrocytes and osteoblasts along with some type of scaffold material because of the importance of initial support and shaping [11].
Theoretically, the ideal bone graft substitutes should be osteogenic, biocompatible, bioabsorbable, able to provide structural support, easy to use clinically and cost-effective. A composite graft combines an osteoconductive matrix with bioactive agents that provide osteoinductive and osteogenic properties [12].
Novel techniques have been studied recently, many involving growth enhancers with varying results. These have been used for healing wounds, ulcers, fractures, and in maxillofacial settings. Such biological enhancers are autologous platelet rich plasma (PRP) in the form of activated platelet gel and recombinant bone morphogenetic proteins (rBMP) [11, 13-23]. An animal study showed enhanced bone growth when autologous bone was combined with platelet-rich plasma [24, 25].
The healing effects of platelet rich gel were attributed to the numerous growth factors (GFs) released by the platelets after activation [19, 26]. Some of those identified are: the platelet derived growth factor (PDGF), TGF-α and β (transforming growth factor alpha and beta), EGF (epidermal growth factor), FGF (fibroblast growth factor), IGF (insulin growth factor), PDEGF (platelet derived epidermal growth factor), PDAF (platelet derived angiogenesis factor), IL-8 (interleukin-8), TNF-α (tumour necrosis factor alpha), CTGR (connective tissue growth factor), GM-CSF (granulocyte macrophage colony stimulating factor), KGF (keratinocyte growth factor), and Ang-2 (angiopoetin), as reviewed by several authors [26, 27]. The inductive potential of platelet gel in tissue regeneration could also be attributed to its significant antimicrobial activity [28].
\n\t\t\tRecent studies on patients for the regeneration of long bone and foot and ankle defects have provided promising clinical results when using platelets as a source of GFs [10]. Some studies demonstrated that with the use of platelet gel a better and stronger bone yield was achieved as compared to reconstruction with conventional methods [29]. X-ray images of treated bones showed increased density early in follow up and in-growth of treated area was enhanced [30].
In the majority of clinical experiments, authors have applied autologous platelets obtained by preoperative apheresis from the peripheral blood of the patient undergoing surgery. However, this may not always be the best solution. In cases of diabetes it has been shown that the release of platelet GFs is decreased in experimental diabetic animals [31]. If allogeneic platelet rich plasma was used as a source of additional GFs, healing of tissues in diabetic patients can considerably improve [32].
Allogenic single donor platelet units are easy to obtain, since they are a standard blood bank product. They are highly standardized in terms of platelet content and residual leukocyte and red blood cell content is low. All of this is due to proven centrifugal forces used for their isolation, temperature of centrifugation, techniques of separation and processing and composition of preservative solution. Also, they are available in large quantities and considered safe. Autologous platelet preparations, on the other hand, are subject to enormous variability, which hinders serious studies of their clinical efficacy [33].
We used for our procedures the standard blood bank platelet concentrates. We prepared a graft composed of allogeneic platelet gel mixed with autologous cancellous bone in order to improve the healing conditions in bone defects, which was successfully demonstrated in our pilot clinical case [34].
In our case study, we showed that the healing potential of the gel GFs obtained from a high number of allogeneic platelets could be combined with the bone forming potential of autologous osteogenic and other stem cells from the cancellous bone. We employed the plasticity of the resulting graft mixture for the modeling and all of this contributed to a successful clinical outcome.
\n\t\t\tThe treatment of bone defects of long bones after injury is still one of the most difficult tasks in reconstructive bone surgery. The golden standard in bone graft surgery is still the use of autologous bone graft [7]. In certain settings, especially in extensive bone defects, this method of treatment could be insufficient and could only pose an additional trauma for the patient.
Numerous authors have reported difficulties when treating defected non-unions, such as extremely long healing time and incorporation of the graft, necrosis of the grafts, and reacutisation of infection [35, 36]. Concomitantly, long-term immobilization contributed to the contractures of the joints and soft tissue, and in the long-term perspective, also to the inferior functional and aesthetic results [37].
Pseudarthroses with certain mid size bone defect are complicated to treat because it is difficult to determine an appropriate treatment method. Smaller size defects can be treated with simple bone fixation and some debridement. Larger bone defects must be treated with bone transport (Ilizarov method) or transplant of bone graft with vascular pedicle [36].
Reconstruction by vascularised bone transfer along the Ilizarov intercalary bone transport and cancellous bone grafting has been the most widely used method of treatment for large defected nonunions after injury [37, 38]. There have been several modifications of the Ilizarov method, which retain its versatility, stability and mechanics, but these methods also contribute to a high rate of complications [35, 37, 38].
Mid sized defects can be treated with cancellous bone transplant, but many limitations exist with this method. Cancellous bone is of limited availability in human body and sometimes sources have been depleted after repeated surgeries. Often, resorption of transplanted cancellous bone is seen which leads to unsuccessful bone defect bridging [39].
Bone grafts are used to replace a part of the bony defect or to enhance the healing of a fracture. Because of the inability to procure large quantities of autologous bone and the added morbidity for the patient associated with the autograft donor site, new methods of bone transplant materials have emerged in recent years [7].
Substitutes for bone defects have been tested and one of the research tasks is to devise a easily attainable promotor of ingrowth of autologous cancellous bone. Theoretically, the ideal bone graft substitutes should be osteogenic, biocompatible, bioabsorbable, able to provide structural support, easy to use clinically and cost-effective. A composite graft combines an osteoconductive matrix with bioactive agents that provide osteoinductive and osteogenic properties [39].
Synthetic substitutes that provide a scaffold to support or direct bone formation include calcium sulphate, ceramics, calcium phosphate, cements, collagen, bioactive glass and synthetic polymers. These are available in a variety of formulations, including pellets, cement and injectable paste [39, 40].
The functional properties of bone morphogenetic proteins (BMP) 2 and 7, mesenchymal stem cells (MSC), demineralised bone matrix, and biocompatibile ceramics are presented in many papers describing their use in bone defect treatment [41-44]. Bone morphogenetic proteins exhibit an extraordinary power to induce new bone formation de novo without the presence of cancellous bone [45]. With their high cost, limited availability and restricted clinical indications, BMPs are a less attractive option for clinical application.
One of the clinical challenges in long bone defects is the induction of appropriate bone formation, especially in patients with diabetes. Several studies have demonstrated the clinical efficacy of various platelet derived GFs. Recent evidence shows that in diabetic patients platelets are handicapped by decreased expression of growth factors and lower potential for healing fractures [31, 46].
Although there is some evidence that the GFs are released to some extent in the stored platelet concentrates, the majority of GFs remain intact in the platelet granules if they are appropriately stored for up to 5 days [47].
The safety and efficacy of allogeneic platelets was also shown in our recent pilot case study [34]. Moreover, the preparation of autologous platelet gel requires pre-operative apheresis and blood draws from the patient, and adds to the complexity, risk and cost of surgery [48].
Based on these facts, we were of the opinion that allogeneic platelets constitute a superior alternative to autologous preparations obtained by pre-operative apheresis. Therefore, we used a standard platelet concentrate from the blood bank as a component for the activated platelet gel.
\n\t\t\tTissue engineering involves the restoration of tissue structure or function through the use of living cells. The general process consists of cell isolation and proliferation, followed by a re-implantation procedure in which a scaffold material is used. Cell sources can be autologous or allogenic cells.
Autologous cells are usually the better choice, because the allogenic cells could incite immune rejection by the recipient. Mesenchymal stem cells are progenitor cells and can be developed in a laboratory along separate cell families. They can be differentiated into more maturated cells like osteoblasts and chondroblasts and chondrocytes. They provide a good alternative to cells from mature tissue and have a number of advantages as a cell source for bone and cartilage tissue regeneration [49].
Here we present the results of a prospective clinical study performed from May 2004 to February 2010 in the University Clinical Centre Ljubljana, Slovenia. We treated defected non-union of long bones with cancellous bone transplantation. We used allogeneic platelets as a source of additional GFs.
We treated 9 consecutive patients (3 female and 6 male), aged from 21 to 73 years (average 45.9 years), each with a defect of a different long bone (3 femoral, 4 tibial, 1 humeral and 1 ulnar). We present patients\' size of bone defect, which were classified as mid-size in a Table 1.
\n\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
1 | \n\t\t\t\t\t\t\tFemur | \n\t\t\t\t\t\t\t16 | \n\t\t\t\t\t\t
2 | \n\t\t\t\t\t\t\tDistal tibia | \n\t\t\t\t\t\t\t35 | \n\t\t\t\t\t\t
3 | \n\t\t\t\t\t\t\tDistal tibia | \n\t\t\t\t\t\t\t45 | \n\t\t\t\t\t\t
4 | \n\t\t\t\t\t\t\tFemur | \n\t\t\t\t\t\t\t15 | \n\t\t\t\t\t\t
5 | \n\t\t\t\t\t\t\tDistal tibia | \n\t\t\t\t\t\t\t30 | \n\t\t\t\t\t\t
6 | \n\t\t\t\t\t\t\tProximal femur | \n\t\t\t\t\t\t\t25 | \n\t\t\t\t\t\t
7 | \n\t\t\t\t\t\t\tHumerus | \n\t\t\t\t\t\t\t35 | \n\t\t\t\t\t\t
8 | \n\t\t\t\t\t\t\tUlna | \n\t\t\t\t\t\t\t30 | \n\t\t\t\t\t\t
9 | \n\t\t\t\t\t\t\tDistal tibia | \n\t\t\t\t\t\t\t25 | \n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t | Average graft volume | \n\t\t\t\t\t\t\t28.5 | \n\t\t\t\t\t\t
Size of bone defect per patient and average of the group
Bone defect of distal tibia (plain X-ray)
Bone defect of distal tibia CT reconstruction
They had already been unsuccessfully treated with conventional methods in our or other hospitals. The therapeutic options in these cases had been exhausted. In the Figure 1 and 2, we present an example of a bone defect we treated.
In 2 of the patients, we treated osteomyelitis before applying our treatment. We took additional microbiological samples at the time of operation. Three samples were positive for pathologic bacteria and patients received appropriate antibiotic therapy. After the operation no reacutisation of infection was noted. Two of the patients had diabetes on per oral therapy.
\n\t\t\tIn our clinical investigation plan, the primary objective was to establish the potency of allogeneic platelet gel, from our blood bank, added to the transplanted autologous cancellous bone when treating post-traumatic mid-sized bone defect, with a follow-up of one year. The secondary objective was to investigate the healing, safety, handling and tolerance of the method and potential cost benefits.
