Physicochemical properties of IDA and MGDA.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"3098",leadTitle:null,fullTitle:"Adaptive Filtering - Theories and Applications",title:"Adaptive Filtering",subtitle:"Theories and Applications",reviewType:"peer-reviewed",abstract:"Adaptive filtering can be used to characterize unknown systems in time-variant environments. The main objective of this approach is to meet a difficult comprise: maximum convergence speed with maximum accuracy. Each application requires a certain approach which determines the filter structure, the cost function to minimize the estimation error, the adaptive algorithm, and other parameters; and each selection involves certain cost in computational terms, that in any case should consume less time than the time required by the application working in real-time. Theory and application are not, therefore, isolated entities but an imbricated whole that requires a holistic vision. This book collects some theoretical approaches and practical applications in different areas that support expanding of adaptive systems.",isbn:null,printIsbn:"978-953-51-0998-3",pdfIsbn:"978-953-51-6308-4",doi:"10.5772/3398",price:119,priceEur:129,priceUsd:155,slug:"adaptive-filtering-theories-and-applications",numberOfPages:164,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"76b08692568d1acb3ac58dc4f3077dc9",bookSignature:"Lino Garcia Morales",publishedDate:"February 20th 2013",coverURL:"https://cdn.intechopen.com/books/images_new/3098.jpg",numberOfDownloads:10620,numberOfWosCitations:0,numberOfCrossrefCitations:2,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:6,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:8,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 9th 2012",dateEndSecondStepPublish:"March 1st 2012",dateEndThirdStepPublish:"May 28th 2012",dateEndFourthStepPublish:"June 27th 2012",dateEndFifthStepPublish:"September 27th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"682",title:"Dr.",name:"Lino",middleName:null,surname:"Garcia Morales",slug:"lino-garcia-morales",fullName:"Lino Garcia Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/682/images/1688_n.jpg",biography:"Lino García Morales has graduated in Automatic Control Engineering at Polytechnic Institute “José A. Echeverría”. He has received a master’s degree in Systems and Communications Networks at Technical University of Madrid, PhD. in Communications Technologies and Systems at UPM, PhD. in Contemporary Artistic Practices and Art Theory at European University of Madrid. He has been professor at the Superior Institute of Art (ISA), Comillas Pontifical University (UPCO), Menéndez Pelayo International University (UIMP), Senior Lecturer of Higher Technical School (ESP) at UEM, Coordinator of Electronica and Digital Art Degree and Director of Master in Architectonic and Environmental Acoustic at UEM. At the moment he is professor at UPM. He has extensive experience in digital signal processing, adaptive filtering, digital speech and audio processing, acoustic and digital art conservation-restoration.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Autonomous University of Madrid",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"759",title:"System Modeling and Analysis",slug:"system-modeling-and-analysis"}],chapters:[{id:"40200",title:"Hirschman Optimal Transform Block LMS Adaptive Filter",doi:"10.5772/51394",slug:"hirschman-optimal-transform-block-lms-adaptive-filter",totalDownloads:1606,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Osama Alkhouli, Victor DeBrunner and Joseph Havlicek",downloadPdfUrl:"/chapter/pdf-download/40200",previewPdfUrl:"/chapter/pdf-preview/40200",authors:[{id:"28990",title:"Dr.",name:"Osama",surname:"Alkhouli",slug:"osama-alkhouli",fullName:"Osama Alkhouli"},{id:"76357",title:"Prof.",name:"Victor",surname:"DeBrunner",slug:"victor-debrunner",fullName:"Victor DeBrunner"},{id:"76358",title:"Prof.",name:"Joseph",surname:"Havlicek",slug:"joseph-havlicek",fullName:"Joseph Havlicek"}],corrections:null},{id:"41709",title:"On Using ADALINE Algorithm for Harmonic Estimation and Phase-Synchronization for the Grid-Connected Converters in Smart Grid Applications",doi:"10.5772/52547",slug:"on-using-adaline-algorithm-for-harmonic-estimation-and-phase-synchronization-for-the-grid-connected-",totalDownloads:2832,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Yang Han",downloadPdfUrl:"/chapter/pdf-download/41709",previewPdfUrl:"/chapter/pdf-preview/41709",authors:[{id:"24480",title:"Dr.",name:"Yang",surname:"Han",slug:"yang-han",fullName:"Yang Han"}],corrections:null},{id:"39052",title:"Applications of a Combination of Two Adaptive Filters",doi:"10.5772/50451",slug:"applications-of-a-combination-of-two-adaptive-filters",totalDownloads:2120,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Tonu Trump",downloadPdfUrl:"/chapter/pdf-download/39052",previewPdfUrl:"/chapter/pdf-preview/39052",authors:[{id:"1241",title:"Dr.",name:"Tonu",surname:"Trump",slug:"tonu-trump",fullName:"Tonu Trump"}],corrections:null},{id:"43012",title:"Adaptive Analysis of Diastolic Murmurs for Coronary Artery Disease Based on Empirical Mode Decomposition",doi:"10.5772/55690",slug:"adaptive-analysis-of-diastolic-murmurs-for-coronary-artery-disease-based-on-empirical-mode-decomposi",totalDownloads:1876,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Zhidong Zhao, Yi Luo, Fangqin Ren, Li Zhang and Changchun Shi",downloadPdfUrl:"/chapter/pdf-download/43012",previewPdfUrl:"/chapter/pdf-preview/43012",authors:[{id:"24493",title:"Dr.",name:"Zhidong",surname:"Zhao",slug:"zhidong-zhao",fullName:"Zhidong Zhao"}],corrections:null},{id:"39655",title:"Performance of Adaptive Hybrid System in Two Scenarios: Echo Phone and Acoustic Noise Reduction",doi:"10.5772/51517",slug:"performance-of-adaptive-hybrid-system-in-two-scenarios-echo-phone-and-acoustic-noise-reduction",totalDownloads:2186,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Edgar Omar Lopez-Caudana and Hector Manuel Perez-Meana",downloadPdfUrl:"/chapter/pdf-download/39655",previewPdfUrl:"/chapter/pdf-preview/39655",authors:[{id:"26464",title:"Dr.",name:"Edgar",surname:"Lopez-Caudana",slug:"edgar-lopez-caudana",fullName:"Edgar Lopez-Caudana"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"393",title:"Adaptive Filtering Applications",subtitle:null,isOpenForSubmission:!1,hash:"fcca6dde43a408a5cc07096108c37ece",slug:"adaptive-filtering-applications",bookSignature:"Lino Garcia",coverURL:"https://cdn.intechopen.com/books/images_new/393.jpg",editedByType:"Edited by",editors:[{id:"682",title:"Dr.",name:"Lino",surname:"Garcia Morales",slug:"lino-garcia-morales",fullName:"Lino Garcia Morales"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"150",title:"Adaptive Filtering",subtitle:null,isOpenForSubmission:!1,hash:"54fd85b236699142f3eeb7e80cb6b291",slug:"adaptive-filtering",bookSignature:"Lino Garcia",coverURL:"https://cdn.intechopen.com/books/images_new/150.jpg",editedByType:"Edited by",editors:[{id:"682",title:"Dr.",name:"Lino",surname:"Garcia Morales",slug:"lino-garcia-morales",fullName:"Lino Garcia Morales"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3158",title:"Design and Architectures for Digital Signal Processing",subtitle:null,isOpenForSubmission:!1,hash:"29151ebf095f6c31d6a4d29d265b1c24",slug:"design-and-architectures-for-digital-signal-processing",bookSignature:"Gustavo Ruiz and Juan A. Michell",coverURL:"https://cdn.intechopen.com/books/images_new/3158.jpg",editedByType:"Edited by",editors:[{id:"24430",title:"Dr.",name:"Gustavo",surname:"Ruiz",slug:"gustavo-ruiz",fullName:"Gustavo Ruiz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3198",title:"Digital Filters and Signal Processing",subtitle:null,isOpenForSubmission:!1,hash:"ad19128b3c5153cd5d30d16912ed89f3",slug:"digital-filters-and-signal-processing",bookSignature:"Fausto Pedro García Márquez and Noor Zaman",coverURL:"https://cdn.intechopen.com/books/images_new/3198.jpg",editedByType:"Edited by",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79597",slug:"corrigendum-to-dry-hydrogen-peroxide-for-viral-inactivation",title:"Corrigendum to: Dry Hydrogen Peroxide for Viral Inactivation",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/79597.pdf",downloadPdfUrl:"/chapter/pdf-download/79597",previewPdfUrl:"/chapter/pdf-preview/79597",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/79597",risUrl:"/chapter/ris/79597",chapter:{id:"78994",slug:"dry-hydrogen-peroxide-for-viral-inactivation",signatures:"Chris Lee and John R. Henneman",dateSubmitted:"August 18th 2021",dateReviewed:"September 14th 2021",datePrePublished:"October 21st 2021",datePublished:"May 18th 2022",book:{id:"11006",title:"Disinfection of Viruses",subtitle:null,fullTitle:"Disinfection of Viruses",slug:"disinfection-of-viruses",publishedDate:"May 18th 2022",bookSignature:"Raymond W. Nims and M. Khalid Ijaz",coverURL:"https://cdn.intechopen.com/books/images_new/11006.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"104702",title:"Dr.",name:"Raymond W.",middleName:null,surname:"Nims",slug:"raymond-w.-nims",fullName:"Raymond W. Nims"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"414666",title:"M.Sc.",name:"Chris",middleName:null,surname:"Lee",fullName:"Chris Lee",slug:"chris-lee",email:"chris96lee@gmail.com",position:null,institution:null},{id:"415444",title:"MSc.",name:"John R.",middleName:null,surname:"Henneman",fullName:"John R. Henneman",slug:"john-r.-henneman",email:"jrh78@bri.ksu.edu",position:null,institution:{name:"Kansas State University",institutionURL:null,country:{name:"United States of America"}}}]}},chapter:{id:"78994",slug:"dry-hydrogen-peroxide-for-viral-inactivation",signatures:"Chris Lee and John R. Henneman",dateSubmitted:"August 18th 2021",dateReviewed:"September 14th 2021",datePrePublished:"October 21st 2021",datePublished:"May 18th 2022",book:{id:"11006",title:"Disinfection of Viruses",subtitle:null,fullTitle:"Disinfection of Viruses",slug:"disinfection-of-viruses",publishedDate:"May 18th 2022",bookSignature:"Raymond W. Nims and M. Khalid Ijaz",coverURL:"https://cdn.intechopen.com/books/images_new/11006.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"104702",title:"Dr.",name:"Raymond W.",middleName:null,surname:"Nims",slug:"raymond-w.-nims",fullName:"Raymond W. Nims"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"414666",title:"M.Sc.",name:"Chris",middleName:null,surname:"Lee",fullName:"Chris Lee",slug:"chris-lee",email:"chris96lee@gmail.com",position:null,institution:null},{id:"415444",title:"MSc.",name:"John R.",middleName:null,surname:"Henneman",fullName:"John R. Henneman",slug:"john-r.-henneman",email:"jrh78@bri.ksu.edu",position:null,institution:{name:"Kansas State University",institutionURL:null,country:{name:"United States of America"}}}]},book:{id:"11006",title:"Disinfection of Viruses",subtitle:null,fullTitle:"Disinfection of Viruses",slug:"disinfection-of-viruses",publishedDate:"May 18th 2022",bookSignature:"Raymond W. Nims and M. Khalid Ijaz",coverURL:"https://cdn.intechopen.com/books/images_new/11006.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"104702",title:"Dr.",name:"Raymond W.",middleName:null,surname:"Nims",slug:"raymond-w.-nims",fullName:"Raymond W. Nims"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11864",leadTitle:null,title:"Game Theory - From Idea to Practice",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tA game as an activity and, at the same time, a basic tool of human education is important from his birth to death, but also from the first beginnings of human society to the present day. The discipline of game theory deals mainly with types, description, algorithmization, and strategies but also the formalization of games. From the point of view of the games themselves, it can be said that it is active from the idea to the practical game implementation. This book describes some modern approaches, procedures, and algorithms, but also the practical use of game theory and its development. The book will include, among other things, game classifications and formalization, themes of cooperative and non-cooperative games, symmetric and asymmetric games, zero and non-zero-sum games, simultaneous and turn-based (sequential) games, meta-games or games with complete and incomplete information, and infinitely long games. Last but not least, the book also creates a space for the relation of game theory and information technologies, strategy games and war games, economy and business games theory, or for gamification and education or training, including optimization, testing, and presentations of the games and their sociological impacts.
",isbn:"978-1-83768-060-3",printIsbn:"978-1-83768-059-7",pdfIsbn:"978-1-83768-061-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"17db7dc9ca5813b2e1c7cd9d8ded210d",bookSignature:"Dr. Branislav Sobota",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11864.jpg",keywords:"Game Theory History, Games Types, Multiplayer Games, Symmetric Games, Turn-Based Games, Winning Strategy, Game Mechanisms Design, Time Game Optimization, Computer Games, Single-Player Strategies, Business Games, Education and Games",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 12th 2022",dateEndSecondStepPublish:"July 19th 2022",dateEndThirdStepPublish:"September 17th 2022",dateEndFourthStepPublish:"December 6th 2022",dateEndFifthStepPublish:"February 4th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"18 days",secondStepPassed:!1,areRegistrationsClosed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Dr. Sobota is a researcher in virtual reality and related technologies, head of the LIRKIS DCI FEEI TU Košice (laboratory for researching and developing new flexible and intelligent interfaces based on computer graphics and virtual reality technologies), and holder of 2 patents.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"109378",title:"Dr.",name:"Branislav",middleName:null,surname:"Sobota",slug:"branislav-sobota",fullName:"Branislav Sobota",profilePictureURL:"https://mts.intechopen.com/storage/users/109378/images/system/109378.jpeg",biography:"Branislav Sobota was born on 1967. In 1990, he graduated (MSc.) with honours at the Department of Computers and Informatics of the FEEI at Technical University in Košice. He defended his PhD. in 1999 and habilitation thesis in the field of virtual reality and computer graphics in 2008. He is working as an associate professor at the Department of Computers and Informatics Technical University of Kosice, Slovakia. His scientific research is focusing on computer graphics, parallel computing and especially virtual reality and related technologies.\n\nA researcher in virtual reality and related technologies, head of the LIRKIS DCI FEEI TU Košice (laboratory for research and development of new flexible and intelligent interfaces based on computer graphics and virtual reality technologies) and holder of 2 patents (Interactive school desk and Virtual control panel).",institutionString:"Technical University of Košice",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Technical University of Košice",institutionURL:null,country:{name:"Slovakia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"15",title:"Mathematics",slug:"mathematics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"466998",firstName:"Dragan",lastName:"Miljak",middleName:"Anton",title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/466998/images/21564_n.jpg",email:"dragan@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. A unique name with a unique work ethic right at your service."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"40697",title:"Selective Removal of Heavy Metal Ions from Waters and Waste Waters Using Ion Exchange Methods",doi:"10.5772/51040",slug:"selective-removal-of-heavy-metal-ions-from-waters-and-waste-waters-using-ion-exchange-methods",body:'Environmental pollution by toxic metals occurs globally through military, industrial, and agricultural processes and waste disposal (Duffus, 2002). Fuel and power industries generate 2.4 million tons of As, Cd, Cr, Cu, Hg, Ni, Pb, Se, V, and Zn annually The metal industry adds 0.39 million tons/yr of the same metals to the environment, while agriculture contributes 1.4 million tons/yr, manufacturing contributes 0.24 million tons/yr and waste disposal adds 0.72 million tons/yr. Metals, discharged or transported into the environment, may undergo transformations and can have a large environmental, public health, and economic impact (Brower et al. 1997; Nriagu & Pacyna, 1988; Gadd & White, 1993).
Among different techniques used for removal of high concentrations of heavy metals, precipitation-filtration, ion exchange, reverse osmosis, oxidation-reduction, solvent extraction, as well as membrane separation should be mentioned (Hubicki,et al. 1999; Dąbrowski et al. 2004). However, some of the wastes contain substances such as organics, complexing agents and alkaline earth metals that may decrease the metal removal and result in unacceptable concentrations of heavy metals in the effluents. The pollutants of concern include cadmium, lead, mercury, chromium, arsenic, zinc, cobalt and nickel as well as copper. They have a number of applications in basic engineering works, paper and pulp industries, leather tanning, petrochemicals, fertilizers, etc. Moreover, they have also negative impact on human health.
Cadmium accumulates in kidneys, pancreas, intestines and glands altering the metabolism of the elements necessary for the body, such as zinc, copper, iron, magnesium, calcium and selenium. Damage to the respiratory tract and kidneys are the main adverse effects in humans exposed to cadmium compounds. In humans exposed to fumes and dusts chronic toxicity of cadmium compounds is usually found after a few years. The main symptom of emphysema is that it often develops without preceding bronchitis. The second basic symptom of chronic metal poisoning is kidney damage. It includes the loss and impairment of smell, pathological changes in the skeletal system (osteoporosis with spontaneous fractures and bone fractures), pain in the extremities and the spine, difficulty in walking, the formation of hypochromic anemia. The most known ‘Itai-Itai’ disease caused by cadmium exposure is mixed osteomalacia and osteoporosis. However, an important source of cadmium in soils are phosphate fertilizers. Large amounts of cadmium are also introduced to soil together with municipal waste. The high mobility of cadmium in all types of soils is the reason for its rapid integration into the food chain. Daily intake of cadmium from food in most countries of the world is 10-20 mg.
Lead is used as industrial raw material in the manufacture of storage batteries, pigments, leaded glass, fuels, photographic materials, matches and explosives. Lead being one of very important pollutants comes from wastewaters from refinery, wastewaters from production of basic compounds containing lead, wastewaters with the remains of after production solvents and paints. Large toxicity of lead requires that its contents are reduced to the minimum (ppb level). To this end there are applied chelating ions with the functional phosphonic and aminophosphonic groups. Also weakly basic anion exchangers in the free base form can be used for selective removal of lead(II) chloride complexes from the solutions of pH in the range 4-6. Also a combined process of cation exchange and precipitation is often applied for lead(II) removal form wastewaters (Pramanik et al. 2009). The average collection of lead by an adult was estimated at 320-440 mg/day. Acute poisoning with inorganic lead compounds occurs rarely. In the case of acute poisoning in man, the symptoms are burning in the mouth, vomiting, abdominal cramps, diarrhea, constipation progressing to systolic, blood pressure and body temperature. At the same time there is hematuria, proteinuria, oliguria, central nervous system damage. Alkyl lead compounds are more toxic than inorganic lead connections. Tetraethyl lead toxicity manifested primarily in lead damage of the nervous system. Toxic effects of lead on the central nervous system are observed more in children. In adults, the effects of lead toxicity occur in the peripheral nervous system. Symptoms of chronic poisoning may vary. The acute form of poisoning known as lead colic is the general state of various spastic internal organs and neurological damage in the peripheral organs. Long-term lead poisoning can lead to organic changes in the central and peripheral nervous systems. Characteristic symptoms include pale gray skin colour and the lead line on the gums (blue-black border).
In nature, natural circulation of
Arsenic accumulates in tissues rich in keratin, like hair, nails and skin. Arsenic and its inorganic compounds can cause not only cancer of the respiratory system and skin, but also neoplastic lesions in other organs. Arsenic compounds enter the body from the gastrointestinal tract and through skin and respiratory system. Arsenic compounds have affinity for many enzymes and can block their action, and above all disturb the Krebs cycle. Inorganic arsenic compounds are more harmful than organic and among them AsH3 and As2O3 should be mentioned. 70-300 mg of As2O3 is considered to be the average lethal dose for humans. The dose of 10-50 ppb for 1 kg of body weight can cause circulatory problems, resulting in necrosis and gangrene of limbs. The dominant effects of arsenic in humans are changes in the skin and mucous membranes as well as peripheral nerve damage. There are xerosis soles and palms, skin inflammation with ulceration. In addition, there is perforation of the nasal septum. The values of the maximum allowable concentration (NDS) in Poland set for inorganic arsenic compounds are 0.3 mg/m3 and 0.2 mg/m3 for AsH3.
In nature,
Ion exchange may be defined as the exchange of ions between the substrate and surrounding medium. The most useful ion exchange reaction is reversible. When the reaction is reversible, the ion exchanger can be reused many times. Generally resins are manufactured in the spherical, stress and strain free form to resist physical degradation. They are stable at high temperatures and applicable over a wide pH range. Ion exchange resins, which are completely insoluble in most aqueous and organic solutions, consist of a cross linked polymer matrix to which charged functional groups are attached by covalent bonding (Sherrington, 1998). The ion exchangers which contain cations or anions as counter-ions are called cation exchangers or anion exchangers, respectively. The usual matrix is polystyrene cross linked for structural stability with 3 to 8 percent of divinylbenzene (3-8 % DVB) (Kunin, 1958; Helfferich, 1962). The resins of higher cross linking (12-16% DVB) are more costly, both to make and to operate and they are specially developed for heavy duty industrial applications. These products are more resistant to degradation by oxidizing agents such as chlorine, and withstand physical stresses that fracture lighter duty materials. Typical ion exchangers are produced with a particle size distribution in the range 20-50 mesh (for separation of anions from cations or of ionic species from nonionic ones). For more difficult separations, materials of smaller particle size or lower degrees of cross linking are necessary. Moreover, when the separation depends solely upon small differences in the affinity of the ions, a particle size of 200-400 mesh is required and when the selectivity is increased by the use of complexing agents, the particle size in the 50-100 mesh is adequate. The ion exchangers finer than 100 mesh are employed for analytical purposes and for practical applications on the commercial scale the materials finer than 50 mesh are used.
Depending on the type of functional groups of exchanging certain ions, the ion exchangers with strongly acidic e.g., sulphonate -SO3H, weakly acidic e.g., carboxylate -COOH, strongly basic e.g., quaternary ammonium -N+R3 and weakly basic e.g., tertiary and secondary amine -N+R2H and -N+RH2 should be mentioned. The strong acidic cation exchangers are well dissociated over a wide pH range and thus reaching its maximum sorption capacity. On the other hand, weak acidic cation exchangers containing, for example, carboxylic functional groups reach the maximum sorption capacity at pH> 7.0 as presented in Fig.1.
The sorption capacity of ion exchangers depending on pH.
Additionally, ion exchangers possess: the iminodiacetate functional groups (-N{CH2COOH}2), phenol (-C6H4OH), phosphonic (-PO3H2) and phosphine (-PO2H) functional groups. These groups are acidic in nature and are dissociated with the exchange of H+ or Na+ ions for other cations from the solution. Negative charge of the functional groups is offset by an equivalent number of mobile cations so-called counter ions. Counter ions can be exchanged for other ions from the solution being in the contact with the resin phase.
There are also amphoteric exchangers, which depending on the pH of the solution may exchange either cations or anions. More recently these ion exchangers are called bipolar electrolyte exchange resins (BEE) or zwitterionic ion exchangers (Nesterenko & Haddad, 2000). The aminocarboxylic amphoteric ion exchangers AMF-1T, AMF-2T, AMF-2M, ANKB-35 as well as the carboxylic cation exchanger KB-2T were, for example used for recovery of Ni(II) from the Mn(NO3)2–H2O system (Kononowa et al. 2000).
The individual ions present in the sample are retained in varying degrees depending on their different affinity for the resin phase. The consequence of this phenomenon is the separation of analyte ions, such as metal ions, however, the nature and characteristics of the resin phase determine the effectiveness of this process (Fritz, 2005). The affinity series which for various types of ion exchangers are as follows:
It is well known that the affinity of sulphonic acid resins for cations varies with the ionic size and charge of the cation. The affinity towards cation increases with the increasing cation charge:
Na+< Ca2+<Al3+<Th4+,
and in the case of different cations with the same charge the affinity increases with the increasing atomic number:
Li+< H+< Na+< NH4+ < K+< Rb+< Cs+< Ag+< Tl+
Mg2+ < Ca2+ < Sr2+ < Ba2+
Al3+ < Fe3+.
Generally, the affinity is greater for large ions with high valency.
For the strong acidic cation exchanger the affinity series can be as follows:
Pu4+ >> La3+ > Ce3+ > Pr3+ > Nd3+ > Sm3+ > Eu3+ > Gd3+ > Tb3+ > Dy3+ > Ho3+ > Er3+ > Tm3+ > Yb3+ > Lu3+ > Y3+ > Sc3+ > Al3+ >> Ba2+ > Pb2+ > Sr2+ > Ca2+ > Ni2+ > Cd2+ > Cu2+ > Co2+ > Zn2+ > Mg2+ > UO22+ >> Tl+ > > Ag+ > Cs+ > Rb+ > K+ > NH4+ > Na+ > H+ > Li+\n\t\t\t\t
and for Lewatit SP-112 it is as: Ba2+ > Pb2+ > Sr2+ > Ca2+ > Ni2+ > Cd2+ > Cu2+ > Co2+ > Zn2+ > Fe2+ >Mg2+ > K+ >NH4+ > Na+ >H+.
Cation exchangers with the carboxylic functional groups show the opposite the affinity series for alkali and alkaline earth metal ions. Noteworthy is the fact that the cations exhibit a particularly high affinity for H+. The affinity of this type of cation is therefore as follows:
H+ > Mg2+ > Ca2+ > Sr2+ > Ba2+ > Li+ > Na+ > K+ > Rb+ > Cs+.
The charge of the anion affects its affinity for the anion exchanger in a similar way as for the cation exchangers:
citrate > tartrate > PO43- > AsO43- > ClO4- > SCN- > I- > S2O32- > WO42- > MoO42- > CrO42- > C2O42-\n\t\t\t\t
> SO42> SO32-> HSO4- >HPO42- > NO3- > Br- > NO2- > CN- > Cl- > HCO3- > H2PO4- > CH3COO-
> IO3- > HCOO- > BrO3- > ClO3- > F- > OH-\n\t\t\t\t
for
ClO4- > I- > HSO4- > NO3- > Br- > NO2- > Cl- > HCO3- > CH3COO- > OH- > F-,
for
ClO4- > I- > HSO4- > NO3- > Br- > NO2- > Cl- > HCO3- > OH- > CH3COO- > F-
Only with the exception of the OH- ion, the affinity of the anion exchangers with the tertiary and secondary functional groups is approximately the same as in the case of anion exchangers with the quaternary ammonium functional groups. These medium and weakly basic anion exchangers show very high affinity for OH- ions.
Anion exchange materials are classified as either weak base or strong base depending on the type of exchange group. These are two general classes of strong base anion exchangers e.g. types 1 and 2 depending on chemical nature. The synthesis of the weak base anion exchangers with the tertiary amine groups is usually provided by the chloromethylation of PST-DVB followed by the amination by secondary amine (Drăgan & Grigoriu, 1992). Weak base resins act as acid adsorbers, efficiently removing strong acids such as sulphuric and hydrochloric ones. They are used in the systems where strong acids predominate, where silica reduction is not required, and where carbon dioxide is removed in degasifiers. Preceding strong base units in demineralizing processes, weak base resins give more economical removal of sulphates and chlorides. The selectivity for the bivalent ions such as SO42- depends strongly on the basicity of the resin, the affinities of various functional groups following the order: primary > secondary > tertiary > quaternary. Therefore among the factors affecting the sorption equilibrium the most important are: first of all nature of functional groups and the concentration of the solution (Boari et al. 1974). At low concentration the resin prefers ions at higher valency and this tendency increases with solution diluting. It should be also mentioned that obtaining resins with the primary amine functional groups is difficult by chemical reactions on polystyrene-divinylbenzene copolymers. Weakly basic anion exchangers can be used, for example for zinc cyanide removal from the alkaline leach solutions in the Merrill Crowe process (Kurama & Çatlsarik, 2000).
The development in polymerization technique has provided novel matrices for a series of new ion exchangers. They differ from the earlier corresponding copolymers that are characterized by being essentially cross linked gels of polyelectrolytes with pore structure defined as the distance between polymeric chains.
It is well known that the fouling of the resin by organic compounds and mechanical stress imposed by plant operating at high flow rates are the most important problems encountered in the use of the ion exchange resins (De Dardel & Arden, 2001). To overcome these problems the ion exchangers with a high degree of cross linking containing artificial open pores in the form of channels with diameters up to 150 nm were introduced (Fig. 2).
The structure of gel and macroporous ion exchangers (http://dardel.info/IX/index.html)
The first macroporous ion exchanger was a carboxylic resin made by Rohm and Haas, which covered a wide variety of acrylic compounds copolymerized with polyvinyl cross linking agents to make insoluble, infusible weakly acidic resins. By 1948 AmberliteTM IRC-50, made by the copolymerization of methacrylic acid and divinylbenzene was in production and possessed the ‘sponge structure’ (Abrams & Milk, 1997). According to the definition by Stamberg and Valter (1970) the macroporous resin should be characterised by measurable inner surface by any suitable method resulting from pores 5 nm, even in the completely dried state. In contrast, the gel materials did not show any porosity in the dry state. Then the term ‘macroreticular’ (sometimes abbreviated to MR) was selected to distinguish resins with a particular type of porosity obtained by application of precipitating diluents such as t-amyl alcohol. In 1979 Amber-Hi-Lites stated that ‘macroreticular’ resins are those made by a copolymerization technique which brings about precipitation during the polymerization, thus resulting in a product which has two phases, a gel phase in the form of microspheres formed during the phase separation and the pore phase surrounding the microspheres (Kunin, 1979). Later when quantitative porosity measurements were used it was shown that other methods of preparation gave products similar to those declared as ‘macroreticular’. Therefore classification of resins should be based on their properties and function (Ion exchange resins and adsorbents, 2006).
During last decades the great progress was made by the development of the macroporous ion exchange resins. It should be mentioned that macroporous resins can also perform as adsorbents because of their pore structure. For organic ion exchange resins based on cross linked polystyrene the porosity was originally selected by the degree of cross linkage. These gel type resins are able to sorb organic substances from water according to their degree of porosity and the molecular weight of the adsorbate. They not only allow for large molecules or ions to enter the sponge like structure but also to be eluted during the regeneration. Therefore they perform two functions: ion exchange by means of the functional groups and the reversible adsorption and elution due to the macroporous structure. They are also resistant against organic fouling which results in a longer resin life compared with the conventional gel type ion exchangers as well as the quality of the treated water is much better because of the adsorption of organic species by the macroporous structure. The SEM scan of the macroporous anion exchanger Lewatit MonoPlus MP 500 is presented in Fig. 3.