We noted all the patients’ major variables in a protocol, radiologic examinations, and post-operative follow-up for up to one year. As a survey of the immunological side effects of allogeneic platelets, we performed a screening of HLA antibodies class I and human platelet antibodies (HPA) before the implant operation and in the third month after the operation.
\n\t\t\tWe harvested autologous cancellous bone from one or both patients’ iliac crests and ground it by hand and instruments until the particles were smaller than 5 mm. It was then stored on a sterile dish with wet gauze for later use.
For preparation of the platelet gel we used a standard allogeneic random single donor platelet concentrate that was ABO and RhD matched, serologically HIV, HBV, HCV and lues-negative, leukocyte depleted, and irradiated. A standard single donor platelet concentrate was prepared from 450 mL of whole blood, containing 70 x 109 platelets in 50 mL of citrated plasma, and stored in a plastic bag designed for platelet storage at 20-24ºC on an automatic agitator for up to five days.
We performed leukocyte depletion by using a commercial filter (BioP05 Plus, Fresenius HemoCare, Bad Homburg, Germany) with 10–15% platelet loss post-filtration. We irradiated the platelet concentrate with a cobalt irradiator with 25 Gray. All platelet related procedures, including the bacteriological controls, were performed according to the recommendations for blood banking procedures.
Finally, we prepared a mixture of lightly compressed autologous cancellous bone and an equal volume of allogeneic platelet concentrate with approximately 1.4 x 109 platelets per 1 mL (which is around five times higher than the physiological level of platelets in the blood).
We mixed the ingredients and added the fibrin glue components (human thrombin (100 IU/mL) in 40mM CaCl2 (Beriplast P, ZLB Behring, Marburg, Germany)) for the activation of platelets and polymerization of fibrinogen. The implant is presented in the Figure 3. The mixture achieved the appropriate plasticity in 20 to 30 seconds. The resulting gelatinous graft was shaped according to the defect and implanted.
\n\t\t\t\tCancellous bone and platelet rich plasma implant
In all our operations, we approached the bone defects through previous surgical incisions after administering a single dose of prophylactic antibiotic. After debridement of the non-union which is presented in Figure 4, we filled the resulting bone defect with a semi-solid, moldable gelatinous graft, presented in the Figure 5.
\n\t\t\t\tBone defect at the operation
Bone defect filled with implant
We revised the method of fracture fixation and repositioned bone fragments were and fixed them in good alignment. We applied a different fixation method where it was necessary or inadequate and we present the fixation methods in Table 2.
\n\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
1 | \n\t\t\t\t\t\t\tFemur | \n\t\t\t\t\t\t\tInternal plate | \n\t\t\t\t\t\t
2 | \n\t\t\t\t\t\t\tDistal tibia | \n\t\t\t\t\t\t\tExternal fixator | \n\t\t\t\t\t\t
3 | \n\t\t\t\t\t\t\tDistal tibia | \n\t\t\t\t\t\t\tInternal plate | \n\t\t\t\t\t\t
4 | \n\t\t\t\t\t\t\tFemur | \n\t\t\t\t\t\t\tTutor brace | \n\t\t\t\t\t\t
5 | \n\t\t\t\t\t\t\tDistal tibia | \n\t\t\t\t\t\t\tInternal plate | \n\t\t\t\t\t\t
6 | \n\t\t\t\t\t\t\tProximal femur | \n\t\t\t\t\t\t\tDynamic hip screw with long plate | \n\t\t\t\t\t\t
7 | \n\t\t\t\t\t\t\tHumerus | \n\t\t\t\t\t\t\tInternal plate | \n\t\t\t\t\t\t
8 | \n\t\t\t\t\t\t\tUlna | \n\t\t\t\t\t\t\tExternal fixator | \n\t\t\t\t\t\t
9 | \n\t\t\t\t\t\t\tDistal tibia | \n\t\t\t\t\t\t\tInternal plate | \n\t\t\t\t\t\t
Fixation methods used and graft volume per patient
We placed negative pressure suction subcutaneously, away from the graft in order to minimize the removal of GFs. All procedures were carried out within a sterile operation field - aseptic conditions.
In the follow-up protocol, we assessed the general status after the operation, and the bone configuration with X-ray at 2, 4, 6, and 12 months. We assessed bone remodeling at 6 and 12 months by CT scan. We drew blood samples from each patient at week 14 for the identification of anti-HLA/Class I antibodies and anti-HPA antibodies in order to assess potential immune reactions related to the use of allogeneic platelets. We used the standard in-house platelet immuno-fluorescence test (PIFT) and antigen capture ELISA test (PAK-12, GTI, Brookfield, USA) to screen for antibodies.
\n\t\t\tWe removed the drains on the second or third day after the operation, draining different volumes, on average 250 mL (200 to 450 mL). Immediate post-operative care was uneventful in all cases. We discharged the patients 6-8 days after the operation and they were regularly examined in the outpatients’ clinic.
Out of 9 patients, 7 successfully healed their defect with the implant (78%). Figure 6 shows healed bone defect in distal tibia.
\n\t\t\t\tHealed bone defect after grafting and platelet additive
Different healing times are presented in Table 3.
\n\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
Time to appearance of hazy callus | \n\t\t\t\t\t\t\t6 | \n\t\t\t\t\t\t\t24 | \n\t\t\t\t\t\t\t10 | \n\t\t\t\t\t\t\t8 | \n\t\t\t\t\t\t
Time of partial weight bearing | \n\t\t\t\t\t\t\t12 | \n\t\t\t\t\t\t\t40 | \n\t\t\t\t\t\t\t22.5 | \n\t\t\t\t\t\t\t18 | \n\t\t\t\t\t\t
Time of free mobility and full weight bearing | \n\t\t\t\t\t\t\t16 | \n\t\t\t\t\t\t\t48 | \n\t\t\t\t\t\t\t31 | \n\t\t\t\t\t\t\t31 | \n\t\t\t\t\t\t
Time of overall bone healing | \n\t\t\t\t\t\t\t16 | \n\t\t\t\t\t\t\t36 | \n\t\t\t\t\t\t\t23 | \n\t\t\t\t\t\t\t24 | \n\t\t\t\t\t\t
Healing times after the operation for successful cases (time in weeks)
We noted major complications during the treatment in 3 patients (33%): poor incorporation of implant, mental deterioration leading to non-compliance, and radial nerve palsy, which receded (1 patient respectively). Two of these patients had to undergo further surgery. More detailed data of bone healing are displayed in Table 4.
\n\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
1/F/63 | \n\t\t\t\t\t\t\t8 | \n\t\t\t\t\t\t\t12 | \n\t\t\t\t\t\t\t40 | \n\t\t\t\t\t\t\tcomplete | \n\t\t\t\t\t\t\t16 | \n\t\t\t\t\t\t\tnone | \n\t\t\t\t\t\t\tno | \n\t\t\t\t\t\t\thealed | \n\t\t\t\t\t\t
2/M/50 | \n\t\t\t\t\t\t\t8 | \n\t\t\t\t\t\t\t18 | \n\t\t\t\t\t\t\t32 | \n\t\t\t\t\t\t\tproximally 1/4, distally complete | \n\t\t\t\t\t\t\t24 | \n\t\t\t\t\t\t\tleft hip fracture | \n\t\t\t\t\t\t\tno | \n\t\t\t\t\t\t\thealed | \n\t\t\t\t\t\t
3/F/49 | \n\t\t\t\t\t\t\t10 | \n\t\t\t\t\t\t\t16 | \n\t\t\t\t\t\t\t- | \n\t\t\t\t\t\t\tcomplete proximally, distally not at all | \n\t\t\t\t\t\t\t24 | \n\t\t\t\t\t\t\tpseudarthrosis, re-operated | \n\t\t\t\t\t\t\tyes | \n\t\t\t\t\t\t\tfailed | \n\t\t\t\t\t\t
4/M/45 | \n\t\t\t\t\t\t\t24 | \n\t\t\t\t\t\t\t32 | \n\t\t\t\t\t\t\t44 | \n\t\t\t\t\t\t\tboth ends 1/2 | \n\t\t\t\t\t\t\t28 | \n\t\t\t\t\t\t\tnone | \n\t\t\t\t\t\t\tno | \n\t\t\t\t\t\t\thealed | \n\t\t\t\t\t\t
5/F/45 | \n\t\t\t\t\t\t\t8 | \n\t\t\t\t\t\t\t40 | \n\t\t\t\t\t\t\t48 | \n\t\t\t\t\t\t\tproximally ½, distally not at all | \n\t\t\t\t\t\t\t36 | \n\t\t\t\t\t\t\tpoor compliance, mental disorder, pseudarthrosis, re-operated | \n\t\t\t\t\t\t\tyes | \n\t\t\t\t\t\t\tfailed | \n\t\t\t\t\t\t
6/M/73 | \n\t\t\t\t\t\t\t6 | \n\t\t\t\t\t\t\t16 | \n\t\t\t\t\t\t\t24 | \n\t\t\t\t\t\t\tcomplete | \n\t\t\t\t\t\t\t24 | \n\t\t\t\t\t\t\textremity shortening | \n\t\t\t\t\t\t\tno | \n\t\t\t\t\t\t\thealed | \n\t\t\t\t\t\t
7/M/33 | \n\t\t\t\t\t\t\t8 | \n\t\t\t\t\t\t\t- | \n\t\t\t\t\t\t\t16 | \n\t\t\t\t\t\t\tcomplete | \n\t\t\t\t\t\t\t16 | \n\t\t\t\t\t\t\tn. radialis paresis | \n\t\t\t\t\t\t\tyes | \n\t\t\t\t\t\t\thealed | \n\t\t\t\t\t\t
8/M/21 | \n\t\t\t\t\t\t\t12 | \n\t\t\t\t\t\t\t- | \n\t\t\t\t\t\t\t16 | \n\t\t\t\t\t\t\tcomplete | \n\t\t\t\t\t\t\t16 | \n\t\t\t\t\t\t\tnone | \n\t\t\t\t\t\t\tno | \n\t\t\t\t\t\t\thealed | \n\t\t\t\t\t\t
9/M/34 | \n\t\t\t\t\t\t\t8 | \n\t\t\t\t\t\t\t18 | \n\t\t\t\t\t\t\t30 | \n\t\t\t\t\t\t\tcomplete | \n\t\t\t\t\t\t\t24 | \n\t\t\t\t\t\t\tnone | \n\t\t\t\t\t\t\tno | \n\t\t\t\t\t\t\thealed | \n\t\t\t\t\t\t
Detailed bone healing data
No side effects caused by the implant were observed; no platelet or HLA-class I antibodies were detected in any patient on follow-up.