SEM scans of macroporous resins.
Ion exchange applications can be performed by either column (flow continuous) and batch technique. In column operations the ion exchange resin is placed in the vertical column to form a bed. Once the application is completed, the resin can be regenerated to use in another cycle. In batch operations the resin is shacked in a vessel with the solution to be treated. After the application is completed, the resin can be regenerated in place or transferred to a column for regeneration.
While the main aims in the production of conventional ion exchangers were focused on obtaining a high ion exchange capacity and improved chemical resistance and thermal and mechanical strength, in the case of monodisperse ion exchange resins, these efforts directed towards improvement of kinetic parameters. Heterodisperse ion exchangers are usually characterized by a standard grain size of 0.3-1.2 mm and uniformity coefficient (UC) within the limits of 1.5-1.9. In the case of monodisperse ion exchange resins during the manufacturing process the grain size from 0.6 mm and uniformity coefficient within the limits 1.1-1.2 is usually achieved. In addition, monodisperse ion exchangers, due to the uniform packing of the column, show more than 12% higher ion exchange capacity, faster kinetics of exchange and a much higher mechanical strength, which is extremely important from the economical point of view. As the particle size of the ion exchanger material and its uniformity are the most important parameters influencing the hydraulics and kinetics of the ion exchange therefore the monodisperse ion exchangers provided better flow characteristics in column applications in comparison to the conventional heterodisperse ion exchangers (the flow rate decreases with the decreasing particle size, however, smaller particles have larger outer surface, but cause larger head loss in the column processes) (Scheffler, 1996; Krongauz & Kocher, 1997). The visualization of the monodisperse and hetrodisperse ion exchangers is presented in Fig. 4a-b.
For example the research carried out by Zainol & Nicol (2009a) shows that in the the sorption process of Ni(II) and other metal ions the monodisperse resin (Lewatit MonoPlus TP 207) proved to be superior to the conventional heterodisperse ones in terms of loading capacity for Ni(II) and also the kinetics of adsorption. This makes it a preferred choice for different applications.
The monodisperse and hetrodisperse ion exchangers.
The influence of temperature on the equilibrium properties of ion exchange resins was studied extensively. The decrease of the capacity of the cation exchange resins based on the polystyrene matrix due to the operation temperature is not a significant problem. However, the relatively slight decomposition gives enough decomposition products to cause significant problems elsewhere. This may be decomposition of the bone polystyrene matrix, resulting in styrene sulphonic acid derivatives or as a substitution of the sulphonic group giving sulphate. Further decomposition of styrene sulphonic acid derivatives will also result in sulphate as one of the end products (desulphonation). The amount of sulphate produced is sometimes high. The information on the stability of the ion exchange resins mainly deals with the anion exchange resins. The mechanism of the degradation of quaternary ammonium salts and tertiary anions is well-known (Reynolds, 1982; Fernandez-Prini, 1982; Fisher, 2002). The effect of temperature on the properties of chelating ion exchangers was also described in the paper by Ivanov (1996).
Ion exchange technique can remove traces of ion impurities from water and process streams and give a product of desired quality. Ion exchangers are widely used in analytical chemistry, hydrometallurgy, antibiotics, purification and separation of radioisotopes and find large application in water treatment and pollution control (Clifford, 1999; Luca et al. 2009). The list of metals which are recovered and purified on an industrial scale by means of ion exchange include: uranium, thorium, rare earth elements (REEs), gold, silver, platinum metals (PGM), chromium, copper, zinc, nickel, cobalt and tungsten.
In some of these cases, the scale of operations is relatively small, for instance in the rare earth elements or noble metals, but the values of recovered metals are very high. Ion exchange process is particularly suitable for purification of metal ions with a high value and low processing. The alternative is also a process of large-scale recovery of trace amounts of metals from waste streams, such as cadmium and mercury, chromium, or copper and zinc. The use of ion exchange processes in hydrometallurgy is high and every year continues to grow. It is associated mainly with the progress of what is observed in the synthesis of new selective chelating ion exchangers containing complexing ligands (Minczewski, et al. 1982;
Typical disadvantage of lack a of the selectivity towards heavy metal ions and alkali and alkaline earth metal ions of most widely used functionalized ion exchangers such as Chelex 100 is overcome by introducing chelating ligands capable of removing selective metal ions. It exhibits high affinity for heavy metal ions:
Generally, the functional group atoms capable of forming chelate rings usually include oxygen, nitrogen and sulphur. Nitrogen can be present in a primary, secondary or tertiary amine, nitro, nitroso, azo, diazo, nitrile, amide and other groups. Oxygen is usually in the form of phenolic, carbonyl, carboxylic, hydroxyl, ether, phosphoryl and some other groups. Sulphur is in the form of thiol, thioether, thiocarbamate, disulphide groups etc. These groups can be introduced into the polymer surface by copolymerization of suitable monomers, immobilization of preformed ligands, chemical modification of groups originally present on the polymer surface. However, the last two are most often used (Warshawsky, 1987). Chelating resins with such type of ligands are commonly used in analysis and they can be classified according to Fig.1. (Kantipuly et al. 1990). The choice of an effective chelating resin is dictated by the physicochemical properties of the resin materials. These are the acid-base properties of the metal species and the resin materials, the polarizability, selectivity, sorptive capacity, kinetic and stability characteristics of the resin. The sorption capacity of chelating ion exchangers depends mainly on the nature of functional groups and their content as well as solution pH as for their selectivity it depends on the relative position of functional groups, their spatial configuration, steric effects, and sometimes their distance from the matrix and to a lesser extent on the properties of the matrix. Their use allows the recovery of valuable metals from ores and sludge, sea water and industrial effluents. They are used as flotation agents, depressants, flocculants and collectors.
It is worth emphasizing that these resins are invaluable wherever it is necessary to concentrate or remove elements present in very low concentrations.
With a range of well known chelating ion exchangers only a few types are produced on an industrial scale. Among the most important ones these with the functional groups: amidoxime, dithiocarbamate, 8-hydroxychinoline, iminodiacetate, aminophosphonic, bispicolylamine, diphosphonic, sulphonic and carboxylic acid groups, thiol, thiourea as well as isothiourea should be selected (Sahni & Reedijk, 1984; Busche et al. 2009). Among them the chelating ion exchangers possessing methylglucoamine, bis(2pirydylmethyl)amine also known as bispikolilamine, thiol etc. are used for special applications such as removal of precious metal ions, heavy metal ions from the acidic medium, boron and special oxoanions removal. A separate group are ion exchangers of solvent doped type used for In, Zn, Sn, Bi, etc. separation. The advantages of ion exchangers from these groups include good selectivity, preconcentration factor, binding energy and mechanical stability, easy regeneration for multiple sorption-desorption cycles and good reproducibility in the sorption characteristics.
The choice of hydroxamic acids is based on their application in mineral processing as collectors in flotation of haematite, pyrolusite or bastnaesite ores. The copolymer of malonic acid dihydroximate with styrene-divinylbenzene was used for uranium(VI) removal from sea water (Park & Suh, 1996). In the paper by Ahuja (1996) it was found that glycin hydroximate resin shows maximum adsorption for Fe(III), Cu(II) and Zn(II) at pH 5.5; for W(VI), U(VI), Co(II) and Ni(II) at pH 6.0 as well as for Cd(II) at pH 6.5. It can be recommended for separation of Cu(II) from Co(II) and Ni(II) at pH 5.5. However, the iminodiacetic– dihydroximate resin can be applied for U(VI), Fe(II), Cu(II) separation according to the affinity series:
and metal ions are coordianated by the hydroxamide functional group (a).
Chelating resins with the amidoxime functional groups such as Duolite ES-346, and Chelite N can be applied for the concentration of solutions containing Ag(I), Al(III), Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Hg(II), Mn(II), Ni(II), Mo(VI), Pb(II), Ti(IV), U(VI), V(V) and Zn(II) in the presence of alkali and alkaline earth metal ions (Samczyński & Dybczyński, 1997; Dybczyński et al. 1988). Alkali and alkaline earth metal ions are poorly retained by these resins. Duolite ES-346 is commonly used to extract uranium(VI) from seawater and As(III) from aqueous solutions. It can be also applied for Pd(II) removal (Chajduk-Maleszewska & Dybczyński, 2004). It is characterized by high selectivity towards Cu(II) ions due to the presence of amidoxime groups and small quantities of hydroxamic acid (RCONHOH):
where: R is the resin matrix.
It was found that for the amidoxime resins the selectivity series can be as follows:
However, the second reaction is the representative of the degradation of amidoxime groups under less acidic conditions (pH < 3.0). The increase in pH causes the weakening of the hydrogen ions competition for active sides resulting in an increase in the complexation of metal ions such as Cu(II). The fact that the degradation of the functional groups of Duolite ES-346 occurs under the influence of strong mineral acids is a serious problem which can significantly reduce the chelating capacity of the resin. However, this effect was made use of the recovery of adsorbed ions on the resin ion exchange. Corella et al. (1984) demonstrated that poly(acrylamidoxime) can be successfully used for the preconcentration of trace metals from aqueous solutions.
Also salicylic acid is a ligand which can selectively complex with Zn(II), Pb(II), Fe(III). Using the salicylic acid loaded resin for preconcentration of Zn(II) and Pb(II), it was proved that the preconcentration factors are much higher than those for bis(2-hydroxyethyl)dithiocarbamate (Saxena et al. 1995). However, the phenol-formaldehyde resin with the salicylaldoxime and salicylaldehyde functional chelating groups shows high selectivity for Cu(II) ions (Ebraheem & Hamdi, 1997).
The affinity order of metal complexes of salicylaldoxime is as follows: Fe3+ > Cu2+ > Ni2+ > Zn2+ > Co2+.
The high affinity for transition metal ions is also exhibited by the classes of ion exchangers with the dithiocarbamate functional groups (including commercially available Nisso ALM 125), in which sulphur is the donor atom. Ion exchangers of this type have high affinity for the Hg(II), Pb(II), Cd(II) ions as well as precious metal ions, however, they do not adsorb alkali and alkaline earth metals. It was shown that dithiocarbamates obtained with the share of primary amines are less stable than those obtained with the share of secondary amines, and the binding of metal ions to the functional group of the donor atom increases in the number of Fe2+ < Ni2+ < Cu2+. The sorption efficiency is dependent on the presence of ions in the solution such as SCN-. In the paper by McClain and Hsieh (2004) the selective removal of Hg(II), Cd(II) and Pb(II) was presented. This resin is also effective for separation and concentration of Mn(II), Pb(II), Cd(II), Cu(II), Fe(III) and Zn(II) from complex matrices (Yebra-Biurrun et al. 1992). The copolymer of poly(iminoethylo)dithiocarbamate was used for sorption of VO2+, Fe(II), Fe(III), Co(II), Ni(II) and Cu(II) (Kantipuly et al. 1990)
A simple method for immobilization of 8-hydroxyquinoline in a silica matrix is described by Lührmann (1985). The sorbent was used in the sorption of Cu(II), Ni(II), Co(II), Fe(III), Cr(III), Mn(II), Zn(II), Cd(II), Pb(II) and Hg(II) at pH from 4 to 6. It was shown that the sorption capacity varies in the range from 0.2 to 0.7 mM /g, and the partition coefficients from 1×103 to 9×104. Ryan and Weber showed (1985) that this type of sorbent has better sorption properties with respect to Cu(II) than Chelex 100 with the iminodiacetate functional groups. Th sorbents based on 8-hydroxyquinoline can be used, e.g. for concentration of the trace metal ions Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pb(II) and Cr(III) from sea water (Pyell & Stork, 1992).
Recently the attention has been paid to the ion exchangers with the amino- or iminoacids groups. The presence of two carboxyl groups and the tertiary nitrogen atom provides strong preference for chromium(III) and copper(II) (Marhol & Cheng, 1974). Therefore, for the commercial chelating ion exchangers such as Chelex 100, Dowex A 1, CR-20, Lewatit TP 207, Lewatit TP 208, Purolite S 930, Amberlite IRC 748 (formely Amberlite IRC 718) or Wofatit MC-50 the sorption process of metal ions proceeds according to the order: Cr3+ > Cu2+ > Ni2+ > Zn2+ > Co2+ > Cd2+ > Fe2+ > Mn2+ > Ca2+ >> Na+. This type of ion exchangers also exhibis high affinity for Hg(II) and Sb(V) ions. It should be noted that depending on the pH value they may occur in the following forms (Zainol & Nicol. 2009a):
At pH <2.0 the nitrogen atom and the two carboxylic groups are protonated. In this case the chelating ion exchanger with the iminodiacetic functional groups behaves as a weakly basic anion exchanger. At pH ~ 12, the nitrogen atom and the two carboxylic groups undergo deprotonation – the ion exchanger behaves as a typical weakly acidic cation exchanger. For pH medium values, the iminodiacetic resin behaves as an amphoteric ion exchanger. The iminodiacetate groups provide electron pairs so that the binding force for the alkaline earth metals is 5000 times as large as that for alkali metals like Ca(II), which react with divalent metals to form a stable coordination covalent bond. Therefore, the affinity series determined for the iminodiacetic ion exchanger can be presented in the order:
Amberlite IRC 748 in the K(I) form was also used for removal of Ca(II), Mg(II) from the potassium chromate solution (Yua et al. 2009). The optimum pH obtained for Ca(II) and Mg(II) adsorption onto Amberlite IRC 748 from the potassium chromate solution is 9.8 and 9.5, respectively. It was also noted that an increase of temperature and resin dosage resulted in their higher adsorption and the equilibrium conditions were attained within 480 min. The experimental data were relatively well interpreted by the Langmuir isotherm and the monolayer adsorption capacities of Ca(II) and Mg(II) were equal to 47.21 mg/g and 27.70 mg/g, respectively. This is of great importance because manufacturing of chromium trioxide by electrolyzing chromate salts, as a green process with the zero emission of waste, is studied widely now (Li et. al 2006). It should be also pointed out that separation factors between Mg(II) and Ca(II) and other divalent metal ions on an iminodiacetate resin are much smaller than those expected from the stability constants of their IDA complexes in solutions. Such phenomena were qualitatively described as the ‘polymer effect’ or operation of ion exchange as well as complexation reactions. Pesavento et al. (1993) gave a quantitative explanation for these anomalies on the basis of the Gibbs-Donnan model. Ca(II) and Mg(II) ions are adsorbed forming the R(Hida)2M complexes in acidic media and R(ida)M in neutral and alkaline systems whereas Ni(II) or Cu(II) etc. forms the R(ida)M complexes:
Commercially available chelating resins with the iminodiacetate functional group (Amberlite IRC 748, Lewatit TP 207, Lewatit TP 208, Purolite S 930, Lewatit MonoPlus TP 207) have been evaluated for their suitability for the adsorption of Ni(II) and other metal ions (Al(III), Ca(II), Co(II), Cr(III), Cu(II), Fe(II/III), Mg(II), Mn(II) and Zn(II)) from the tailings of a pressure acid leach process for nickel laterites. The Amberlite IRC 748 and TP MonoPlus 207 resins were found to be the most suitable in terms of loading capacity for nickel and kinetics of adsorption. Although all the five resins studied have the same functional groups their performance is not identical. The observed differences are possibly caused by variations in the synthesis procedure which results in variations in the structure of the matrix, degree of cross linking, density of functional groups, proportion of iminodiacetate groups and also the particle size (Zainol & Nicol, 2009a)
Additionally, the research carried out by Biesuz et al. (1998) shows that in the case of Ni(II) and Cd(II) sorption the structure of formed complexes is different. Ni(II) forms complexes of R(ida)M type, whereas Cd(II) R(idaH)2M. However, in the paper by Zagorodni & Muhammed (1999) it was stated that the complexes R(Hida)2M should be extremely weak or even impossible. The adsorption equilibrium of Ni(II), Co(II), Mn(II) and Mg(II) on Amberlite IRC 748 has been discussed in (Zainol & Nicol, 2009b). The resin proves to have high selectivity for Ni(II) and Co(II) which suggests that these metals can be easily separated from Mg(II) and Mn(II) at pH 4 and 5. The following order of selectivity of the resin was also found: Ni(II) > Co(II) > Mn(II) > Mg(II).
The kinetics of Cd(II) sorption from separate solutions and from the mixtures with the nonionic surfactant Lutensol AO-10 (oxyethylated alkohols) in the hydrogen form of chelating iminodiacetic ion exchanger has also been investigated (Kaušpėdieniė et al. 2003). It was stated that the sorption of Cd(II) from separate solutions and from the mixture with AO-10 is controlled by the intraparticle diffusion in acidic (pH 5) and alkaline media (pH 7.6). The presence of AO-10 leads to a decrease in the rate of intraparticle diffusion. The iminodiacetate resin has a large collective adsorption with Cr(III) ion. The Cr(III) form bearing waste water can be removed at any pH in the range 3-6 at 2h of the phase contact time. Therefore for treatment of leather tanning, electroplating, textile and dyeing waste water the application of this resin is economical (Gode & Pehlivan, 2003)
Adsorption of trivalent metal ions on iminodiacetate resins was not studied as extensively as that of divalent metal ions. The known selectivity order of trivalent metal ions on an iminodiacetate resin can be presented as: Sc3+ > Ga3+ > In3+ > Fe3+ > Y3+ > La3+ > Al3+ (Yuchi et al. 1997).
Also since the end of the 1960s fibrous adsorbents with the iminodiacetic acid groups have been studied. For example, the capacity of a commercially available iminodiacetic acid fiber named Ionex IDA-Na was established to be 0.9-1.1 mmol/g for Cu(II). The fibrous materials containing iminodiacetate groups were developed by the group of Jyo et al. (2004). Although the metal ion selectivity of the present fiber was close to that of iminodiacetic acid resins, the metal adsorption rate of chloromethylstyrene-grafted polyethylene coated polypropylene filamentary fiber is much higher than that of commercially available granular exchangers of this type having cross-linked polystyrene matrices. In the column mode adsorption of Cu(II), breakthrough capacities of Cu(II) were independent of the flow rates of feeds up to 200-300/h. The main reasons for the extremely fast adsorption rate of sorbent can be ascribed to the diameter of the fiber being much less than those of the resins as well as to the fact that the functional groups were introduced onto non cross linked grafted polymer chains. Their chemical and physical stabilities are comparable to those of commercially available iminodiacetic acid resins.
Among various types of ion exchangers with the acidic ligands, those having phosphonate functionality are of particular interest since they are selective towards heavy metal cations. Development of this type of ion exchangers started in the late 1940s with phosphorylation of poly(vinyl alcohol) using various phosphorylating agents (Trochimczuk & Streat, 1999; Trochimczuk 2000). Besides phosphate, phosphinic and phosphonic resins, containing –OPO(OH)2, –PO(OH) and -PO(OH)2 functional groups, respectively, they also contain methylenediphosphonate, ethylenediphosphonate and carboxyethyl phosphonate ones (Marhol et al. 1974;
Kabay, 1998a; Ogata et al. 2006). In all cases they display good selectivity towards metal ions even at very low pH (except for ethylenediphosphonate and carboxyl containing resins, being less acidic, more selective at the pH value from 1 to 2).
Chelating ion exchangers with the phosphonic functional groups are characterized by extremely high selectivity towards Th(IV) and U(IV,VI) as well as Cu(II), Cd(II), Zn(II), Ni(II), Ag(I), Au(III) and Fe(III) ions. Commercially available resins containing the phosphonic groups are Diaion CRP200 and Diphonix® Resin. In the case of Diphonix® Resin besides the diphosphonic functional groups in the structure of the ion exchanger, there are also carboxylic and sulphonic functional groups whose presence determines better hydrophilic properties. Diphonix® Resin as well as Diphonix A with the functional phopshonic and ammonium (type 1) or pyridyne (type 2) groups have been of significant interest lately (Chiarizia et al. 1993; Horwitz et al. 1993; Chiarizia et al. 1994; Chiarizia et al. 1996, Alexandratos, 2009). Diphonix® Resin was developed by the Argonne National Laboratory and University of Tennessee. It is synthesized by a patented process involving copolymerization of tetraalkylvinylidene diphosphonate with styrene, divinylbenzene, and acrylonitrile followed by sulphonation with concentrated sulphuric acid. Finding a method for effective copolymerization of vinylidene-1,1-diphosphonate (VDPA) ester was a major achievement because of the steric hindrance imposed on the vinylidene group by the diphosphonate group. This difficulty was overcome by using another relatively small monomer, acrylonitrile, as a carrier to induce polymerization of vinylidene-1,1-diphosphonate (Horwitz et al. 1994; Horwitz, et al. 1995). The protonation constants of Diphonix Resin® which are pK1 and pK2 < 2.5 pK3=7.24 and pK4=10.46 appear almost equal to the protonation constants of the starting material VDPA which are pK1=1.27, pK2 = 2.41, pK3=6.67 and pK4=10.04 (Nash et al. 1994).
In the past few years there were many publications on the separation of lanthanides and actinides on the chelating resins with the phosphonic groups. Lanthanides in minerals occur in small amounts, usually in the form of mixtures, often isomorphic, so that their extraction and separation create many problems. To this end also Diphonix® Resin can be used especially at low pH. It is characterized by high affinity for U(VI), Pu(IV), Np(IV), Th(IV), Am(III) and Eu(III). It was found that from 1 M HNO3 solutions the distribution coefficient of Diphonix® Resin for U(VI) ions is 70,000 compared to 900 for sulphinic acid resin (Alexandratos, 2007) and the recovery coefficient for Eu(III) under the same conditions is 98.3, whereas for the sulphonic acid resin 44.9 (Ripperger & Alexandratos, 1999). In the paper by Phillips et al. it was demonstrated that Diphonix Resin® can be successfully used for removal of uranium from the solutions of pH > 5 including high concentration of NO3- ions as it is less sensitive to interference by such ions as carbonates, nitrates(V), sulphates(VI), Fe(III), Ca(II) and Na(I) (Philips et al. 2008). It can be also used for removal of V(V), Cr(III), Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Hg(II) and Pb(II) form waters and waste waters; V(V), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and Pb(II) from drinking water; Mn(II), Co(II) and Ni(II) from waste waters of the oil industry; Cr(III) from acidic solutions, Fe(III) from the solutions containing complexing agents in the process of removing scale and radionuclides from radioactive waste waters. Smolik et al. (2009) investigated separation of zirconium(IV) from hafnium(IV) sulphuric acid solutions on Diphonix Resin®. It was found that the best medium for separation of hafnium(IV) and zirconium(IV) is 0.5 M sulphuric acid. A decrease in temperature lowers the degree of metals separation, while lower flow rates through the column increases zirconium(IV) from hafnium(IV) separation. Recent studies have shown that Diphonix Resin® can also be used for removal of Cd(II) and Cr(III) from the phosphoric acid solutions through column tests. Kabay et al. (1998b) found that the acid concentration strongly determines the resin behaviour with respect to the sorption/elution of Cd(II) and Cr(III). In the paper by Cavaco et al. it was pointed but that Diphonix Resin® has strong affinity for Cr(III) ions and high selectivity towards Fe(III) and Ni(II) (Cavaco et al. 2009). The mechanism of sorption on Diphonix Resin® can be written as (Hajiev et al. 1989):
R−(PO3H2)22- + M2+ ⇄ R−(PO3H2)2-→M2+\n\t\t\t
where: R is the resin matrix.
However, according to the literature, Diphonix Resin® has the best selectivity for transition metals such as Fe(III), Cu(II) and Ni(II) over Cr(III). High affinity of Diphonix Resin® for Fe(III) compared to the mono- and divalent ions e.g. Ca(II) was reported in several papers. Owing to its very good separation capability, Diphonix Resin® was also applied in the project FENIX Iron Control System to remove iron from the spent copper electrolyte in Western Metals Copper Ltd. (Queensland, Australia). In this plant, copper(I) sulphate(VI) was used as a reducing agent at the reaction temperature of 85 °C to increase the elution of Fe(III):
Fe2(SO4)3 + 6HR ⇄ 2Fe(R)3 + 3H2SO4
CuSO4 + Cu ⇄ Cu2SO4
2Fe(R)3 + 3H2SO4 + Cu2SO4 ⇄ 2FeSO4 + 2CuSO4 + 6HR
where: R is the resin matrix.
In the paper by Lee & Nicol (2007) it was proved that sorption capacities of Diphonix Resin® for Fe(III) and Co(II) ions in the sulphate(VI) system at pH 2 are equal to 130 mg/g and 90 mg/g, respectively.
The obvious disadvantage of this ion exchanger is therefore the fact that it is difficult to remove Fe(III) ions. To this end 1-hydroxyethane-1,1-diphosphonic acid (HEDP) is used. In the case of Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Sn(II) and Pb(II) ions 2M H2SO4 can be also applied.
In the group of chelating ion exchangers containing phosphonic and aminophosphonic functionalities the resins with aminoalkylphosphonic functional groups, such as Duolite C-467, Duolite ES-467, Lewatit OC 1060, Purolite S 940, Purolite S 950 and Chelite P occupy a significant position. In the sorption of heavy metal ions on this kind of chelating ion exchangers the following affinity series is obtained: Pb2+ > Cu2+ > UO22+, Zn2+, Al3+ >Mg2+ > Sr2+ > Ca2+ > Cd2+ > Ni2+ > Co2+ > Na+ > Ba2+. These ion exchangers as well as the previously mentioned phosphonic ones exhibit poor affinity for Ca(II) and Mg(II). The effectiveness of sorption of the above mentioned metal ions, however, decreases with the decreasing pH. It is worth mentioning that depending on pH value, the aminoalkylphosphonic groups may occur in the following forms:
and therefore the selectivity of metal ions sorption depends on the degree of ionization of phosphonic groups. In the case of acidic solutions due to protonation of the nitrogen atom of aminophosphonic group there are formed combinations with the following structure:
One of the most favourable modes of chelation of the phosphonic acid group is the formation of a four-membered ring through determination of two P-OH groups.
Additionally, in the case of the aminoalkylphosphonic groups, due to the fact that between the aromatic ring of the matrix and the nitrogen atom there is also presented the alkyl group, the increase of the electron density on the nitrogen atom of the amino group is expected. It affects the growth of its protonation. Therefore, this preferred zwitterion form can be as follows:
However, the possibility of coordination of the secondary nitrogen atom at lower pH seems to be impossible with respect to its protonated nature and also for steric reasons. Therefore the only potential donor and binding sites of Duolite ES-467 are the oxygen atoms of the phosphonic groups at lower pH values. The chelating, aminomethylphosphonic functional group is also potentially a tridentate ligand having two bonding sites at a phosphonic acid groups and one coordination site at the secondary nitrogen atom (Kertman, 1997; Nesterenko et al. 1999). Formation of a four membered ring through bonding of one of the OH groups and coordination of the oxygen atom has also been reported. These structures are presented below:
Chelating ion exchangers with the aminoalkylphosphonic functional groups, like picolylamine resins - Dowex M 4195 exhibits moderate selectivity for Cu(II) over Fe(III) in the acidic sulphate(VI) solutions compared to the iminodiacetic acid resins which show no or limited selectivity depending on pH. The stability constants for divalent metal ions with aminomethylphosphonic acid have been found in the order: Ca2+ < Mg2+ < Co2+ < Ni2+ < Cu2+ > Zn2+ (Sahni et al. 1985). In the paper by Milling and West (1984), it was found that Duolite ES-467 possesses a higher capacity for copper(II) ions compared to nickel(II) and iron(III) and that the capacity decreases with the decreasing pH and metal ion concentration in the solution.
Besides Duolite ES-467, Purolite S 950 has been proved to have a high affinity for various heavy metal ions and it is successfully applied in metallurgical and wastewater treatment processes. In the paper by Koivula et al. (2000) Purolite S-950 was used for purification of effluents from metal plating industry containing Zn(II), Ni(II), Cu(II) and Cd(II) ions. Among others, it was stated that Purolite S-950 showed lower sorption capacity equal to 1.2 eq/dm3 for zinc chloride compared to zinc solutions containing KCl and NH4Cl (1.3 eq/dm3). Under analogous conditions the sorption capacity for Cd(II) was 1.1 eq/dm3. Recovery of Ni(II) and Co(II) from organic acid complexes using Purolite S 950 was also studied by Deepatana & Valix (2006). They found that sorption capacities for nickel sulphate(VI) for Dowex M4195 (94.51 mg/g), Amberlite IRC 748 (125.03 mg/g) and Ionac SR-5 (79.26 mg/g) are much higher than those for Purolite S-950 in the case of sorption of Ni(II) complexes with citric acid (18.42 mg/g), malic acid (14.45 mg/g) and lactic acid (19.42 mg/g) mainly due to the steric hindrance. For Co(II) ions analogous results were obtained (citric (5.39 mg/g for citric acid; 7.54 mg/g for malic acid and 10.48 mg/g for lactic acid). The elution efficiencies of these complexes from Purolite S-950 resins were high (82–98%) therefore it would appear that the adsorption process involves weak interactions. However, in the case of the sorption of Cu(II) and Zn(II) ions from the sulphate solutions at pH 1.9 on the aminomethylphosphonic resin Lewatit R 252K and the iminodiacetic resin Lewatit TP 207 it was found that separation factors were much lower for Lewatit R 252K (83.0 at 10 oC and 30.0 at 80 oC) than for Lewatit TP 207 (1.67 at 10 oC and 1.4 at 80 oC) (Muraviev et al. 1995).
Selective ion exchange resins also include chelating ion exchangers containing N-methyl (polyhydroxohexyl)amine functional groups also called methylglucamine. Commercially available ion exchangers of this type are: Amberlite IRA 743, Duolite ES-371, Diaion CRB 02, Dowex BSR 1, Purolite S 108 and Purolite S110.
These ion exchangers show high selectivity for boron (in the form of trioxyboric acid H3BO3) (Alexandratos, 2007; Alexandratos, 2009). The boron sorption process proceeds according to the scheme:
Besides boron the following components of waste water should be also taken into account: Na(I), K(I), Ca(II), Mg(II), Cl-, SO42-, HCO3-, CO32- and effects should be also considered. Ion exchangers of this type can be used in the removal of Cr(VI) and As(V) (Dambies et al. 2004; Gandhi et al. 2010) although the mechanism of sorption of chromate ions(VI) involves both electrostatic interactions with the protonate amino group and the reduction of Cr(Vl) to Cr(III):
As for arsenate removal the process should be conducted from aqueous solutions at neutral pH. The percent removal of arsenate from the aqueous solution of 100 mg/ dm3 arsenate and 560 mg/dm3 sulphate on NMDG resin is 99% and the reaction is unaffected by the presence of phosphate ions and the solution pH above 9.0, indicating that it can be regenerated with the alkaline solution. It was determined that the key variable in its selectivity is that the resin has to be protonated prior to contact with the aqueous solution (Alexandratos, 2007).