We observed the survival of the implant to be excellent; most of the volume of the implant was preserved. Of clinical importance are ingrowths of the implant into adjacent bone. This was critical in the case of distal tibia (patient 2, 3, 5, and 9), where we observed diminished incorporation in the distal part, where the metaphysis of the tibia is less vascularized. In the case of femur pseudarthrosis (patient 6), bone quality was insufficient for the implant to regenerate the whole bone circumference, so healing was prolonged.
In theory, allogeneic platelets could have several certain side effects. In order to minimize these, all platelet units in our study were leuko-depleted and irradiated in order to prevent immune and bacteriological side effects, especially alloimmunisation to HLA-Class I and HPA antigens [50]. In fact, there was no evidence of immune reactions or transfusion-transmitted infections following the procedures. There have been no signs of bacterial contamination, which is not strange, based on the recent observation that the platelet gel exhibits significant antimicrobial activity in vitro [28].
The combined autologous/allogeneic graft showed successful incorporation into the defective pseudarthrosis in 7 out of 9 patients, which was confirmed with the CT scans and plain X-ray film. The problem with the two patients in whom the therapy failed was the poor incorporation of the graft in the distal tibia, where bone healing is compromised through many factors [51].
One of the patients had a deteriorating psychiatric disorder and could not follow instructions later in the study, and one had a poor bone situation arising from previous treatments. The other seven patients with successful outcomes achieved a satisfactory clinical improvement with no side effects related to the procedure.
A bacterial infection did not reoccur in cases where an infection was previously treated. Our treatment has concluded prolonged ongoing hospitalizations and immobilizations for some patients who previously underwent numerous operations and rehabilitations. Only one patient had to be reoperated only once again, because of poor implant ingrowth.
\n\t\t\tAs bioengineering techniques improve and become more clinically applicable, so does the field of application expand. In our work we have shown one of the methods to be useful in treating mid-size bone defects.
Further application of platelet rich plasma as a source of growth factors can be used in other settings where tissue defects exist. It is a natural derivative like blood transfusion and can be applied on the part of the body, where natural mechanisms would need some bioengineering support.
Further investigation should be directed into measuring the comparative efficiency of this treatment. It should be compared to golden standard treatment and determine also novel applications in bigger and smaller defects.
\n\t\t\tWe showed that adding a platelet gel to a cancellous bone graft can help in retaining grafted bone from resorption and enhances its incorporation into adjacent bone. The standard platelet concentrates from the blood bank did not pose a significant risk for the affected patient. The results indicate good reasons for the application of this method in the treatment of bone defects in long bones.
This is the first report of a prospective clinical study monitoring the use of allogeneic platelets mixed with autologous cancellous bone for the treatment of the non-union of long bones after fractures. Our new method of tissue engineering seems to have the potential to become a widely approved and accepted method of bone tissue replacement in the treatment of the non-union of long bones.
Last, but not least, it is worth noticing that the outdate rate of the platelet units is currently in the range of 8-27% of all prepared platelet units [52] This leads to the conclusion that the successful use of allogeneic platelets would significantly decrease the amount of wasted platelets, which could consequently favorably change the results of blood banking policies.
\n\t\tThe ever-growing need for energy because of continuous depletion of fossil fuels and associated increasing air pollution, has caused the urge of developing sustainable and clean energy sources. Renewable energy sources like solar and wind energy systems are intermittent in nature and do not show potential impact unless the effective energy storage system is connected. Though, traditional batteries are used to store the electricity produced by renewable sources, their toxic components and high cost have precluded them from wide adoption in modern technologies. The traditional capacitors which are made of two metal plates separated by dielectric materials show very little tendency to store energy as the batteries store. One of the latest energy storage systems is supercapacitor. It is an emerging technology that promises to play pivotal role in laying out the roadmap of energy storage system for future. Supercapacitor technology provides a bridge between traditional capacitors and batteries, where supercapacitors could store greater amount of energy than the conventional capacitor and are able to deliver more power than existing batteries. Energy in supercapacitors is directly related to the capacitance of the electrode, which can be boosted by developing highly porous carbon or by introducing pseudocapacitive materials into the carbon network. By this way, the energy storage capability of the supercapacitor electrodes can be increased at much high level than traditional capacitors. Besides having high power capability than batteries, their charge storing and charge releasing mechanism is efficiently reversible, so they are extremely promising candidates with long charge/discharge life. However, their energy storing capacity is still far behind than the traditional batteries [1, 2, 3, 4, 5]. Therefore, there is a huge interest in increasing the energy density of supercapacitors. Almost all worldwide supercapacitor companies such as NESSCAP, Panasonic, AVX Maxwell and NEC use activated carbon as active material for the construction of commercial supercapacitors. However, progress in the development of other allotropes of carbon like graphene, carbon nanotube and other materials such as metal oxides and conducting polymers are continuing at a steady rate in supercapacitor applications. In order to boost the performance of supercapacitor, introduction of the pseudocapacitance in double-layer capacitive electrode seems to be a prevalent target amongst the current research and offers a good chance of developing the next generation high performance supercapacitor. The construction of a supercapacitor is slightly different from that of traditional capacitor, where electrolyte is the conductive connection between two electrodes unlike conventional capacitors [6]. These electrodes are polarized by applying suitable potential in the same way that batteries are polarized. The polarity of the supercapacitor electrodes is controlled by designing the supercapacitor assembly in the form of asymmetrical or symmetrical systems. Asymmetric supercapacitors, where positive and negative electrodes are different from each other, while, in case of symmetric supercapacitor both electrodes are consisted with the same materials in identical shape and size of the electrodes. The voltage of the supercapacitor devices in asymmetrical manner enhances by taking the advantage of the potential ends of two different electrodes. If the both electrode are same as in case of symmetrical supercapacitor design, the total value of capacitance is roughly half that of one electrode. On the basis of charge storage mechanism of the electrodes, supercapacitor can be divided into three types (Figure 1): (1) electrical double layer capacitors (EDLCs)—generally high surface area carbon materials and its derivatives are used for making electrodes, where ions are adsorbed on the surface of electrodes in the form of electric double layers (Helmholtz layer), one electrode collects positive ions and other is mirrored with opposite negative ions, therefore the total capacitance value of a double layer capacitor is the result of two capacitors connected in series, (2) pseudocapacitors—metal oxides and conducting polymers are used for fabrication of the electrodes, where redox (Faradaic) reactions occurs at the interface of electrode surface and electrolyte, It should also be noted that the suitable potential should be selected for the pseudocapacitive electrode materials, beyond the suitable potential window electrode will be degraded, and (3) hybrid supercapacitor—where electrodes are constructed using the significant features of both EDLC and pseudocapacitors, the most promising outputs seem to lie in the use of hybrid supercapacitors, which consists of carbon material and metal oxides/conducting polymer [8]. Figure 1 demonstrates the schematic illustration of traditional capacitor, EDLC, pseudocapacitor and hybrid supercapacitor.
\nSchematic representation of (A) traditional capacitor, (B) electrical double layer capacitor, (C) pseudocapacitor and (D) hybrid supercapacitor [
The fundamental equation (Eq. (1)) governing the capacitance of a traditional capacitor also stands for supercapacitors.
\nWhere ℇ0 is the permittivity of free space, ℇr is the relative permittivity, Ae is the surface area of the electrodes and d is the distance between them [9]. Hence, if we could increase the area of electrodes and decrease the distance between them then the capacitance will be improved.
\nTherefore, in order to choose an electrode material for a supercapacitor [10, 11] the following factors should be taken into account, i.e.,
The specific surface area of the electrodes.
Pore size distribution.
The conductivity of the electrodes.
The resistance to any oxidation/reduction on the surface of the electrode.
Electrochemical stability of the electrolyte in the operating voltage.
Resistance of the electrolyte towards electrode.
Wettability of the electrolyte on the electrode.
In this chapter, we will focus on the advancement in research concerning use of carbon nanomaterials in developing supercapacitors.
\nCarbon is one of the most abundant materials in nature. Thus, it is thought to be an economical choice for employing in energy conversion and storage technologies. Owing to the excellent mechanical strength, good electrical conductivity, high electron mobility, high chemical stability, large surface area and high tunable properties make carbon materials an ideal candidate for energy storage systems. Some of the common carbon materials which fulfill majority of the desired properties to act as an effective and efficient electrode for supercapacitors are—activated carbon, graphene and carbon nanotubes (CNTs).