The ion exchange resins with the bis(2-pyridylmethyl)amine (bpa) functional groups also known as bispicolylamine are capable of selective sorption of transition metals, particularly Cu(II) ions due to the presence of donor atoms (nitrogen atoms) which are capable of coordination reaction with Cu(II). Due to this fact, such chelating ion exchange resins can combine ion exchange and complexing reactions and then exhibit high selectivity for metal ions. Dowex M 4195 possessing such functional groups is commercially available. It was synthesized in the early 1970s by Dow Chemical Co. and formerly known as Dowex XFS-4195 or DOW 3N. Also two others: Dowex M4196 (formerly Dowex XFS-4196) N-(2-hydroxyethyl)picolylamine or Dowex XFS-43084 (DOW 2N) with N-(2-hydroxypropyl)picolylamine were recognized (Jones & Pyper, 1979; Grinstead, 1984).
Bis(2-pyridylmethyl)amine (bpa) is an uncharged tridentate ligand having the ability to form charged complexes with most divalent metals. The 1:1 complexes with the metal ions of [M(bpa)]2+ type are stable (Hirayama & Umehara, 1996). Based on the pKa values of bis(2-pyridylmethyl)amine (pK1=0.5, pK2=2.2, pK3=3.4), it can be stated that at low pH values three nitrogen atoms would be protonated, while in the middle range of pH only one. For instance, Cu(II) ions (the coordination number is equal to 4) with the bis(2-pyridylmethyl)amine group and water molecule coordinate to it giving a square planar structure. In the next stage the H2O molecule can be replaced by the anion, which is able to coordinate Cu(II) by a ligand exchange reaction:
R−N(bpa)2 + H+ ⇄ R−NH+(bpa)2
2R−HN+(bpa)2 + M2+ ⇄ [R−HN+(bpa)2]2→M2+\n\t\t\t
The complexes formed in the resin phase possess the following structure:
The obtained complex ion exchanger provides a new mode for the recognition of ions in the chromatographic analysis. Dowex M-4195 is a weak base ion exchanger and 1 M H2SO4 is in the protonated form (pKa = 3.2). It is also resistant to osmotic shock. Diniz et al. (2000, 2002, 2005) showed that the affinity series of metal ions determined in the one-component system for Dowex M 4195 is as follows: Cu(II) > Ni(II) > Co(II) > Pb(II) > Fe(III) > Mn(II) and it is slightly different from that in the multicomponent system: Cu(II) > Ni(II) > Pb(II) > Fe(III) > Co(II) > Mn(II). The affinity of the transition metal cations for Dowex M 4195 in most cases was in agreement with the Irving-Williams order (Irving and Williams, 1953): Fe(II) < Co(II) < Fe(III) < Ni(II) < Cu(II) > Zn(II). It can be used for purification of chloride solutions after leaching of Mn(II) containing trace amounts of Co(II), Pb(II), Ni(II) and Cu(II). It can be also used for gold recovery (Tuzen, 2008).
On a commercial scale Dowex M 4195 has been used, among others, for separation of Ni(II) ions in the presence of Co(II) at INCO’s Port Colborne refinery in Canada and Zambia Chambishi Cobalt Plant (Diniz et al. 2005) for purifying cobalt electrolytes. The efficiency of sorption of both ions is affected not only by pH, but by also by the concentration of sulphate(VI) ions and temperature. It is worth mentioning that separation of the twin pair Co(II)-Ni(II) is one of the most difficult tasks in inorganic chemistry. Contrary to Lewatit TP 207 and Amberlite IRC 718 with the iminodiacetate functional groups, Dowex M-4195 is characterized by the maximum sorption capacity towards Cu(II) ions in the pH range 1-4 (Melling and West, 1984). The sorption process can be presented in the following reaction:
RHn + Cu2+ ⇄ R–Cu2+ + nH+
where: R is the resin matrix, n is the stoichiometric ratio, for n≠2 the SO42- ions sorption occurs.
Partial washing out of copper(II) ions proceeds by means of 4M H2SO4, whereas the total one by means of NH3 H2O. In the case of sorption of Cu(II) ions sorption in the presence of Fe(III) ions, the ion exchange mechanism must be assumed. Sorption of both ions is affected not only by pH, but also by concentration of sulphate(VI) ions and temperature. Fe(III) ions sorption increases significantly with the temperature rise from 293 K to 303 K, whereas it does not change for Cu(II) ions.
The ion exchangers with the picolylamine functional groups can be the basis for obtaining the polymeric ligand exchanger (PLE) with the structure presented above (Zhao et al. 1998; Kołodyńska 2009c):
Such kind of ion exchanger consists of the cross linked polystyrene-divinylbenzene matrix, covalently attached bispicolylamine functional groups and Lewis acid cations (such as Cu2+, Ni2+, Fe3+, Co2+ according to the series: Cu2+ > Ni2+ > Fe3+ > Co2+) coordinated to the functional groups and without neutralization of their positive charge so that the anion exchanger is obtained. It is expected to show high affinity not only for phosphates(V) HPO42-, arsenate(V) HAsO42- and chromate(VI) CrO42- ions but also oxalates ox2-, perchlorates ClO4-, tartaric acid as well as simultaneous and selective removal of heavy metal and chromate ions (contrary to other ion exchangers) (Saygi et al. 2008; Dimick, 2008; Du et al. 2008). It was found that for phosphates(V) HPO42- removal, the sorption efficiency is much higher than that for the strongly basic macroporous anion exchanger Amberlite IRA 958 and proceeds according to the reaction:
R–M2+(2Cl-) + HPO42- ⇄ R–M2+(HPO42-) + 2Cl-
The desorption process can be written as follows:
R–M2+(HPO42-) + 2Cl- + H+ ⇄ R–M2+(2Cl-) + H2PO4-
R–M2+(HPO42-) + 2Cl- ⇄ R–M2+(2Cl-) + HPO42-
Four chelating ion exchange polymeric resins were tested to remove Ni(II) and Co(II) from synthetic solutions on the commercially available ion exchangers Dowex M4195, Amberlite IRC 748, Ionac SR-5 and Purolite S930. Among the selected resins, Dowex M4195 showed the best results for Ni(II) and Co(II) selective sorption from acid liquors in the whole pH range and with small influence of other elements. Even at pH 1 Dowex M4195 was the most effective (Mendes & Martins, 2004).
In the group of ion exchangers with the thiol functional groups (Chelite S, Duolite ES-465, Imac GT 73) Imac TMR resin is very important. It is the macroporous ion exchanger with the PS-DVB matrix, which besides the thiol ones, also possesses the sulphone groups. Imac TMR is used for selective sorption of Hg(II) ions from the process solutions as well as Ag(I), Au(III), Pt(IV) and Pd(II). The sorption process of Hg(II) with the saline solution proceeds according to the reaction:
Dowex Retardion 11A8 is an example of a very interesting ion exchanger of the type ‘snake in a cage’ with the quaternary ammonium and carboxylic functional groups (amphotheric resin) (Dybczyński, 1987). It is produced by polymerizing acrylic acid monomer inside an anion exchange resin. Polyacrylic chains are (snake) alternate with the PS-DVB matrix (cage) and therefore they are trapped inside the cross linked ion exchange resin and cannot diffuse out. As a result, cationic and anionic sites are so closely associated that they partially neutralize their electric charges. Mobile ions, such as chlorides, nitrates(V) are attracted and retained on these unique sites until they are eluted with hot water.
Dowex Retardion 11A8 can be used for selective separation of Cd(II) ions in the presence of other heavy metal ions (Samczyński & Dybczyński, 2002). Cd(II) ions are sorbed from 2 M HCI and 2 M NH4OH with 0.1 M NH4Cl systems according to the reactions:
The impregnated resins obtained by physically loaded organic reagents on a solid inert support material such as Amberlite XAD resins are an attractive material for separation and preconcentration of heavy metal ions (Prabhakaran & Subramanian, 2003). They are characterized by good porosity, uniform pore size distribution, high surface area as a chemical homogeneous, non-ionic structure. For instance, it was found that Amberlite XAD-2 functionalized with dithiocarbamate ligand, 1,8-dihydroxynaphthalene-3,6-disulphonic acid (chromotropic acid), 2(2-thiazolylazo)-
In general, sorption selectivity of a resin can be affected by both sorbate-sorbent and sorbate-solvent interactions. It has been well recognized that resin matrix and functional groups can strongly affect ion exchange capacity and selectivity. Therefore in the presented paper the chelating ion exchangers Diphonix Resin® containing diphosphonic, sulphonic and carboxylic acid groups and Dowex M 4195 with the bis(2-pyridylmethyl) amine functional group were used for the sorption of Cu(II), Zn(II), Co(II), Pb(II) complexes with Baypure CX 100 (IDS) and Cu(II), Zn(II), Cd(II), Pb(II) complexes with Trilon M (MGDA). The presence of the sulphonic functional groups determines better hydrophilic properties of Diphonix Resin® compared to the traditional monofunctional ion exchangers.
In the paper the results of the sorption of heavy metal ions such as Cu(II), Zn(II), Cd(II) and Pb(II) in the presence of the complexing agents of a new generation Baypure CX 100 (IDS) and Trilon M (MGDA) on commercially available chelating ion exchangers are presented.
The essential physicochemical properties of these chelating agents are given in Table 1.
The chelating ion exchange resins Dowex M 4195 and Diphonix Resin® were tested. Their short characteristics are presented in Table 2.
Structure | ||
Form supplied | liquid | liquid |
Molecular weight | 337.1 | 271.0 |
Appearance | colourless to light yellow | clear yellowish |
pH | 10.3-11.4 | 11.0 |
Density [g mL-1] | 1.32-1.35 g/mL | 1.31 g/mL |
Solubility in H2O | in any ratio | in any ratio |
Solubility in NaOH | in any ratio | in any ratio |
Biodegradability [%] | "/> 80% | "/> 68% |
Termal stability | in any range | in any range |
Physicochemical properties of IDA and MGDA.
Matrix | PS-DVB | PS-DVB |
Structure | macroporous | gel |
Functional groups | bis(2-pyridylmethyl) amine bis-picolylamine | diphosphonic sulphonic carboxylic |
Commercial form | weak base, partially H2SO4 salt | H+ |
Appearance | brown to green, opaque | beige, opaque |
Total capacity | 1.3 [eq/dm3] | 5,6 [mol/kg] |
Moisture content | 40-60 % | 58.3 % |
Bead size | 0.300-1.200 [mm] | 0.074-0.150 [mm] |
Density | 0.67 [g/cm3] | 1.05-1.11 [g/cm3] |
Max temp. range | 353 K | 313 K |
Operating pH range | 2 – 6 | 0 – 12 |
Physicochemical properties of Dowex M 4195 and Diphonix Resin®.
Before the experiments, the resins were washed with hydrochloric acid (0.1 M) or sulphuric acid (0.5 M) to remove impurities from their synthesis. After pre-treatment they were washed with deionised water.
The solutions of Cu(II), Zn(II), Cd(II) and Pb(II) complexes with Baypure CX 100 and Trilon M with the desirable concentrations were prepared by mixing appropriate metal chlorides or nitrates with the complexing agents solutions, respectively. For the studies the obtained solutions were used without pH adjustment. The pH values of the solutions of Cu(II), Zn(II), Cd(II) and Pb(II) complexes with IDS were as follows: 6.7, 6.5, 69 and 7.3, respectively. For the Cu(II), Zn(II), Cd(II) and Pb(II) complexes with MGDA these values were equal to 8.3, 9.8, 10.5 and 10.4. The other chemicals used were of analytical grade.
In batch experiments, 50 cm3 of sample solution and ion exchanger (0.5 g) were put into a conical flask and shaken at different time intervals using the laboratory shaker Elpin type 357, (Elpin-Plus, Poland). After the pH of solutions was stabilized and equilibrated, the ion exchangers were filtered. The experiments were conducted in three parallel series. The reproducibility of the measurements was within 5%. Adsorption isotherms were obtained with different initial concentrations varying from 1×10-3 M to 2.5 ×10-2 M of metal ions and ligands while keeping the constant amount of resins at room temperature (295 K). The equilibrium between the solid and liquid phases was modelled by the Langmuir and Freundlich equations as presented earlier (Kołodyńska, 2010a; Kołodyńska 2010b; Kołodyńska 2010c). Kinetic studies were carried out at different time intervals varying from 1 to 120 min keeping the constant amount of resins at room temperature (295 K). The shaking speed was 180 rpm to maintain resin particles in suspension.
The amount of heavy metal complexes sorbed onto the resins was calculated by the difference between the amounts added and already present in the solution and that left in the solution after equilibrium.
The pH values were measured with a PHM 84 pH meter (Radiometer, Copenhagen) with the glass REF 451 and calomel pHG 201-8 electrodes. The concentrations of heavy metals were measured with the AAS spectrometer Spectra 240 FS (Varian, Australia).
As for the removal of toxic metal ions many different methods are available. Among them, the most commonly used are ion exchange, adsorption, reduction and precipitation. In many cases, the environmentally most compatible and cost-effective solutions include combination of two or more of these processes. From different waste waters those containing heavy metal ions and complexing agents require special attention.
For over fifty years synthetic chelating agents from the group of aminopolycarboxylic acids (APCAs) have been the basis in many technological processes. Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA) and diethylenetriaminepentaacetic acid (DTPA) are the best known traditional complexing agents. They are commonly applied in many branches of industry forming stable, water soluble complexes with various metal cations or as a masking agent. Nowadays there are a number of alternative products on the market which claim to be as effective as EDTA and NTA. Among them, IDS and MGDA should be listed.
Iminodisuccinic acid (IDS) also known as Baypure CX 100 is a medium-strong chelator consisting of: iminodisuccinic acid sodium salt > 32%, aspartic acid sodium salt < 7%, fumaric acid sodium salt < 3.5 %, hydroxysuccinic acid < 0.9 %, maleic acid sodium salt < 0.9 % (IDS Na-salz, 1998; Vasilev et al. 1996; Vasilev et al. 1998; Reinecke et al. 2000, Kołodyńska et al. 2009; Kołodyńska, 2009a). Iminodisuccinic acid sodium salt can form quintuple-bonded complexes with metal ions. In this case, complexing occurs via the nitrogen and all four carboxyl groups. As a result of the octahedric structure of the complete complex, a water molecule is required for the sixth coordination point (Kołodyńska, 2009b). In the paper by Hyvönen it was found that for low pH conditions (less than 3), the tendency for M(II)/M(III) ions to form complexes with IDS may be assumed as: Cu(II)>Fe(III)>Zn(II)>Mn(II), whereas for pH >7 it can be as follows: Cu(II)>Zn(II)> Mn(II)>Fe(III) (Hyvönen et al. 2003; Hyvönen & Aksela, 2010). IDS is able to replace EDTA when rather moderate chelating agents are sufficient for masking alkaline earth or heavy metal ions. As a substitute for EDTA it is used in a variety of applications, including detergent formulations, corrosion inhibitors, production of pulp and paper, textiles, ceramics, photochemical processes, and as trace nutrient fertilizers in agriculture.