\nThe basic properties of activated carbon (AC), i.e., low cost, high electrical stability and large surface area makes them most common materials used in commercial supercapacitors. ACs are generally produced by physical (thermal) and/or chemical activation of raw materials with high carbon content like coal, wood, etc. The physical activation is carried out by heating the raw material in absence of atmospheric air at very high temperatures, usually in the range 700–1200°C. The chemical activation process requires heating of carbon resource at a lower temperature of 400–700°C in presence of an activating agent such as zinc chloride, phosphoric acid, sodium hydroxide and others [12]. These two processes results in activated carbon with a high surface area (3000 m2/g) but with a pore size distribution in a wide range of macro-pores, mesopores and micropores (>50–2 nm) [13, 14]. The micropores are in general considered to be inaccessible for electrolyte ions thus not capable of supporting an electrical double layer. The mesopores have maximum contribution towards capacitance in an electrical double layer capacitor followed by micropores [15, 16, 17]. As discussed above, EDLC and pseudocapacitance both are surface phenomena, thereby, activated carbon with high surface area are perfect candidates for application as electrode material [12]. However, the experimental value of capacitance for activated carbon-based supercapacitor were found to be in the range 1–10 μF/cm2 which is lower than the theoretical calculations [18]. This has been explained in detail by Kierzek et al. [19] and found that the surface area of the electrode material is not the only factor that determines performance of the electrode. There are other parameters which need to be considered for calculating capacitance for instance; shape, structure and size distribution of the pores along with the electrical conductivity and wettability of electrode in the particular electrolyte [12]. This gave birth to a new concept, i.e., use of mesoporous carbon (pore size 2–50 nm) for supercapacitor applications, which contributes in easy ion-transport over the conventional activated carbon and hence, demonstrates high power capability [20]. Fernández et al. [21] synthesized mesoporous carbon by carbonizing a mixture of poly(vinyl alcohol) and inorganic salt and showed a specific capacitance of about 180 F/g in aqueous H2SO4 electrolyte. The performance of mesoporous carbons can be further enhanced by controlled introduction of micropores. Xia et al. [22] showed that a specific balance between mesopores to micropores ratio can tune the specific capacitance to 223 F/g in 6 M KOH electrolyte at 2 mV/s scan rate with 73% retention cyclability. This improved capacitance has been attributed to the presence of hierarchical porous structure of the electrode material that consists interconnected micropores and mesopores, having the high surface area of 2749 m2/g, and large pore volume of 2.09 cm3/g. The interconnected porous structure facilitates the easy movement if ions. The performance of mesoporous carbon can also be improved by its functionalization. The functionalized mesoporous carbon can then act as an efficient pseudocapacitor electrode in addition to EDLC. Different functional groups like ─OH, ─COOH or ─C═O can be easily introduced by activating the mesoporous carbon using strong acids like nitric acid, sulfuric acid or ammonium persulfate. For example, Jia et al. [23] pyrolyzed the mixture of milk powder and sodium hydroxide without any substrate resulting in the formation of N-doped mesoporous carbon which showed a high capacitance of 396.5 F/g at 0.2 A/g in the electrolyte solution of H2SO4 along with high stability in their capacitance value (95.9% capacitance retention after 2000 cycles at 50 mV/s). Ren et al. [24] have also observed that the capacitance of mesoporous carbon increased from 117 to 295 F/g (10 mV/s scan rate) after its treatment with nitric acid. Table 1 summarize some carbon-based electrical double layer supercapacitors.
\nElectrode | \nElectrolyte (M) | \nSpecific capacitance (F/g) | \nCurrent density | \nRetention capacity | \nRefs. | \n
---|---|---|---|---|---|
Layered *NOMC | \nH2SO4 (0.5) Li2SO4 (2.0) | \n810 710 | \n1.0 A/g 1.0 A/g | \n50,000 cycles between 0 and 1.2 V | \n[25] | \n
Ordered NOMC | \nH2SO4 KOH | \n262 227 | \n0.5A/g | \n\n | [26] | \n
hierarchically porous NOMC | \nH2SO4 (0.5) | \n537 | \n0.5A/g | \n10,000 | \n[27] | \n
NOMC from phenol-urea-formaldehyde | \nIonic Liquid | \n225 | \n0.5 A/g | \n1000 | \n[28] | \n
NOMC from aqueous assembly | \nIonic liquid | \n186 | \n0.25 A/g | \n— | \n[29] | \n
N-doped micro-mesoporous carbon | \nKOH (6.0) | \n226 | \n1.0 A/g | \n2000 | \n[30] | \n
NOMC | \n\n | 288 | \n0.1 A/g | \n25,000 | \n[31] | \n
Summarizes some of the studies carried out by different research groups on capacitance values of N-doped mesoporous carbon materials.
NOMC, nitrogen-doped mesoporous carbon.
Incorporation of heteroatoms such as nitrogen, boron, phosphorous, and sulfur (N, B, P, and S) into the carbon network by replacing some carbon atoms offers a significant change in the electronic, electrical, and surface charges properties of the carbon materials. Doping of heteroatom in carbon materials can be done either by in situ preparation of carbon or through post-treatment by heteroatom containing precursor. In particular, nitrogen doping has gained more attention in supercapacitor, because nitrogen doping not only improves the electrical conductivity and wettability but also contribute additional pseudocapacitance by enhancing the surface polarity and electron donor affinity of carbon. According to the studies made by Wang et al. [31], nitrogen doping facilitates the formation of well-defined mesopores and resulted improved electrochemical performance. Lin et al. [25] developed N-doped mesoporous few-layer carbon with a large surface area of 1900 m2/g for supercapacitor. It was reported that the as-developed few layer carbon showed highest ever specific capacitance of 810 F/g in three-electrode cell and 710 F/g in full cell at 1 A/g in 0.5 M H2SO4 and 2 M Li2SO4 electrolytes. The full cell device showed high stability with 50,000 repeating cycles between 0 to 1.2 V, and demonstrated highest specific energy of 23.0 W h/kg while maintaining the specific power density of 18.5 kW/kg in 2 M Li2SO4 electrolyte. However, the exact mechanism has not yet been confirmed but it is evident that the pyrrolic N, pyridinic N or quaternary N plays a crucial role in determining the ion flow towards the electrode, hence, influencing the capacitance of the electrode [32]. Nitrogen and phosphorus dual doped mesoporous carbon was also prepared, which reveals a high specific capacitance of 220 F/g at a current density of 1 A/g with excellent rate capability of 91% in a 6 M KOH aqueous electrolyte [33]. This value of capacitance was found lower than nitrogen and sulfur or nitrogen and oxygen dual doped mesoporous carbon synthesized using polyhedral oligosilsesquioxanes, which showed almost rectangular cyclic voltammogram curve in wide potential window from −2 to +2 V in ionic liquid electrolyte. These electrode materials showed a gravimetric and volumetric specific capacitance of 163 F/g and 106 F cm−3 at a current density of 0.25 A/g [34]. Another form of activated mesoporous carbon is the carbon nanofibers. The ease of preparation and highly mesoporous structure of these fibers exhibited excellent electrode material for electrochemical double layer capacitors [35]. Xu et al. [36] prepared polyacrylonitrile fibers followed by NaOH activation, and observed high specific capacitance of 371 F/g in the aqueous KOH (6 M), 213 F/g in non-aqueous LiClO4 (1 M) and 188 F/g in ionic liquid electrolyte solutions. Mesoporous carbons have also been extensively studied in the form of composites with other active materials, including conductive polymers (polyaniline [37], poly3-hexylthiophene) and metal oxides (Manganese oxide MnO2 [38, 39], Ruthenium oxide RuO2 [11]). In particular, pristine conducting polymers with their excellent electrochemical properties have displayed capacitance 10–100 times higher than EDLCs but they suffer from some limitations like poor stability and short lifetime. Thus, combining the properties of conducting polymers with mesoporous carbon can result in an electrode material with optimum properties. For instance, chemical polymerization of polyaniline onto an ordered bi-modal-mesoporous carbon resulted in the formation of PANI nanowires growing out of mesoporous carbon substrate has been reported by Yan et al. [40]. The subsequent composite exhibited a specific capacitance of 517 F/g in 1 M H2SO4 electrolyte with 91.5% retention rate after 1000 cycles. Chen et al. have presented a facile synthesis of highly porous N-doped carbon nanofibers coated with polypyrrole by carbonization which showed a specific capacitance of 202 F/g in aqueous KOH (6 M) electrolyte at a current density of 1 A/g. It exhibited maximum power density of 90 kW/kg while maintaining high capacitance retention and cyclability. This kind of N-doped carbon nanofiber-based composites exemplifies unconventional and practically potential candidates for a competent electrode material for supercapacitors [41].
\nSince the discovery of graphene by Novoselov and Geim in 2004, the research on this flattish material has received enormous attention. This flat sheet is a one-tom-thick layer of sp2-bonded, 2D honeycomb lattice of carbon with a fully conjugated structure of alternating C─C and C═C bonds. Its unique physico-chemical properties make this material a promising candidate for a large variety of applications. However, the use of graphene for most of the electronic applications often requires precise functionalization of individual graphene sheets into various device elements at molecular level. Therefore, surface functionalization of graphene sheets is essential, and researchers have devised various covalent and noncovalent chemistries for making graphene materials with the bulk and surface properties needed for many potential applications including energy conversion and storage. Its high mechanical strength, excellent electrical and thermal conductivity and large theoretical surface area (2600 m2/g) make this material particularly interesting for energy-storing devices. The other forms of carbon allotropes like Fullerene (0-D), carbon nanotubes (1-D) and graphite (3-D), all resemble the graphene hexagonal ring structure of graphene with different orientations in space, and each of these structures represent a unique property of its own [42]. Graphene, despite having exclusive physical and chemical properties and high theoretical surface area, it is not free from some drawbacks. The major drawback is of its sheet to sheet restacking (due to strong π-π interactions between its layers), which reduces the effective surface area rendering it nonfunctional for its application as multidimensional flexible electrode material. In order to overcome these shortcomings, constructive experiments have been made to fabricate nanoporous graphene by intercalation of other nanoparticles in graphene layers. Efforts are also being made to utilize the surface defects of crystal lattice structure of host material originated during chemical synthesis for immobilization of electrolyte ions. In general, graphene activation can be achieved by methods like; introducing spacers between its layers, exfoliation method, templating technique or forming hydrogel by reducing graphene oxide. Thus, for application purposes graphene is not used as pristine but it has to be employed as reduced graphene oxide or activated graphene or doped graphene or graphene/metal oxide composites or graphene/polymer composites [43]. For instance, Zhang et al. [44] pioneered a new carbon material by chemical modification of one-atom thick layer of graphene (specific surface area 705 m2/g), which demonstrated high specific capacitance values of 135 F/g in aqueous electrolyte and 99 F/g in organic electrolyte. In addition, it showed good retention ability over a wide range of voltage scan rates. Another group led by Vivekchand et al. [45] have reported the synthesis of graphene using thermal exfoliation of graphitic oxide at very high temperature of 1050°C. The product obtained had a high surface area of 925 m2/g and specific capacitance is 117 F/g in aqueous H2SO4 electrolyte. On the other hand, functionalization of graphene can also be achieved by controlled thermal exfoliation at low temperatures [46] without compromising its capacitance performance. Chemical functionalization of graphene oxide platelets grown on an intrinsically flexible, highly porous and ordered carbon films by nitrogen doping [47] has shown to enhance its electrical as well as supercapacitive properties. All the above-mentioned activation methods have led to the production of materials with high capacitance but for real-life practical application of these materials, another important factor to be considered is energy density. The commercially available batteries have higher energy density than supercapacitors. This means that supercapacitors can provide a very high energy pulse when required but can store less energy per unit weight, as compared to batteries. Liu et al. [48] have demonstrated the synthesis of 1-layer graphene in a curved form which restricted the face to face restacking of its sheets, hence, utilizing maximum possible electrode surface. This resulted in supercapacitor electrode material with very high specific energy density of 86 and 136 Wh/kg at room temperature and 80°C respectively at 1 A/g current density. Xu et al. [49] have also described the development of sponge-like graphene nanostructures that showed high energy density of 48 kW/kg. A new approach to efficiently exploit the surface of each layer of graphene structure is by employing the “in-plane” strategy in place of stacking [50]. In case of conventional (stacked) assembly, the entire electrochemical (specific) surface area cannot be used as some of the regions are unapproachable to the electrolyte ions (Figure 2a). Whereas the new structural design assists the percolation of electrolyte ions between graphene layers to reach the current collector. Consequently, facilitating the maximum usage of available specific surface area [50]. This type of in-plane 2D graphene supercapacitor has shown a maximum specific capacitance value of 250 F/g at current density 176 mA/g with good retention rate for 1500 cycles.