Methylglycinediacetic acid (MGDA) was patented by BASF and marketed under the brand name Trilon M. The active ingredient contained in Trilon M is the trisodium salt of methylglycinediacetic acid. The acid dissociation constants pKa of MGDA are as follows: pK1=1.6, pK2=2.5 pK3=10.5 (Jachuła et al. 2011; Jachuła et al. 2012). The most important property of Trilon M is the ability to form complexes (MGDA is a tetradentate chelating ligand where chelation involves three carboxylate groups and nitrogen atom) with metal ions, soluble in water in the large pH range 2-13. These complexes remain stable, especially in alkaline media and even at temperatures of up to 373 K. It is worth mentioning that MGDA chelating capacity was investigated by Tandy et al. (2004) in soil washing. It was found that 89-100% of MGDA can be degraded in 14 days, 90% of EDDS in 20 days while no EDTA was degraded in 30 days.
Fig. 5a-b shows the comparison of the logarithmic stability constants (log K) for the complexes of IDS and MGDA and selected metal ions with the stability constants for EDTA.
a-b. Comparison of conditional stability constants values of some complexes of metals with EDTA and IDS (a) as well as EDTA and MGDA (b).
A high or moderately high value for log K of Cu(II), Zn(II), Cd(II) and Pb(II) and first of all Fe(III) with IDS and MGDA indicates that these chelating agents have a high affinity for particular metal ions and they provide a preliminary indication of whether the chelating agent is suitable for the specific application.
As these complexing agents are widely applied, removal of their complexes with heavy metals is essential, especially when typical chemical precipitation methods are ineffective, even if solutions with high metal concentrations are treated. Therefore, more advanced techniques are required for cleaning up such contaminants and retardation of heavy metal ions mobility. Among these, the ion exchange with application of selective resins appears to be a more promising method for the treatment of such solutions.
Generally, chelating properties and selectivity of ion exchangers have been enhanced by: (i) immobilization of ligands with multiple coordinating sites such as bifunctional polymers or polyfunctional polymers possessing different functional groups, (ii) immobilization of low molecular weight complexing agents, (iii) by preparation of ion imprinted polymers (IIP), (iv) preparation of reactive ion exchangers (RIEX), (vi) immobilization of specific donor groups through application of Pearson’s hard soft acid base theory, (vii) immobilization of macrocycles e.g. crown ethers, calixarenes, resorcinarenes etc. These approaches correspond to both chelating ion exchangers Dowex M 4195 and Diphonix Resin®. Additionally, their sorption selectivity can be affected by sorbate-sorbent and sorbate-solvent interactions. It has been well recognized that the resin matrix and the functional groups can strongly affect ion exchange capacity and selectivity (Clifford & Weber, 1983; Barron & Fritz, 1984; Li et al. 1998). Therefore, in the case of chelating ion exchangers, where the formation of coordination bonds is the basis of the sorption process, besides the parameters related to physicochemical properties of the resins, the effect of the presence of complexing agents should be also taken into account.
In the presence of the complexing agents, IDS and MGDA, there are formed:
M2+ + Hnidsn-4 ⇄ [M(Hnids)]n-2 where n=1,2,3
and
M2+ + Hnmgdan-3 ⇄ [M(Hnmgda)]n-2, where n=1,2.
Therefore using selective chelating ion exchangers the sorption effectiveness will be dependent on the decomposition of neutral or anionic species of [MH2L], [MHL]- and [ML]2- type, where L=ids4-, mgda3-. Additionally, the ‘sieve effect’ is also important (Kołodyńska, 2010b; Kołodyńska 2010c; Kołodyńska 2011). In the case of the chelating resin Dowex M 4195 possessing the bis(2-pyridylmethyl)amine (bpa) functional groups, depending on the pH value the mechanism of sorption can be as presented earlier. Additionally, the ionic interaction mechanism between the protonated amines and the anionic complexes of the [ML]2- and [ML]- is also possible (Kołodyńska 2011). Therefore, appropriate reactions can be as follows:
2R−HN+(bpa)2 Cl- + [ML]2- ⇄ [R−HN+(bpa)2]2[ML]2- + 2Cl-\n\t\t\t
R−HN+(bpa)2 Cl- + [MHL]- ⇄ [R−HN+(bpa)2][MHL]- + Cl-\n\t\t\t
or
R−HN+(bpa)2 Cl- + [ML]- ⇄ [R−HN+(bpa)2][ML]- + Cl-\n\t\t\t
where: R is the Dowex M 4195 skeleton (PS-DVB), L is the ids4- or mgda3- ligand.
The analogous mechanism of sorption in the case of Diphonix chelating ion exchanger should be considered.
Kinetic studies
For the kinetic data, a simple kinetic analysis was performed using the pseudo first order and the pseudo second order equations:
where: qe is the amount of metal complexes sorbed at equilibrium (for the pseudo first order model also denoted as q1 and q2 for the pseudo second order model) (mg/g), qt is the amount of metal complexes sorbed at time t (mg/g), k1, k2 are the equilibrium rate constants (1/min), respectively.
The sorption of Cu(II), Zn(II), Cd(II) and Pb(II) complexes with IDS on Dowex M 4195 in the M(II)-L=1:1 system is presented in Fig.6a. The analogous data for the Cu(II), Zn(II), Cd(II) and Pb(II) complexes with MGDA sorption on Dowex M 4195 are presented in Fig.6b and for Diphonix Resin® in Figs.6c and 6d.
a-b. The effect of the phase contact time on the sorption capacities of Cu(II), Zn(II), Cd(II) and Pb(II) complexes with IDS on Dowex M 4195 (a) and Diphonix Resin® (c) as well as the Cu(II), Zn(II), Cd(II) and Pb(II) complexes with MGDA on Dowex M 4195 (b) and Diphonix Resin® (d) (c0 1×10-3 mol/dm3, shaking speed 180 rpm, shaking time 1-120 min, room temperature).
The straight lines of t/qt vs. t suggest the applicability of the pseudo second kinetic model to determine the qe, k2 and h parameters (from the intercept and the slope of the plots). These kinetic parameters are presented in Tables 3 and 4.
It was shown that the equilibrium was reached very quickly. More than 90% of metal ions were bound to Dowex M 4195 and Diphonix Resin® within 10-20 min of the phase contact time and therefore a slight increase until a plateau was reached after about 2 h was observed. The values of the theoretical qe for the studied resins were in good agreement with those obtained experimentally (qe,exp). On Dowex M 4195 about 95 %, 100 %, 99 % and
Cu(II)-IDS=1:1 | 5.63 | 5.61 | 1.012 | 5.789 | 0.9987 |
Zn(II)-IDS=1:1 | 5.91 | 5.88 | 1.007 | 4.897 | 0.9988 |
Cd(II)-IDS=1:1 | 9.81 | 9.89 | 0.987 | 12.456 | 0.9999 |
Pb(II)-IDS=1:1 | 19.10 | 19.00 | 0.845 | 16.789 | 0.9992 |
Cu(II)-MGDA=1:1 | 6.05 | 5.98 | 2.335 | 9.237 | 0.9999 |
Zn(II)-MGDA=1:1 | 4.17 | 4.03 | 1.017 | 16.783 | 0.9996 |
Cd(II)-MGDA=1:1 | 12.55 | 12.23 | 0.924 | 10.123 | 0.9999 |
Pb(II)-MGDA=1:1 | 17.77 | 17.46 | 0.688 | 7.525 | 0.9999 |
The pseudo second order kinetic parameters for the sorption of Cu(II), Zn(II), Cd(II) and Pb(II) complexes with IDS and MGDA on Dowex M 4195.
Cu(II)-IDS=1:1 | 6.12 | 6.21 | 2.211 | 10.207 | 0.9999 |
Zn(II)-IDS=1:1 | 6.01 | 6.09 | 1.345 | 7.123 | 0.9991 |
Cd(II)-IDS=1:1 | 10.21 | 10.11 | 0.988 | 23.434 | 0.9999 |
Pb(II)-IDS=1:1 | 20.39 | 20.26 | 0.876 | 37.551 | 0.9998 |
Cu(II)-MGDA=1:1 | 5.66 | 5.61 | 3.469 | 11.111 | 0.9999 |
Zn(II)-MGDA=1:1 | 4.48 | 4.48 | 2.395 | 48.077 | 0.9999 |
Cd(II)-MGDA=1:1 | 10.23 | 10.24 | 0.024 | 2.475 | 0.9999 |
Pb(II)-MGDA=1:1 | 18.94 | 18.93 | 0.188 | 67.568 | 0.9999 |
The pseudo second order kinetic parameters for the sorption of Cu(II), Zn(II), Cd(II) and Pb(II) complexes with IDS and MGDA on Diphonix Resin®.
97.5 % of the Cu(II), Zn(II), Cd(II) and Pb(II) complexes with IDS and 94 %, 98 %, 96 % and 95 % complexes with MGDA are sorbed at this time, respectively. On Diphonix Resin® for the Cu(II), Zn(II), Cd(II) and Pb(II) complexes with IDS and MGDA the adequate values are as follows: 94 %, 89 %, 97 % and 98 % as well as 97 %, 86 %, 99 % and 96 %. These results indicate that the sorption process of metal ions in the presence of IDS and MGDA on Dowex M 4195 and Diphonix Resin® followed a pseudo second order kinetics, which meant that both the external mass transfer and intraparticle diffusion together were involved in the sorption process. The correlation coefficients (R2) obtained for the pseudo second order kinetic model are in the range 0.9991 -1.000 for all metal complexes. The pseudo first order parameters were not shown because the correlation coefficients for this model are low (0.7438-0.8745 for the IDS complexes and 0.919-0.986 for the MGDA complexes on Diphonix Resin®.
The breakthrough curves for Cu(II) ions in the presence of MGDA on Dowex M4195 from single metal ion solutions of a concentration 1x10–3 M are shown in Fig. 7. Typical ’S’ shaped curves were obtained in the experiments. Analogous results were obtained on Diphonix Resin®. It should be mentioned the UV exposition does not have a significant effect on the decomposition of the complexes in the resin phase.
The breakthrough curves of Cu(II) complexes with MGDA on Dowex M 4195 without and with UV exposition (c0 1×10-3 mol/dm3, bed volume 10 cm3, flow rate 0.6 cm3/min)
It is well known that the particle size of ion exchange resins influences the time required to establish equilibrium conditions and two types of diffusion must be considered in an ion exchange equilibrium e.g. the film diffusion (the movement of ions from a surrounding solution to the surface of an ion exchange particle) and the internal diffusion (the movement of ions from the surface to the interior of an ion exchange particle). Film diffusion is usually the controlling reaction in dilute solutions whereas the internal diffusion is controlling in more concentrated solutions. The particle size of an ion exchange resin affects both the film diffusion and the internal diffusion (Kołodyńska, 2011).
According to the manufacturer data the particle size of Dowex M 4195 is 0.300-1.200 mm. However, Diphonix Resin® available on the commercial scale is in the range 0.30-0.85 mm, 0.15-0.30 mm and 0.075-0.15 mm.
In the presented paper Diphonix Resin® with the particle size 0.075-0.150 mm was used to study the sorption process of Cu(II), Zn(II), CdII) and Pb(II) in the presence of IDS and MGDA. In the paper by Cavaco et al. (2009) it was found that for the range 0.15-0.30 mm, 50 % of the particles have diameters less than 0.223 mm. As follows from the obtained results, the bead size of the used chelating ion exchangers has also approximately the Gaussian distribution (Fig. 8 a-b). It was found that with the increase of bead dimensions, the volume fractions of disc-similar beads decrease and the beads are more spherical (Kołodyńska, 2011).
A decrease in the particle size thus shortens the time required for equilibration of particle size and pore characteristics have an effect on equilibrium concentration and influence sorption kinetics. Therefore this factor is essential, especially when the sorption of metal complexes, not metal ions is taken into account. In the case of large complexes the sieve effect is observed.
Kinetic sorption experiments were also carried out with the increased complexes concentrations from 1×10-3 mol/dm3 to 2×10-2 mol/dm3 and these results were presented in
a-b. Comparison of the distribution of the bead size of Dowex M 4195 (a) and Diphonix Resin® (b) based on the Zingg classification.
(Kołodyńska, 2011). It was found that with an increase of metal complexes concentrations a continuous increase in the amount adsorbed per unit mass of ion exchanger was observed till the equilibrium was achieved. For the pseudo second order kinetic model, the rate k2 values decrease with the increasing initial concentrations, while h increases.
The effect of pH was studied for the Cu(II), Zn(II), Cd(II) and Pb(II) in the M(II)-IDS=1:1 and M(II)-MGDA=1:1 systems at the pH varied from 2 to 12. The optimal sorption range of the Cu(II), Zn(II), Cd(II) and Pb(II) complexes with IDS practically does not change in the pH range from 4 to 10 both on Dowex M 4195 and Diphonix Resin® whereas, at high pH values, decrease in removal efficiency is observed. In the case of the Cu(II), Zn(II), Cd(II) and Pb(II) complexes with MGDA a slight decrease in sorption efficiency with the increasing pH was also shown.
The Langmuir equation was applicable to the homogeneous adsorption system, while the Freundlich equation was the non-empirical one employed to describe the heterogeneous systems and was not restricted to the formation of the monolayer. The well-known Langmuir equation was represented as:
where: qe is the equilibrium M(II) ions concentration on the ion exchanger, (mg/g), ce is the equilibrium M(II) ions concentration in solution (mg/dm3), q0 is the monolayer capacity of ion exchanger (mg/g), b is the Langmuir adsorption constant (L/g) related to the free energy of adsorption.
The values of q0 and b were calculated from the slope and the intercept of the linear plots ce/qe vs. ce. On the other hand, the Freundlich equation was represented as:
where: KF and 1/n are the Freundlich constants corresponding to the adsorption capacity and the adsorption intensity.
The plot of ln qe vs. ln ce was employed to generate the intercept KF and the slope 1/n.
The exemplary results presented in Fig.9a-b indicate that for the studied range of concentration of Cu(II) complexes with MGDA (1×10-3 M - 2×10-2 M) the sorption capacity of Dowex 4195 and Diphonix Resin® increases.
a-b. The effect of the concentration on the sorption capacities of Cu(II) complexes with MGDA on Dowex M 4195 (a) and Diphonix (b) (c0 1×10-3 -20x10-3 mol/dm3, shaking speed 180 rpm, shaking time 1-120 min, room temperature).
The experimental data obtained for the sorption of Cu(II), Zn(II), Cd(II) and Pb(II) in the presence of IDS and MGDA on Dowex M 4195 and Diphonix Resin® were well represented by the Langmuir isotherm model (Table 5). The correlation coefficients of the linear plot of ce/qe vs. ce obtained from them were high, ranging from 0.9512 to 0.9999 (Kołodyńska, 2011). The highest values of the Langmuir parameter q0 were obtained in the case of Pb(II)
0.023 | 0.9876 | 9.54 | 3.21 | 0.9865 | |||
0.046 | 0.9923 | 6.23 | 2.45 | 0.9456 | |||
0.008 | 0.9998 | 4.23 | 4.58 | 0.9687 | |||
0.012 | 0.9989 | 1.23 | 5.69 | 0.9623 | |||
0.026 | 0.9932 | 12.48 | 4.23 | 0.9758 | |||
0.052 | 0.9983 | 7.56 | 3.69 | 0.9823 | |||
0.061 | 0.9996 | 6.23 | 6.11 | 0.9877 | |||
0.042 | 0.9999 | 2.48 | 9.25 | 0.9837 |
The Langmuir and Freundlich isotherm parameter values for the sorption of Cu(II), Zn(II), Cd(II) and Pb(II) ions in the presence of IDS and MGDA on Dowex M4195.
complexes with IDS and MGDA on Dowex M 4195 and Diphonix Resin®. They are equal to 121.58 mg/g and 97.64 mg/g on Dowex M 4195 and 112.37 mg/g and 100.20 mg/g on Diphonix Resin®, respectively.
For the studied systems regeneration tests were conducted using HCl, HNO3, H2SO4 and NaCl at 1M and 2M concentrations. Based on the series of five experiments using known amounts of Cu(II) complexes with IDS and MGDA sorbed, it was established that the overall recoveries of Cu(II) eluted from Dowex M 4195 and Diphonix Resin® by 2M HCl and H2SO4 were above 98 %, suggesting that the recovery is quantitative.
The presence of biodegradable complexing agents of a new generation that is IDS and MGDA affects the sorption process of Cu(II), Zn(II), Cd(II) and Pb(II) ions on Dowex M4195 and Diphonix Resin®. The effectiveness of sorption depends on the type of complexes and their stability that facilitates their decomposition in the resin phase. The batch equilibrium was relatively fast and reached equilibrium after about 10-20 min of the contact. The experimental data have been analyzed using the Langmuir and Freundlich models. The sorption of studied metal ions in the presence of IDS and MGDA Dowex M 4195 and Diphonix Resin® followed the pseudo second order kinetics. As follows from the experiment pH does not have a significant effect on the sorption of Cu(II), Zn(II), Cd(II) and Pb(II) ions in the presence of IDS and MGDA on the chelating ion exchanger under consideration. The affinity of the above analyzed heavy metal complexes with IDS and MGDA Dowex M 4195 and Diphonix Resin® were found to be as follows: Pb(II) > Cd(II) > Cu(II) > Zn(II) for IDS and MGDA. The studied complexing agents can be proposed as alternative chelating agents to EDTA or NTA for the removal of heavy metal ions from waters and wastewaters.
Replace the entirety of this text with the introduction to your chapter. The introduction section should provide a context for your manuscript and should be numbered as first heading. When preparing the introduction, please bear in mind that some readers will not be experts in your field of research.
Since laser was invented by Maiman in 1960, it has experienced rapid applications in laser material processing. The advantages of high quality, high precision, high efficiency and high flexibility promote laser welding and laser additive manufacturing becoming the best developing foreground technologies in welding areas and additive manufacturing domains, respectively. Unlike arc welding, laser welding creates small melt pool with a high intensity laser beam spot, which allows the achievement of smooth welding seam with narrow heat affected zone (HAZ) and low distortion. The noncontact feature of laser also frees the welder from harshest environments. Laser additive manufacturing’s equipment and parameters share many common features with laser welding. Laser additive manufacturing can be considered by extending laser welding from two-dimension seam to three-dimension bulk with a synchronous powder or wire feeding. According to the ASTM F42 Committee [1], the laser powder bed fusion (LPBF) and laser directed energy deposition (L-DED) are the two most relevant laser additive manufacturing process.
The essence of laser material processing is laser interact with materials, either heat or melt, or ablation. Irradiated by a laser beam, the localized material undergoes a rapid heating–cooling thermal cycle. Melt pool is the main product from the interaction between laser and materials, both for laser welding and laser additive manufacturing. Melt pool temperature field and its evolution determine the temperature gradient (G) and solidification rate (R). Together, G and R determine the solidification morphology and the microstructure scale [2]. Namely, GR determines the scale of microstructure, their ratio G/R is linked to the morphology of solidified microstructure, thereby affecting the mechanical properties of the weld seam or fabricated part. In addition, melt pool geometry including its size and shape also affects solidification behavior. A wide and shallow melt pool beneficial to the epitaxial growth of grains along one direction, resulting in a strong texture. Melt pool dimension is also found correlated to residual stress in selective laser melting [3]. Such melt pool characteristics has been reviewed by Yan et al. [4], by Fotovvati et al. [5] and Willy et al. [6].
Another often overlooked melt pool characteristic is flow dynamics. Due to the small timescales and highly transient of the melt flow, it is very difficult to reveal dynamic behavior inside the melt pool. The flow in melt pool is mainly derived by spatial variation of the surface tension, which is known as thermocapillary flow or Marangoni convection, named after Italian Physicist Carlo Marangoni. Prior studies have shown that fluid flow plays an important role in heat transfer and solidification behavior in the melt pool, thus significantly affect the melt pool geometry, solidification microstructure, alloy element distribution, surface roughness and defects formation. Therefore, comprehensive understanding of the evolution of melt flow is a key concern and hot topic to improve the product quality during laser welding and laser additive manufacturing processes.
Melting of metals is commonly found various industrial applications, such as arc welding, metal casting and laser processing. Analysis of melting can be described as the Stefan problem assuming a heat conduction-controlled process; that is, fluid flow in molten pool is neglected. The effects of weld fluid flow induced by surface tension was first proposed in late 1960s [7]. From then on, various experimental and numerical investigations concerning fluid flow in laser melt pool have been reported in the open literature. Because of the small size of the weld pool and high dynamics, real-time experimental measurement of temperature and velocity fields inside the melt pool is very challenging. Therefore, mathematical modeling is the main research method to predict and describe the melt pool behavior. Mazumder [8] and Cook [9] have reviewed the approaches to incorporate melt convection effects as well as melt pool behavior during laser welding and laser additive manufacturing. However, quantitative investigations of flow pattern and velocity inside melt pool by experiment are still needed to validate the models. Recent developments in high-speed photography, image processing technology and the third-generation synchrotron radiation sources have enabled researchers to characterize the time-transient fluid flow inside the melt pool. Those research efforts are critical to reveal flow evolution and offers the possibility to calibrate or verify advanced numerical models.
This chapter aims to provide a comprehensive review of the experimental progress on melt pool flow dynamics for laser material processing, focusing on laser welding and laser additive manufacturing. The formation mechanism and driving forces for laser melt fluid flow is firstly introduced. Principal affecting factors for melt fluid flow are analyzed from open literature. The experimental results of laser melt fluid flow are reviewed and discussed, aiming at providing a fundamental understanding of melt flow convection mechanisms.
The melt pool flow dynamics depends on the forces acting on the melt volume, thus the force analysis is crucial to investigate the formation mechanism of weld geometry, solidification microstructure, surface roughness and defects. The schematic diagram of forces on melt pool is shown in Figure 1. In the liquid melt pool during laser welding and laser additive manufacturing, there are four principal forces acting on the fluid flow: buoyancy force (originate from the spatial variation of the liquid-metal density), Marangoni force (originate from surface tension gradients), gravity and shear force (originate from laser induced vapor or plasma). In the case of applying an auxiliary electric or magnetic field, electromagnetic force on liquid melt pool should be also considered. Moreover, when evaporation occurs in the keyhole melting mode, recoil pressure becomes the principal driving force of molten metal. These driving forces and the interplay between them induce the complex flow motion in the melt pool.
Fluid forces acting on the weld pool.
Buoyancy force originate from the spatial variation of the liquid-metal density, mainly because of temperature variations, and, to a lesser extent, from local composition variations. It is known that density is a function of material’s temperature, namely density decreases with increasing temperature. The temperature of liquid metal in the upper of the melt pool is higher than the bottom of the melt pool, leading to an upward movement of the melt pool as shown in Figure 2. Experimental [10] and numerical model [11] results have shown that buoyancy effect can be negligible when compared to Marangoni force in laser melting. The convection flow caused by gravity is in the direction against the buoyancy force. Simulation results showed that gravity has no noticeable influence on the dimensions and shapes weld pool when laser welding a flat plate. However, when welding applied in circumferential condition or horizontal condition or near vacuum condition. The influence of gravity on the melt flow plays a critical role. The orientations of weld pools relative to gravity are different for different welding positions. For flat welding, gravity only contributes to the fluid flow in plate thickness direction. For inclined or horizontal welding, the melt pool is shifted afterwards under gravity action. Poor weld formation quality (unstable, porosity and undercut) is more likely to be developed [12]. Guo et al. demonstrated that full penetration of thick plate in horizontal position can mitigate some of the common welding defects including undercut and sagging [13].
Effect of the sign of the surface tension temperature coefficient on fluid flow in the weld pool.
One of the important aspects of laser welding and laser additive manufacturing is the convection driven by Marangoni force, also known as thermocapillary. The Marangoni force acts as a shear stress at the free surface thereby inducing convective flow within the molten pool. The driving mechanisms of surface tension can generally be classified as: temperature gradient, concentration gradient, pH gradient, surfactant-induced flow, and so on. Among these origins, temperature gradient is considered as the main driving forces of fluid flow in laser melting pure metals and most alloys. When laser locally heats the plate surface, the highest temperature located in the center of melt pool and decreases radially, causing a surface tension difference in the melt pool and thus creating an outward melt flow. A considerable amount of studies have showed the dominance of Marangoni force in the conduction mode melt pool convection.
Generally, two laser melting mechanisms: the conduction and the keyhole (deep penetration) mode are used. Recently, they are also adapted in laser additive manufacturing. Qualitative distinction of conduction mode and keyhole mode is whether evaporation happens or not. Once evaporation takes place, the vapor pressure (recoil pressure) acts like a piston on the liquid melt pool. The recoil pressure tends to push the liquid towards the pool edge and keyhole forms. Recoil pressure is widely accepted to be the principal driving force for fluid flow in the keyhole melting.
Besides the above-mentioned driving forces in melt pool, external force could be also introduced. For example, shielding gas in laser welding could help reduce surface oxidation and stabilize the melt pool fluctuations. It will also exert pressure on melt pool and alter the flow pattern in the molten pool. Electromagnetic force may be introduced via applying an electromagnetic compound field to the molten pool.
According to the above force analysis in melt pool, surface tension and recoil pressure are the dominate driving mechanisms for melt pool convection. Processing parameters of laser welding and laser additive manufacturing can be classified into four types: laser related parameters, scan related parameters, gas/powder-related parameters, material-related parameters.
Laser energy density is considered as one of the most significant variables on temperature field and material evaporation. Laser power, beam spot size, pulse frequency and energy distribution jointly determine the laser energy density. In conduction mode, the higher laser power leads to the larger temperature gradient in melt pool, resulting in higher surface tension and more intense radially convection. With the laser power increased, the input laser energy increased which caused an intense evaporation and the keyhole forms. Therefore, recoil pressure takes over as the primary driving force, pushing melt flow along the thickness direction.
For stationary laser welding, laser induced temperature field is axisymmetric resulting in an axisymmetric weld pool and keyhole. When laser moves with a certain velocity, temperature gradient in the front side of the moving laser beam is much steeper than that in the rear side. The melt pool shape resembles as in comet tail profile. Reducing laser scanning speed will cause the interaction time and peak temperature to increase substantially. As a result, increased temperature gradients lead to stronger Marangoni fluid convection and larger area of the molten pool. Laser oscillating welding is founded stabilize the fluid flow in melt pool and keyhole [14]. As for laser additive manufacturing of 3D bulks, scanning pattern, hatch spacing and layer thickness influence melt pool behavior through fore layers.
In laser welding, side shielding gas serves three purposes: prevent the weld from oxidizing, remove the plasma plume and stabilize melt pool and keyhole. However, the too large flow rate of shielding gas gives resultant strong pressure on the melt pool and increases the fluctuation of the weld pool, keyhole and plasma. Thus, an optimal gas flow rate of shielding gas for a stable welding process is needed. For laser additive manufacturing, the main function of shielding gas is preventing melt pool from oxidizing. In DED process, typical average particle velocity is on the order of 5–10 m/s. The blown powder particles with low temperature impinging on the melt pool will change melt pool temperature field. In addition, impact force of powder particles may affect both the flow pattern and penetration of melt pool.
As mentioned previously, the melt flow in the pool is driven by surface tension gradients due to temperature gradients. The direction of the Marangoni flow is dictated by the sign of the surface tension gradient and is shown in Figure 2. For pure metals the surface tension coefficient is constant negative, therefore creating an outward radial flow (see Figure 2(a)). In 1982, Heiple and Ropper [15] found that the presence of surfactants in arc welding molten materials can alter Marangoni convection in the melt pool, and thus creating an inward radial flow (see Figure 2(b)). They also proposed that the Marangoni convection is the most important factor in determining weld shape, but without quantitative description of surface tension phenomenon. Sahoo et al. [16] were the first to propose a semi-empirical relationship between the surface tension gradient, temperature and content of surface-active elements, for various binary alloys. For a Fe-S binary alloy, at a certain of sulfur content, a critical temperature exists which corresponds to a change in the sign of the surface tension gradient, and results in a flow reversal, creating simultaneously two different vortices. Surfactant elements such as S, Se, Te, O can be added in the form of substrate, gas, wire or powder.
Since surface tension driven weld fluid flow was first reported in 1965 [7], a number of experiment have been conducted to investigate the melt pool flow in laser welding and laser additive manufacturing. Melt pool flow investigation can be classified into indirect and direct approaches. Indirect methods by means of postmortem analysis of the cross sections of fusion zones are often used to infer the melt flow patterns. According to the employed equipment, direct observation of melt flow can be divided into three stages (see Figure 3): (1) 1970s ~ 2000s, use simulated material to visualize melt flow pattern; (2) 2000s ~ 2015s, employ high-speed camera and X-ray tube transmission system; (2) 2015s ~ to date, apply the third-generation synchrotron radiation sources for in-situ high-speed high-energy x-ray imaging.
Development of the experimental studies for direct observation of melt pool flow.
Melt flow convection in the weld pool will drive material transport in the weld. Indirect methods by means of postmortem analysis of the cross sections need tracers to identify the melt flow patterns. One way to analysis the melt flow pattern is using tracing particles with high hardness such as W, ZrO2, SiC, TiB2. Schemed as Figure 4, tungsten particles are pre-paved on the substate and two tungsten plates are inserted into the substate. After welding, microhardness distribution in the cross sections is measured. In the case of outward melt flow (Figure 4(a)), microhardness outside the plates is higher than that of between the plates. While for inward melt flow (Figure 4(a)), microhardness between the plates is higher than that of outside the plates. Li et al. [17] used this method to investigate the effect of shielding gas on TIG welding melt flow. Due to the high aspect ratio of welds in laser welding, it is difficult to insert two tungsten plates inside the substrate.
Tracing particle distribution under (a) outward and (b) inward of Marangoni convection.
In 2005, Thomy and Vollertsen from BIAS [18] introduced a sandwich structure with a thin copper sheet between two aluminum sheets to study effects of magnetic fields on laser melt flow, see Figure 5(a). With the help optical microscopy, hardness tester and EDX, darker region in Figure 5(b) and (c) is confirmed with higher copper content. Thus, the authors draw a conclusion that magnetic stirring induced by alternating magnetic fields promotes welds homogeneity. Beside using particles or metal sheet (Cu or Ni) as tracers, other forms of tracers such as filler has also been used [19].