\nSchematic depiction of the (a) stacked geometry where all graphene layers are parallel to the current collectors, (b) operating principle in case of the in-plane supercapacitor device utilized for the performance evaluation of graphene as electrodes. Reproduced with permission from Ref. [
Variety of metal-oxides such as RuO2, MnO2, NiO, Fe3O4, ZnO, TiO2, etc. have been explored for possible electrode material in supercapacitors. These so called active material, when added in an appropriate quantity to the graphene structure can result in excellent electrode material. The addition of metal oxide nanoparticle acts as nanospacers between the graphene layers to prevent its restacking. On the other hand, the flexible space between the 2-D graphene sheets provides a smooth horizontal way for the mobility of electrolyte ions improving its energy storing capacity. Lu et al. [51] have described the supercapacitor behavior of graphene-ZnO and graphene-SnO2 composite materials. They found that electrochemical performance of graphene-ZnO composite was improved to a great extent in terms of capacitance value and reversibility when compared to pristine ZnO or SnO2 or graphene. Its specific capacitance was 61 F/g and energy density of 4.8 Wh/kg, which was also greater than that of graphene-SnO2 samples. Graphene-MnO2 composite with high MnO2 content (78 wt.%) demonstrates a specific capacitance of 310 F/g at a scan rate of 2 mV/s. The authors claim that hybridization of graphene and MnO2 caused increase in specific surface area resulting in higher conductivity and eventually high-performance rate [52]. Apart from conventional symmetric supercapacitors (using same material for both electrodes), a number of studies have been carried out to exploit the potential of asymmetric supercapacitors (using different material for each electrode) based on metal oxide/graphene composites [53]. The objective for fabrication of asymmetric supercapacitors is to obtain a higher energy density. The most vital step in its assembly is the choice of two such electrodes, which have same working potential range and sufficient wettability in the same electrolyte. The use of asymmetric model for supercapacitor allows the extension of operating potential window along with the improved capacitance performance rate. For example, Cao et al. [54] have established that an asymmetric supercapacitor developed using MnO2 nanoparticles as anode and graphene as cathode exhibits a specific capacitance of 37 F/g and could operate up to voltage range of 2.0 V with 96% capacitance retention for 500 cycles. It displayed much higher energy density of 25.2 Wh/kg and power density of 100 W/kg when compared to 4.9 Wh/kg (MnO2/MnO2) and 3.6 Wh/kg (graphene/ graphene) based symmetric supercapacitors.
\nThe composites made from graphene and electrically conductive polymers [polyaniline, polythiophene, polypyrrole, poly(3,4-ethylenedioxythiophene)] have attracted great deal of attention. The flexible and conductive nature of conductive polymers when combined with the intrinsic layered structure of graphene results in a material with potential for electrode application in supercapacitors. The increasing need for lightweight, flexible and smaller size supercapacitors in future electronics world has stimulated the interest in such graphene/polymer composite electrodes. These composites have improved mechanical strength and conductivity as compared to each material individually. They have been successfully implied in other applications like solar cells, fuel cells, transparent electrodes, etc.
\nThe synthesis of graphene/polymer composite is facile and cost effective. Anodic in-situ polymerization of aniline on the graphene layered structure has been reported by Wang et al. [55]. The product formed was flexible, self-standing, strong and electrochemically stable. It showed a high electrochemical capacitance of 233 F/g at 2 mV/s scan rate with good stability for 2000 reversible cycles. The 2D structure of graphene can also be used to grow 1D nanorods of conductive polymer [56]. This represents an opportunity to utilize the maximum available surface area, hence, enhancing the energy storing capacity of the electrode. For example, graphene/polyaniline nanorod composite showed very high specific capacitance of 555 F/g in 1 M H2SO4 electrolyte with cyclic stability of 2000 cycles [57]. Some graphene and conducting polymer based composites have been listed in the Table 2. It is evident from the capacitance values in the table: that compositing conducting polymer with graphene convalesces its capacitance performance rate. However, this process may also lead to increase in the π-π stacking of graphene layer which in turn lowers the specific surface area of electrode. Therefore, there is a need to develop techniques for constructing 3-D structures of polymer matrix and introducing 1-D layer of graphene into it to avoid layer restacking.
\nElectrode material | \nElectrolyte (M) | \nCapacitance (F/g) | \nCurrent density | \nRetention cycle | \nRefs. | \n
---|---|---|---|---|---|
Graphene/Ppy | \nLiClO4 (0.1) | \n1510 | \n— | \n— | \n[58] | \n
GNS/PANI | \nH2SO4 (1) | \n1130 | \n— | \n1000 | \n[59] | \n
Graphene/PANI | \nH2SO4 (1) | \n1126 | \n— | \n1000 | \n[60] | \n
rGO/PANI | \nH2SO4 (0.5) | \n970 | \n2.5 A/g | \n1700 | \n[61] | \n
PANI/Graphene | \nHClO4 (1) | \n878 | \n1.0 A/g | \n1000 | \n[62] | \n
GO/PANI | \nH2SO4 (1) | \n746 | \n0.2 A/g | \n500 | \n[63] | \n
Graphene/PANI | \nH2SO4 (1) | \n640 | \n0.1 A/g | \n1000 | \n[64] | \n
Graphene/PANI | \nH2SO4 (2) | \n526 | \n0.2 A/g | \n— | \n[65] | \n
G-doped PANI | \nH2SO4 (1) | \n531 | \n0.2 A/g | \n— | \n[66] | \n
GO-Ppy | \nH2SO4 (1) | \n510 | \n0.3 A/g | \n— | \n[67] | \n
Graphene/PANI | \nH2SO4 (2) | \n480 | \n0.1 A/g | \n1000 | \n[68] | \n
Graphene/ Ppy | \nH2SO4 (1) | \n420 | \n0.5 A/g | \n200 | \n[69] | \n
Graphene/PEDOT | \nH2SO4 (2) | \n342 | \n0.02 A/g | \n— | \n[70] | \n
Some graphene and conducting polymer based composites and their capacitances.
Carbon nanotubes (CNTs) are quasi 1D nanomaterial formed by rolling one or more sheets of graphene concentrically. They have a unique cylindrical structure with few micrometer length and diameter in the range of nanometers. CNTs are typically classified as single-walled (SW), double-walled (DW), or multi-wall (MW), corresponding to the number of graphene layers forming CNTs. The very first CNT was formally reported in 1991 by Iijima, when he closely observed the structure of carbon-soot obtained by an arc-discharge method using TEM technology [71, 72]. Since then, both SWCNTs and MWCNTs have been extensively studied for their numerous possible applications. The presence of hexagonal lattice structure of graphene with sp2 bonded carbon atoms in CNTs contributes to its excellent properties like electrical and thermal conductivity, high mechanical strength, optimum chemical stability and low mass per unit volume [73]. In terms of tensile strength, CNTs are hundred times tougher than steel. They have Young’s modulus of about 1.2 TPa (1 TPa for SWCNTs and 1.28 TPa for MWCNTs) and can withstand large strains before mechanical failure. The electrical conductivity of CNTs depends on their structure, i.e., MWCNTs with concentric tubular structure having inter-layer distance of about 0.34 nm shows metallic conductivity. Whereas, the SWCNTs have shown both metallic or semiconducting behavior depending on their chirality and diameter size. CNTs have been successfully synthesized and employed in various application namely chemical sensors, field emission sources, nanotweezer, scanning microscope probe tip, electro-mechanical actuators, etc. CNTs have a large crosswise dimension (<1, 1–2, 2–5, 5–10, and >10 μm), high specific surface area (SWCNT > 1600 m2/g, MWCNT > 430 m2/g), and excellent carrier mobility for both ions and holes (15,000 cm2/Vs) and are being widely used as the active electrode in supercapacitors [74]. This can be attributed to the fact that CNTs have high aspect ratio so they tend to get entangled and form a porous structure with nanotube network skeleton. It also creates a mesoporous open central canal in case of MWCNTs. This provides an easy pathway for the electrolyte ions to move freely between electrode/electrolyte during charge and discharge cycles. In order to minimize the size of supercapacitor-based power cell for its real-world application, it is important to work towards high power density electrodes. Niu et al. [75] have fabricated a supercapacitor based on MWCNTs, which showed a capacitance value of 102 F/g, high power density >8 kW/kg and an energy density of ~1 Wh/kg in H2SO4 electrolyte. They also showed that such electrode material did not require any binder and was self-sufficient. A supercapacitor based on SWCNT electrode as reported by An et al. [76] showed comparatively higher specific capacitance value of 180 F/g in KOH (7.5 M) electrolyte solution with power density of 20 kW/kg and energy density in the range 7–6.5 Wh/kg. Similar to other carbon materials, CNTs are also being more commonly used as its composite. CNT/conductive polymer composite have attained a lot of attention in terms of its capacitive applications as it combines high pseudocapacitance of conductive polymers with excellent mechanical properties of CNTs. They can be synthesized chemically or electrochemically. The electrochemical method involves either deposition of polymer on a CNT electrode, or co-deposition of polymer and CNT on electrode. The composites formed by electrochemical co-deposition are found to be most homogeneous. They show enhanced electron delocalization due to the presence of conjugated carbon chain and an unusual interaction between the polymer and CNTs. As a result, they exhibit excellent electrochemical charge storage properties and fast charge/discharge switching, making them promising electrode materials for high power supercapacitors.
\nMore recently, several attempts have been made to merge the unique properties of several carbon-based nanomaterials to form a hybrid material. For instance, Li et al. [77] have reported synthesis of a flexible, light weight and self-standing film by combining activated carbon, CNT and reduced graphene oxide. The hybrid film is prepared by weaving 3D porous framework using CNTs and graphene that was further used to accommodate activated carbon particles using their intrinsic van der Waals force. In such a material, each component has an important role to play like carbon particles block the restacking of graphene structure and the CNTs improve electronic conductivity. The AC/CNT/rGO electrode thus formed showed a specific capacitance of 101 F/g in organic electrolyte at 0.2 A/g current density with a maximum energy density of 30 Wh/kg. Supercapacitors, are generally known to work only in a narrow temperature range. However, a flexible hybrid film consisting of CNTs and rGO has been reported to be able to operate between the temperature range −40 and 200°C. The electrode material exhibited a maximum area specific capacitance of 330 mF/cm2 with energy density of 1.7 mWh/cm3 and 90% retention even after 100,000 cycles [78]. More interestingly, CNTs were intercalated between graphene sheets to retain high specific surface area by minimizing its aggregation [79], where π–π interaction between graphene sheets and CNTs also improve the electrical conductivity and mechanical strength. Similarly, Yu and Dai produced hybrid films of CNT and graphene interconnected network with well-defined nanoporous structure [80], which exhibited a specific capacitance of 120 F/g in 1 M H2SO4 electrolyte and an almost rectangular cyclic voltammogram even at high scan rate of 1 V/s. Yu et al. developed a continued CNT and graphene hybrid fiber with well-defined mesoporous structure [81], which showed specific surface area as high as 396 m2/g with an electrical conductivity of 102 S/cm. The corresponding fiber-shaped supercapacitor demonstrate a volumetric specific capacitance of 305 F/cm3 at 26.7 mA/cm3 current density and a volumetric energy density of 6.3 mWh/cm3, which is comparable to the energy density of a 4 V–0.5 mAh thin-film lithium ion battery.
\nCarbon has already made a revolution in the world. Now its surface engineering with variety of functional materials and nanoporous structure are the fascinating parts of the research. In the light of the aforementioned studies, a broad range of carbon nanomaterials with various dimensions and unique morphological structure designs have been made and successfully implemented in energy storage device fabrication technologies. The incorporation of heteroatoms into the carbon network provides a new class of carbon materials with unique properties unmatched with parental carbon materials. Compositing carbon nanomaterials with metal oxides/conducting polymers having pseudocapacitance increases energy density largely but compromise with rate capability and cycling life. In this chapter, we have thoroughly conferred the recent progress of carbon nanomaterials based supercapacitors. The potential of carbon nanomaterials and its composites for supercapacitors is in resolving the foreseen of clean energy mitigation. Various materials, methods and technologies have been employed in finding a solution for an energy storing device with high capacitance along with high energy/power density. No doubt, carbon materials are potential candidates for supercapacitor electrode materials but they need a supporting active material to enhance their performance. Nevertheless, increase in specific capacitance value, power density and energy density in certain cases gives a hope that if the research continues in right direction then one-day carbon material based supercapacitor can bring a new revolution in the electronic world. We are confident that the information presented in this chapter would definitely help in the research and development of carbon nanomaterials based supercapacitors.
\nAuthors would like to place on record thanks to the São Paulo Research Foundation (FAPESP) for financial support under ongoing projects of Grant No. 2017/00433-5 and Grant No. 2013/16930-7.
\nAll Works published by IntechOpen prior to October 2011 are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license (CC BY-BC-SA 3.0). Works published after October 2011 are licensed under a Creative Commons Attribution 3.0 Unported license (CC BY 3.0), the latter allowing for the broadest possible reuse of published material.
",metaTitle:"Translation Policy",metaDescription:"Translation of Works - Book Chapters",metaKeywords:null,canonicalURL:"/page/translation-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"All Works licensed under CC BY-BC-SA 3.0 can be freely translated and used for non-commercial purposes. Works licensed under CC BY 3.0 license can be freely translated and used for both commercial and non-commercial purposes.
\\n\\nAll translated Chapters have to be properly attributed in accordance with the requirements included in IntechOpen's Attribution Policy. Besides proper attribution translated sections of Works must include the following sentence: "This is an unofficial translation of a work published by IntechOpen. The publisher has not endorsed this translation".
\\n\\nAll rights to Books and other compilations are reserved by IntechOpen. The copyright to Books and other compilations is subject to a Copyright separate from any that exists in the included Works.
\\n\\nA Book in its entirety, or a significant part of a Book, cannot be translated freely without specific written consent by the publisher. Requests for permission can be made at permissions@intechopen.com.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:'All Works licensed under CC BY-BC-SA 3.0 can be freely translated and used for non-commercial purposes. Works licensed under CC BY 3.0 license can be freely translated and used for both commercial and non-commercial purposes.
\n\nAll translated Chapters have to be properly attributed in accordance with the requirements included in IntechOpen's Attribution Policy. Besides proper attribution translated sections of Works must include the following sentence: "This is an unofficial translation of a work published by IntechOpen. The publisher has not endorsed this translation".
\n\nAll rights to Books and other compilations are reserved by IntechOpen. The copyright to Books and other compilations is subject to a Copyright separate from any that exists in the included Works.
\n\nA Book in its entirety, or a significant part of a Book, cannot be translated freely without specific written consent by the publisher. Requests for permission can be made at permissions@intechopen.com.
\n\nPolicy last updated: 2016-06-09
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5817},{group:"region",caption:"Middle and South America",value:2,count:5282},{group:"region",caption:"Africa",value:3,count:1755},{group:"region",caption:"Asia",value:4,count:10511},{group:"region",caption:"Australia and Oceania",value:5,count:906},{group:"region",caption:"Europe",value:6,count:15915}],offset:12,limit:12,total:119159},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10582",title:"Chemical Vapor Deposition",subtitle:null,isOpenForSubmission:!0,hash:"f9177ff0e61198735fb86a81303259d0",slug:null,bookSignature:"Dr. Sadia Ameen, Dr. M. Shaheer Akhtar and Prof. Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10582.jpg",editedByType:null,editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10519",title:"Middleware Architecture",subtitle:null,isOpenForSubmission:!0,hash:"c326d436ae0f4c508849d2336dbdfb48",slug:null,bookSignature:"Dr. Mehdia Ajana El Khaddar",coverURL:"https://cdn.intechopen.com/books/images_new/10519.jpg",editedByType:null,editors:[{id:"26677",title:"Dr.",name:"Mehdia",surname:"Ajana El Khaddar",slug:"mehdia-ajana-el-khaddar",fullName:"Mehdia Ajana El Khaddar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10814",title:"Anxiety, Uncertainty, and Resilience During the Pandemic Period - Anthropological and Psychological Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"2db4d2a6638d2c66f7a5741d0f8fe4ae",slug:null,bookSignature:"Prof. Fabio Gabrielli and Dr. Floriana Irtelli",coverURL:"https://cdn.intechopen.com/books/images_new/10814.jpg",editedByType:null,editors:[{id:"259407",title:"Prof.",name:"Fabio",surname:"Gabrielli",slug:"fabio-gabrielli",fullName:"Fabio Gabrielli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10504",title:"Crystallization",subtitle:null,isOpenForSubmission:!0,hash:"3478d05926950f475f4ad2825d340963",slug:null,bookSignature:"Dr. Youssef Ben Smida and Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:null,editors:[{id:"311698",title:"Dr.",name:"Youssef",surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10568",title:"Hysteresis in Engineering",subtitle:null,isOpenForSubmission:!0,hash:"6482387993b3cebffafe856a916c44ce",slug:null,bookSignature:"Dr. Giuseppe Viola",coverURL:"https://cdn.intechopen.com/books/images_new/10568.jpg",editedByType:null,editors:[{id:"173586",title:"Dr.",name:"Giuseppe",surname:"Viola",slug:"giuseppe-viola",fullName:"Giuseppe Viola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10668",title:"Sustainable Concrete",subtitle:null,isOpenForSubmission:!0,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:null,bookSignature:"Prof. Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editedByType:null,editors:[{id:"144691",title:"Prof.",name:"Hosam",surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9816",title:"Idiopathic Pulmonary Fibrosis",subtitle:null,isOpenForSubmission:!0,hash:"365bb9762ba33db2d07e677690af1772",slug:null,bookSignature:"Dr. Salim Surani and Dr. Venkat Rajasurya",coverURL:"https://cdn.intechopen.com/books/images_new/9816.jpg",editedByType:null,editors:[{id:"15654",title:"Dr.",name:"Salim",surname:"Surani",slug:"salim-surani",fullName:"Salim Surani"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10789",title:"Cervical Cancer - A Global Public Health Treatise",subtitle:null,isOpenForSubmission:!0,hash:"3f7a79875d0d0ae71479de8c60276913",slug:null,bookSignature:"Dr. Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/10789.jpg",editedByType:null,editors:[{id:"120109",title:"Dr.",name:"Rajamanickam",surname:"Rajkumar",slug:"rajamanickam-rajkumar",fullName:"Rajamanickam Rajkumar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10343",title:"Ocular Hypertension",subtitle:null,isOpenForSubmission:!0,hash:"0ff71cc7e0d9f394f41162c0c825588a",slug:null,bookSignature:"Prof. Michele Lanza",coverURL:"https://cdn.intechopen.com/books/images_new/10343.jpg",editedByType:null,editors:[{id:"240088",title:"Prof.",name:"Michele",surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8969",title:"Deserts and Desertification",subtitle:null,isOpenForSubmission:!0,hash:"4df95c7f295de7f6003e635d9a309fe9",slug:null,bookSignature:"Dr. Yajuan Zhu, Dr. Qinghong Luo and Dr. Yuguo Liu",coverURL:"https://cdn.intechopen.com/books/images_new/8969.jpg",editedByType:null,editors:[{id:"180427",title:"Dr.",name:"Yajuan",surname:"Zhu",slug:"yajuan-zhu",fullName:"Yajuan Zhu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10648",title:"Vibrios",subtitle:null,isOpenForSubmission:!0,hash:"863c86c37b8a066ed95397fd9a114a71",slug:null,bookSignature:"Dr. Lixing Huang and Dr. Jie Li",coverURL:"https://cdn.intechopen.com/books/images_new/10648.jpg",editedByType:null,editors:[{id:"333148",title:"Dr.",name:"Lixing",surname:"Huang",slug:"lixing-huang",fullName:"Lixing Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:9},{group:"topic",caption:"Engineering",value:11,count:24},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:2},{group:"topic",caption:"Medicine",value:16,count:46},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:174},popularBooks:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5319},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9536",title:"Education at the Intersection of Globalization and Technology",subtitle:null,isOpenForSubmission:!1,hash:"0cf6891060eb438d975d250e8b127ed6",slug:"education-at-the-intersection-of-globalization-and-technology",bookSignature:"Sharon Waller, Lee Waller, Vongai Mpofu and Mercy Kurebwa",coverURL:"https://cdn.intechopen.com/books/images_new/9536.jpg",editedByType:"Edited by",editors:[{id:"263302",title:"Dr.",name:"Sharon",middleName:null,surname:"Waller",slug:"sharon-waller",fullName:"Sharon Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editedByType:"Edited by",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9524",title:"Organ Donation and Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"6ef47e03cd4e6476946fc28ca51de825",slug:"organ-donation-and-transplantation",bookSignature:"Vassil Mihaylov",coverURL:"https://cdn.intechopen.com/books/images_new/9524.jpg",editedByType:"Edited by",editors:[{id:"313113",title:"Associate Prof.",name:"Vassil",middleName:null,surname:"Mihaylov",slug:"vassil-mihaylov",fullName:"Vassil Mihaylov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!1,hash:"647b4270d937deae4a82f5702d1959ec",slug:"underwater-work",bookSignature:"Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:"Edited by",editors:[{id:"248645",title:"Dr.",name:"Sérgio António",middleName:null,surname:"Neves Lousada",slug:"sergio-antonio-neves-lousada",fullName:"Sérgio António Neves Lousada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editedByType:"Edited by",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"160",title:"Surface Science",slug:"surface-science",parent:{title:"Materials Science",slug:"materials-science"},numberOfBooks:16,numberOfAuthorsAndEditors:330,numberOfWosCitations:364,numberOfCrossrefCitations:184,numberOfDimensionsCitations:465,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"surface-science",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10061",title:"21st Century Surface Science",subtitle:"a Handbook",isOpenForSubmission:!1,hash:"69253b3c7ba801a5fcd9c47827345f93",slug:"21st-century-surface-science-a-handbook",bookSignature:"Phuong Pham, Pratibha Goel, Samir Kumar and Kavita Yadav",coverURL:"https://cdn.intechopen.com/books/images_new/10061.jpg",editedByType:"Edited by",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10050",title:"Corrosion",subtitle:null,isOpenForSubmission:!1,hash:"cf66006063d4d72349fb33cc056095c1",slug:"corrosion",bookSignature:"Ambrish Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10050.jpg",editedByType:"Edited by",editors:[{id:"215348",title:"Dr.",name:"Ambrish",middleName:null,surname:"Singh",slug:"ambrish-singh",fullName:"Ambrish Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7343",title:"Superhydrophobic Surfaces",subtitle:"Fabrications to Practical Applications",isOpenForSubmission:!1,hash:"017db4d856b5d454aead24128743ba3e",slug:"superhydrophobic-surfaces-fabrications-to-practical-applications",bookSignature:"Mehdi Khodaei, Xiuyong Chen and Hua Li",coverURL:"https://cdn.intechopen.com/books/images_new/7343.jpg",editedByType:"Edited by",editors:[{id:"19478",title:"Dr.",name:"Mehdi",middleName:null,surname:"Khodaei",slug:"mehdi-khodaei",fullName:"Mehdi Khodaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8242",title:"Applied Surface Science",subtitle:null,isOpenForSubmission:!1,hash:"b2515a9d613325af2ddf6d8ef2b53f4d",slug:"applied-surface-science",bookSignature:"Gurrappa Injeti",coverURL:"https://cdn.intechopen.com/books/images_new/8242.jpg",editedByType:"Edited by",editors:[{id:"12369",title:"Dr.",name:"Gurrappa",middleName:null,surname:"Injeti",slug:"gurrappa-injeti",fullName:"Gurrappa Injeti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7550",title:"Corrosion Inhibitors",subtitle:null,isOpenForSubmission:!1,hash:"4d09bcd91e393d15a578f1b632f118e7",slug:"corrosion-inhibitors",bookSignature:"Ambrish Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7550.jpg",editedByType:"Edited by",editors:[{id:"215348",title:"Dr.",name:"Ambrish",middleName:null,surname:"Singh",slug:"ambrish-singh",fullName:"Ambrish Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6671",title:"Paint and Coatings Industry",subtitle:null,isOpenForSubmission:!1,hash:"1dc37c2c972a253d544da9849049222f",slug:"paint-and-coatings-industry",bookSignature:"Faris Yilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/6671.jpg",editedByType:"Edited by",editors:[{id:"36900",title:"Dr.",name:"Faris",middleName:"Sad",surname:"Yılmaz",slug:"faris-yilmaz",fullName:"Faris Yılmaz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7253",title:"Coatings and Thin-Film Technologies",subtitle:null,isOpenForSubmission:!1,hash:"98b8dfac28575877f1846a661c9150bc",slug:"coatings-and-thin-film-technologies",bookSignature:"Jaime Andres Perez-Taborda and Alba G. Avila Bernal",coverURL:"https://cdn.intechopen.com/books/images_new/7253.jpg",editedByType:"Edited by",editors:[{id:"193020",title:"Dr.",name:"Jaime Andres",middleName:null,surname:"Perez Taborda",slug:"jaime-andres-perez-taborda",fullName:"Jaime Andres Perez Taborda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7385",title:"Cavitation",subtitle:"Selected Issues",isOpenForSubmission:!1,hash:"075ee4bb432760777ffcba092d0cffae",slug:"cavitation-selected-issues",bookSignature:"Wojciech Borek, Tomasz Tański and Mariusz Król",coverURL:"https://cdn.intechopen.com/books/images_new/7385.jpg",editedByType:"Edited by",editors:[{id:"186373",title:"Dr.",name:"Wojciech",middleName:null,surname:"Borek",slug:"wojciech-borek",fullName:"Wojciech Borek"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7471",title:"Advanced Surface Engineering Research",subtitle:null,isOpenForSubmission:!1,hash:"4c1a23accacc46fd18b49f2e5c6d303e",slug:"advanced-surface-engineering-research",bookSignature:"Mohammad Asaduzzaman Chowdhury",coverURL:"https://cdn.intechopen.com/books/images_new/7471.jpg",editedByType:"Edited by",editors:[{id:"185329",title:"Prof.",name:"Mohammad Asaduzzaman",middleName:null,surname:"Chowdhury",slug:"mohammad-asaduzzaman-chowdhury",fullName:"Mohammad Asaduzzaman Chowdhury"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7352",title:"Granularity in Materials Science",subtitle:null,isOpenForSubmission:!1,hash:"a451ff13b9bc3b08989979518577594a",slug:"granularity-in-materials-science",bookSignature:"George Kyzas and Athanasios C. Mitropoulos",coverURL:"https://cdn.intechopen.com/books/images_new/7352.jpg",editedByType:"Edited by",editors:[{id:"152296",title:"Dr.",name:"George",middleName:"Z.",surname:"Kyzas",slug:"george-kyzas",fullName:"George Kyzas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6702",title:"Polymer Rheology",subtitle:null,isOpenForSubmission:!1,hash:"c24234818cd4b2ce3ed569c2b29f714c",slug:"polymer-rheology",bookSignature:"Jose Luis Rivera-Armenta and Beatriz Adriana Salazar Cruz",coverURL:"https://cdn.intechopen.com/books/images_new/6702.jpg",editedByType:"Edited by",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6512",title:"Superfluids and Superconductors",subtitle:null,isOpenForSubmission:!1,hash:"24385ec1d5de9c6597896900c80ee279",slug:"superfluids-and-superconductors",bookSignature:"Roberto Zivieri",coverURL:"https://cdn.intechopen.com/books/images_new/6512.jpg",editedByType:"Edited by",editors:[{id:"181334",title:"Prof.",name:"Roberto",middleName:null,surname:"Zivieri",slug:"roberto-zivieri",fullName:"Roberto Zivieri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:16,mostCitedChapters:[{id:"30968",doi:"10.5772/36975",title:"Polymer Gel Rheology and Adhesion",slug:"rheology-and-adhesion-of-polymer-gels",totalDownloads:15233,totalCrossrefCites:9,totalDimensionsCites:64,book:{slug:"rheology",title:"Rheology",fullTitle:"Rheology"},signatures:"Anne M. Grillet, Nicholas B. Wyatt and Lindsey M. Gloe",authors:[{id:"110676",title:"Dr.",name:"Anne",middleName:null,surname:"Grillet",slug:"anne-grillet",fullName:"Anne Grillet"},{id:"138225",title:"Dr.",name:"Nicholas",middleName:null,surname:"Wyatt",slug:"nicholas-wyatt",fullName:"Nicholas Wyatt"},{id:"138226",title:"Ms.",name:"Lindsey",middleName:null,surname:"Gloe",slug:"lindsey-gloe",fullName:"Lindsey Gloe"}]},{id:"48822",doi:"10.5772/60808",title:"Wettability of Nanostructured Surfaces",slug:"wettability-of-nanostructured-surfaces",totalDownloads:2500,totalCrossrefCites:10,totalDimensionsCites:25,book:{slug:"wetting-and-wettability",title:"Wetting and Wettability",fullTitle:"Wetting and Wettability"},signatures:"L. Duta, A.C. Popescu, I. Zgura, N. Preda and I.N. Mihailescu",authors:[{id:"17636",title:"Dr.",name:"Ion",middleName:"N.",surname:"Mihailescu",slug:"ion-mihailescu",fullName:"Ion Mihailescu"},{id:"23532",title:"Dr.",name:"Andrei",middleName:null,surname:"Popescu",slug:"andrei-popescu",fullName:"Andrei Popescu"},{id:"174343",title:"Dr.",name:"Liviu",middleName:null,surname:"Duta",slug:"liviu-duta",fullName:"Liviu Duta"},{id:"174344",title:"Dr.",name:"Irina",middleName:null,surname:"Zgura",slug:"irina-zgura",fullName:"Irina Zgura"},{id:"174345",title:"Dr.",name:"Ligia",middleName:null,surname:"Frunza",slug:"ligia-frunza",fullName:"Ligia Frunza"}]},{id:"30975",doi:"10.5772/36619",title:"Solution Properties of κ-Carrageenan and Its Interaction with Other Polysaccharides in Aqueous Media",slug:"solution-properties-of-k-carrageenan-and-its-interaction-with-other-polysaccharides-in-aqueous-media",totalDownloads:7169,totalCrossrefCites:2,totalDimensionsCites:23,book:{slug:"rheology",title:"Rheology",fullTitle:"Rheology"},signatures:"Alberto Tecante and María del Carmen Núñez Santiago",authors:[{id:"109087",title:"Prof.",name:"Alberto",middleName:null,surname:"Tecante",slug:"alberto-tecante",fullName:"Alberto Tecante"},{id:"109098",title:"Dr.",name:"Maria Del Carmen",middleName:null,surname:"Nunez-Santiago",slug:"maria-del-carmen-nunez-santiago",fullName:"Maria Del Carmen Nunez-Santiago"}]}],mostDownloadedChaptersLast30Days:[{id:"64392",title:"Corrosion Inhibitors",slug:"corrosion-inhibitors",totalDownloads:2009,totalCrossrefCites:6,totalDimensionsCites:8,book:{slug:"corrosion-inhibitors",title:"Corrosion Inhibitors",fullTitle:"Corrosion Inhibitors"},signatures:"Geethamani Palanisamy",authors:[{id:"253697",title:"Dr.",name:"Geethamani",middleName:null,surname:"P",slug:"geethamani-p",fullName:"Geethamani P"}]},{id:"72939",title:"Carbon Nanotubes: Synthesis, Properties and Applications",slug:"carbon-nanotubes-synthesis-properties-and-applications",totalDownloads:374,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"21st-century-surface-science-a-handbook",title:"21st Century Surface Science",fullTitle:"21st Century Surface Science - a Handbook"},signatures:"Aravind Kumar Jagadeesan, Krithiga Thangavelu and Venkatesan Dhananjeyan",authors:[{id:"319215",title:"Dr.",name:"Aravind",middleName:null,surname:"Kumar",slug:"aravind-kumar",fullName:"Aravind Kumar"},{id:"321759",title:"Dr.",name:"Krithiga",middleName:null,surname:"Thangavelu",slug:"krithiga-thangavelu",fullName:"Krithiga Thangavelu"},{id:"321760",title:"Mr.",name:"Venkatesan",middleName:null,surname:"Dhanancheyan",slug:"venkatesan-dhanancheyan",fullName:"Venkatesan Dhanancheyan"}]},{id:"63896",title:"Diels-Alder Chemistry to Develop Self-Healing Epoxy Resins and Composites Thereof",slug:"diels-alder-chemistry-to-develop-self-healing-epoxy-resins-and-composites-thereof",totalDownloads:949,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"paint-and-coatings-industry",title:"Paint and Coatings Industry",fullTitle:"Paint and Coatings Industry"},signatures:"Stefania Dello Iacono, Alfonso Martone and Eugenio Amendola",authors:[{id:"234302",title:"Dr.",name:"Alfonso",middleName:null,surname:"Martone",slug:"alfonso-martone",fullName:"Alfonso Martone"},{id:"235224",title:"Mrs.",name:"Stefania",middleName:null,surname:"Dello Iacono",slug:"stefania-dello-iacono",fullName:"Stefania Dello Iacono"},{id:"235225",title:"Dr.",name:"Eugenio",middleName:null,surname:"Amendola",slug:"eugenio-amendola",fullName:"Eugenio Amendola"}]},{id:"68236",title:"The Arrhenius Acid and Base Theory",slug:"the-arrhenius-acid-and-base-theory",totalDownloads:355,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"corrosion",title:"Corrosion",fullTitle:"Corrosion"},signatures:"Shikha Munjal and Aakash Singh",authors:[{id:"290524",title:"Ms.",name:"Shikha",middleName:null,surname:"Munjal",slug:"shikha-munjal",fullName:"Shikha Munjal"}]},{id:"62819",title:"Electrochemical Evaluation Technologies of Organic Coatings",slug:"electrochemical-evaluation-technologies-of-organic-coatings",totalDownloads:854,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"coatings-and-thin-film-technologies",title:"Coatings and Thin-Film Technologies",fullTitle:"Coatings and Thin-Film Technologies"},signatures:"Fandi Meng and Li Liu",authors:[{id:"244550",title:"Dr.",name:"Fandi",middleName:null,surname:"Meng",slug:"fandi-meng",fullName:"Fandi Meng"},{id:"255682",title:"Prof.",name:"Li",middleName:null,surname:"Liu",slug:"li-liu",fullName:"Li Liu"}]},{id:"64344",title:"Impact of the Glancing Angle Deposition on the Yttria-Stabilized Zirconia Growth and Their Thermal Barrier Coating Properties",slug:"impact-of-the-glancing-angle-deposition-on-the-yttria-stabilized-zirconia-growth-and-their-thermal-b",totalDownloads:994,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"coatings-and-thin-film-technologies",title:"Coatings and Thin-Film Technologies",fullTitle:"Coatings and Thin-Film Technologies"},signatures:"Cesar Amaya, John Jairo Prıas-Barragan, Julio Cesar Caicedo, Jose Martin Yañez-Limon and Gustavo Zambrano",authors:[{id:"247932",title:"Dr.",name:"Gustavo",middleName:null,surname:"Zambrano",slug:"gustavo-zambrano",fullName:"Gustavo Zambrano"}]},{id:"60426",title:"Applications of Viscoelastic Fluids Involving Hydrodynamic Stability and Heat Transfer",slug:"applications-of-viscoelastic-fluids-involving-hydrodynamic-stability-and-heat-transfer",totalDownloads:652,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"polymer-rheology",title:"Polymer Rheology",fullTitle:"Polymer Rheology"},signatures:"Ildebrando Pérez-Reyes, René Osvaldo Vargas-Aguilar, Samuel\nBernardo Pérez-Vega and Alejandro Sebastián Ortiz-Pérez",authors:[{id:"183938",title:"Dr.",name:"Samuel",middleName:null,surname:"Perez-Vega",slug:"samuel-perez-vega",fullName:"Samuel Perez-Vega"},{id:"186659",title:"Prof.",name:"Ildebrando",middleName:null,surname:"Pérez-Reyes",slug:"ildebrando-perez-reyes",fullName:"Ildebrando Pérez-Reyes"},{id:"242858",title:"Prof.",name:"Rene Osvaldo",middleName:null,surname:"Vargas-Aguilar",slug:"rene-osvaldo-vargas-aguilar",fullName:"Rene Osvaldo Vargas-Aguilar"},{id:"242859",title:"Prof.",name:"Alejandro Sebastian",middleName:null,surname:"Ortiz-Perez",slug:"alejandro-sebastian-ortiz-perez",fullName:"Alejandro Sebastian Ortiz-Perez"}]},{id:"64171",title:"Transport of Electrolyte in Organic Coatings on Metal",slug:"transport-of-electrolyte-in-organic-coatings-on-metal",totalDownloads:897,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"paint-and-coatings-industry",title:"Paint and Coatings Industry",fullTitle:"Paint and Coatings Industry"},signatures:"Zoi Manoli, Darja Pecko, Guy Van Assche, Johan Stiens, Ali\nPourkazemi and Herman Terryn",authors:[{id:"236340",title:"Ph.D. Student",name:"Zoi",middleName:null,surname:"Manoli",slug:"zoi-manoli",fullName:"Zoi Manoli"},{id:"236371",title:"Dr.",name:"Darja",middleName:null,surname:"Pecko",slug:"darja-pecko",fullName:"Darja Pecko"},{id:"236375",title:"Prof.",name:"Guy",middleName:null,surname:"Van Assche",slug:"guy-van-assche",fullName:"Guy Van Assche"},{id:"236377",title:"Prof.",name:"Herman",middleName:null,surname:"Terryn",slug:"herman-terryn",fullName:"Herman Terryn"},{id:"262581",title:"Prof.",name:"Johan",middleName:null,surname:"Stiens",slug:"johan-stiens",fullName:"Johan Stiens"},{id:"262582",title:"Dr.",name:"Ali",middleName:null,surname:"Pourkazemi",slug:"ali-pourkazemi",fullName:"Ali Pourkazemi"}]},{id:"63792",title:"New Materials for Thin Film Solar Cells",slug:"new-materials-for-thin-film-solar-cells",totalDownloads:1323,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"coatings-and-thin-film-technologies",title:"Coatings and Thin-Film Technologies",fullTitle:"Coatings and Thin-Film Technologies"},signatures:"Senthil T.S and Kalaiselvi C.R",authors:[{id:"246977",title:"Dr.",name:"Senthil",middleName:null,surname:"T S",slug:"senthil-t-s",fullName:"Senthil T S"},{id:"255697",title:"Prof.",name:"Kalaiselvi",middleName:null,surname:"C R",slug:"kalaiselvi-c-r",fullName:"Kalaiselvi C R"}]},{id:"62882",title:"Inside the Phenomenological Aspects of Wet Granulation: Role of Process Parameters",slug:"inside-the-phenomenological-aspects-of-wet-granulation-role-of-process-parameters",totalDownloads:797,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"granularity-in-materials-science",title:"Granularity in Materials Science",fullTitle:"Granularity in Materials Science"},signatures:"Veronica De Simone, Diego Caccavo, Annalisa Dalmoro, Gaetano\nLamberti, Matteo d’Amore and Anna Angela Barba",authors:[{id:"140173",title:"Prof.",name:"Anna Angela",middleName:null,surname:"Barba",slug:"anna-angela-barba",fullName:"Anna Angela Barba"},{id:"143947",title:"Prof.",name:"Matteo",middleName:null,surname:"D'Amore",slug:"matteo-d'amore",fullName:"Matteo D'Amore"},{id:"176104",title:"Prof.",name:"Gaetano",middleName:null,surname:"Lamberti",slug:"gaetano-lamberti",fullName:"Gaetano Lamberti"},{id:"176239",title:"MSc.",name:"Diego",middleName:null,surname:"Caccavo",slug:"diego-caccavo",fullName:"Diego Caccavo"},{id:"181500",title:"Dr.",name:"Annalisa",middleName:null,surname:"Dalmoro",slug:"annalisa-dalmoro",fullName:"Annalisa Dalmoro"},{id:"260822",title:"MSc.",name:"Veronica",middleName:null,surname:"De Simone",slug:"veronica-de-simone",fullName:"Veronica De Simone"}]}],onlineFirstChaptersFilter:{topicSlug:"surface-science",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/220769/reginaldo-camargo",hash:"",query:{},params:{id:"220769",slug:"reginaldo-camargo"},fullPath:"/profiles/220769/reginaldo-camargo",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()