(a) Scheme of sandwich structure with a thin copper sheet between two aluminum sheets; weld cross section with (b) 0mT and (c) 60 mT of alternating magnetic field [
At the beginning, paraffin wax was employed to understand Marangoni flow in gas tungsten arc welding (GTAW). Ishizaki et al. [7] used a soldering iron to locally heat the surface of a thin slice of molten paraffin, circulation in the pool was observed by monitoring the movement of graphite particles. The resulting solidified structure that had a cross-sectional morphology similar to that of static GTAW welds. Similar Marangoni flow phenomena has also been found by using mercury [20], stearic acid [21], ice or water [22].
Simulated materials used above were applied in arc welding and only surface flow was visualized. For laser welding, it has a smaller size of melt pool and electromagnetic force does not exist. The physically simulated laser weld pool was first investigated by Limmaneevichitr and Kou from University of Wisconsin [23, 24]. Sodium nitrate, NaNO3, was chosen as it is transparent and exhibited similar surface properties to those seen in metal welding. In their experiment, a defocused CO2 heat up the NaNO3 and another He-Ne laser light sheet, either vertical or horizontal, to cut through the pool to illuminate the tracer particles suspended in the pool and reveal the flow pattern, show in Figure 6. Also, to visualize the reversal flow pattern inside the weld pool, they used a transparent pool of NaNO3 with C2H5COOK as the surface-active agent [24]. This finding proved what was proposed by Heiple and Roper [15] in arc welding: a minor presence of surface-active elements can substantially change the temperature dependence of surface tension, leading to a change in flow pattern.
(a) Experimental set up and (b) Visualization of Marangoni flows in a laser generated pool in a vat of NaNO3 [
Another important driving force for melt flow is recoil pressure in the case of keyhole mode welding. Keyhole phenomenon is more complex and transient, due to fierce evaporation. The keyhole mode welding can be thermodynamically unstable and causes the formation of defects such as porosity, spatter, hump and undercut. Although direct observation of the keyhole is not easy, many efforts have been made. A low cost method for direct observation of keyhole and its evolution is welding transparent glass. Overall, there are three typical configurations with glass for keyhole observation: (1) directly welding on glass; (2) using sandwich structure consisting a metal foil between two glass plates; (3) using metal/glass structure. Schematic of the three configurations is shown in Figure 7.
Three typical configurations of keyhole observation for laser welding in: (a) glass, (b) glass/foil/glass, (c) metal/glass.
The first image of keyhole was captured by Arata et al. in 1976, by welding in a soda-lime glass (Figure 8(a)). A similar approach was used on GG17 glass, which with an excellent heat-resistance property [25]. Sandwich structure consist of a metal foil between two glass plates (see Figure 8(b)) was first reported by Kato et al. [26] in 1985 in laser drilling. Zhang et al. used the sandwich structure approach to measure plasma inside keyhole [27]. It’s worth noting that welding in glass (Figure 8(a)) and sandwich structure (Figure 8(b)) is far different from actual laser welding of compact metal. For welding in glass, physical and thermal properties of glass differ greatly from metallic engineering materials. For welding in sandwich structure, the loose multilayer construction is liable to cause keyhole collapse, which affects the stability of the welding process and could lead to misleading results. In 1994, Semak et al. [28] introduced a laser welding metal-glass approach to obtain transient keyhole profile, see Figure 8(c). The penetration depth in real laser welding metal is used to calibrate the position of the laser beam center relative to the metal-glass interface. Suffering from limited high-speed imaging resolution, only low contrast keyhole profile was obtained. Nowadays, the rapid development of the high-speed imaging technology made it possible to observe the highly transient keyhole clearly. Zhang et al. [29] used a metal-glass samples which consists of one sheet of stainless steel and one piece of GG17 glass to directly observe the deep penetration welding keyhole, see Figure 8(c). With the help of a high speed camera, a clear image of the keyhole wall was captured, shown as Figure 8. In recent years, the metal/glass structure approach is widely used to study keyhole dynamics and welding defects formation mechanisms [30, 31].
Clearly keyhole images captured by laser welding metal/glass structure, (a)-(g) with a interframe time of 0.4 ms [
It is worth noting that both the element tracing method and simulated material method can only drive quantitative conclusions. Addition, element tracing method can only obtain the final state of melt flow, lacking of transient information. Laser weld pool flow dynamics have been studied by simulation for many years since it is difficult to visualize transient flows in such a tiny zone. With the rapid development of high speed camera equipment and imaging processing technology, researchers can now capture highly transient melt flow.
Since melt flow velocity in laser melting can be of the order of 1 m/s [32, 33], successive images of a single tracer should be captured in a time interval shorter than 1 ms, corresponds to a minimum frame rate of 1000 fps. Therefore, imaging frame rate must be kept in the multi-fps range. In order to capture higher resolution and large viewing areas of melt pool, external illumination with narrow band interference filter is necessary. This technique reduces greatly the effect of laser induced vapor or plasma radiation.
To quantify the melt flow velocity, tracer-based flow measurement methods are wildly used. The tracer could either be “nature”, that is to say belong to the weld pool (such as surface oxide particles, humps, slag particles), or ‘artificial’ particles, added by the experimenter. Calculation of melt flow velocity is by measuring the distance between the tracer in two successive images divided by the interval time. For low density of tracers, particle tracking velocimetry (PTV) algorithm is applicable. While for moderate density of tracers, particle image velocimetry (PIV) is widely been used by tracking groups of tracers and performing a cross-correlation calculation on successive images. In the case of a very high density of tracers, optical flow type of approach is needed. Ki et al. [32] use a hump as the tracer to measure the melt flow velocity, shown as Figure 9. The authors assumed that the velocity of hump is close to the actual flow velocity. Thus, the experimentally obtained weld melt flow velocity were in the range of 1.4 to 2.2 m/s.
Four successive images of a hump tip during laser welding [
However, PTV-based method can only obtain several path lines in a flow field. In order to get the whole picture of melt flows, more “nature” or ‘artificial’ tracers are needed. Wirth et al. [33] used particles tacking method to obtain melt pool surface flow field. The results shown that using metal powder particles as tracers has a qualitatively similar flow field with using carbide or oxide particles as tracers, shown as Figure 10. The flow lines arisen from the center of melt poot point to its edge indicates that melt flow is driven by Marangoni force caused by temperature gradient in L-DED.
Resulting metal powder particles (left) and carbide/oxide particles (right) velocity field during L-DED [
Besides efforts on studying melt surface flow dynamics, internal flows have also been the subject of intensive researches by many researchers. The in situ X-ray transmission imaging technique is a very useful tool to visualize the invisible phenomena in the laser melting sample. The first reported work on X-ray transmission imaging of welding dynamics was in electron beam welding by Arata et al. in 1976 [34]. Later, intensive investigations on keyhole formation [35], keyhole collapse [36], and keyhole porosity formation [37] have been conducted by the laser group in Osaka University around 2000s. Figure 11 shown the X-ray transmission imaged keyhole melt flow by tracing tungsten particle and porosity formation during laser welding [38]. A more advanced X-ray transmission imaging system based on X-ray tube source was developed by Abt et al. [39] from IFSW, Germany.
(a) Keyhole melt flow and (b) porosity formation observed by in situ X-ray transmission imaging setup [
Due to the low spectral intensity of X-ray tube, it is hard to observe clear solid–liquid interface. Recently, with the advent of high-flux, high-energy third-generation synchrotrons, X-ray phase contrast imaging is by far the most effective technique for revealing sub-surface structural dynamics with extremely high spatial and temporal resolutions. The knowledge gained are revealing new insights in laser welding and laser additive manufacturing. High-flux, high-energy synchrotron X-ray imaging, such as available at the Super Photon ring-8 GeV (Spring-8), Japan, the Diamond Light Source, UK, the Stanford Synchrotron Radiation Lightsource (SSRL), USA and the Advanced Photon Source (APS), USA, has been used to capture the keyhole behavior and defects formation clearly. Table 1 summaries parameters of these facilities used for in situ imaging laser melting process.
X-ray beam source | X-ray energy | Field of view (FOV) (width × height) | Spatial resolution | Time Resolution | References |
---|---|---|---|---|---|
Super Photon ring-8 GeV (Spring-8), Japan | 3–70 keV | 24 × 5.1 mm | 38 μm | 15 ms (70fps) | [40] |
Diamond Light Sourcem (DIAMOND), UK | 55 keV | 8.4× 3.3 mm | 6.6 μm | 196 μs (5100 fps) | [41] |
Stanford Synchrotron Radiation Lightsource (SSRL), USA | 24 keV | 2.2 × 2.2 mm | 1.1 μm | 250 us (4000 fps) | [42] |
Advanced Photon Source (APS), USA | 24.4 keV | 1.5 × 1.5 mm | 1 μm | 100 ps (6500 kfps) | [43] |
Several high-speed, high-energy synchrotron facilities used for in situ imaging laser melting process.
In this chapter, we summarized the experimental studies on melt pool flow dynamic during laser material processing, focusing on laser welding and laser additive manufacturing. To visualize the melt pool flow patterns and velocity field, indirect and direct methods have been employed. Indirect methods are simple with low cost, but it can only achieve the final melt flow patterns by postmortem analysis of the cross sections of fusion zones. Direct methods include simulated materials, high speed imaging, and in situ X-ray transmission imaging. These three direct methods need experimental conditions from low cost to expensive, and reveal melt flow information from qualitative to quantify, from surface to internal. This chapter provides a generic guideline for experimental studying melt fluid flow dynamics.
The authors acknowledge the support of the National Natural Science Foundation of China (Grant No. 51875190 and 11662010), and Jiangxi National Natural Science Foundation of China (20192BCB23003).
In line with the Principles of Transparency and Best Practice in Scholarly Publishing, below is a more detailed description of IntechOpen's Advertising Policy.
",metaTitle:"Advertising Policy",metaDescription:"IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.",metaKeywords:null,canonicalURL:"/page/advertising-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"1. IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.
\\n\\n2. All advertisements and commercially sponsored publications are independent from editorial decisions.
\\n\\n3. IntechOpen does not endorse any product or service marked as an advertisement on IntechOpen website.
\\n\\n4. IntechOpen has blocked all the inappropriate types of advertising.
\\n\\n5. IntechOpen has blocked advertisement of harmful products or services.
\\n\\n6. Advertisements and editorial content are clearly distinguishable.
\\n\\n7. Editorial decisions will not be influenced by current or potential advertisers and will not be influenced by marketing decisions.
\\n\\n8. Advertisers have no control or influence over the results of searches a user may conduct on the website by keyword or topic search.
\\n\\n9. Types of advertisments:
\\n\\n- Advertisements in the Physical Sciences, Engineering and Technology, and Social Sciences and Humanities sections of the IntechOpen website are programmatic (based on user behaviour such as web pages visited, content viewed, etc.)
\\n\\n- Advertisements in the Life Sciences and Health Sciences sections of the IntechOpen website are programmatic as well as contextual based on the content of the respective books and chapters. IntechOpen's third party partner eHealthcare Solutions (EHS) is a unique marketing platform that specializes in connecting niche audiences with healthcare brands.
\\n\\nYou may view their privacy policy here: https://ehealthcaresolutions.com/privacy-policy/
\\n\\n10. IntechOpen Advertising Sales department makes the decisions about the types of advertisements to include or exclude. Placement of advertising is at the discretion of IntechOpen. IntechOpen retains the right to reject and/or request modifications to the advertisement. An advertisement that is visible online, will be withdrawn from the site at any time if the Editor(s) or Author(s) request its removal.
\\n\\n11. Users can make decisions about accepting advertisements. Users can block all the advertisements by using ad blockers. Users can send all the complaints about advertising to: info@intechopen.com.
\\n\\nPolicy last updated: 2021-04-28
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.
\n\n2. All advertisements and commercially sponsored publications are independent from editorial decisions.
\n\n3. IntechOpen does not endorse any product or service marked as an advertisement on IntechOpen website.
\n\n4. IntechOpen has blocked all the inappropriate types of advertising.
\n\n5. IntechOpen has blocked advertisement of harmful products or services.
\n\n6. Advertisements and editorial content are clearly distinguishable.
\n\n7. Editorial decisions will not be influenced by current or potential advertisers and will not be influenced by marketing decisions.
\n\n8. Advertisers have no control or influence over the results of searches a user may conduct on the website by keyword or topic search.
\n\n9. Types of advertisments:
\n\n- Advertisements in the Physical Sciences, Engineering and Technology, and Social Sciences and Humanities sections of the IntechOpen website are programmatic (based on user behaviour such as web pages visited, content viewed, etc.)
\n\n- Advertisements in the Life Sciences and Health Sciences sections of the IntechOpen website are programmatic as well as contextual based on the content of the respective books and chapters. IntechOpen's third party partner eHealthcare Solutions (EHS) is a unique marketing platform that specializes in connecting niche audiences with healthcare brands.
\n\nYou may view their privacy policy here: https://ehealthcaresolutions.com/privacy-policy/
\n\n10. IntechOpen Advertising Sales department makes the decisions about the types of advertisements to include or exclude. Placement of advertising is at the discretion of IntechOpen. IntechOpen retains the right to reject and/or request modifications to the advertisement. An advertisement that is visible online, will be withdrawn from the site at any time if the Editor(s) or Author(s) request its removal.
\n\n11. Users can make decisions about accepting advertisements. Users can block all the advertisements by using ad blockers. Users can send all the complaints about advertising to: info@intechopen.com.
\n\nPolicy last updated: 2021-04-28
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",src:"R-SLS"},books:[{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11610",title:"New Insights in Herbicide Science",subtitle:null,isOpenForSubmission:!0,hash:"eb3830b8176caf3d1fd52c32313c5168",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/11610.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11709",title:"Type 1 Diabetes Mellitus",subtitle:null,isOpenForSubmission:!0,hash:"cc0e61f864a2a8a9595f4975ce301f70",slug:null,bookSignature:"Dr. Shilpa Mehta and Dr. Resmy Palliyil Gopi",coverURL:"https://cdn.intechopen.com/books/images_new/11709.jpg",editedByType:null,editors:[{id:"342545",title:"Dr.",name:"Shilpa",surname:"Mehta",slug:"shilpa-mehta",fullName:"Shilpa Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11910",title:"Frontiers in Voltammetry",subtitle:null,isOpenForSubmission:!0,hash:"fc53a7599a61ed04a0672a7bca81e9c2",slug:null,bookSignature:"Dr. Rajendrachari Shashanka, Dr. Kiran Kenchappa Somashekharappa, Dr. Sharath Peramenahalli Chikkegouda and Dr. Shamanth Vasanth",coverURL:"https://cdn.intechopen.com/books/images_new/11910.jpg",editedByType:null,editors:[{id:"246025",title:"Dr.",name:"Shashanka",surname:"Rajendrachari",slug:"shashanka-rajendrachari",fullName:"Shashanka Rajendrachari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11702",title:"Eye Diseases - Recent Advances, New Perspectives and Therapeutic Options",subtitle:null,isOpenForSubmission:!0,hash:"228ecdcbf2ffae4e8cfeedfc7e0fa922",slug:null,bookSignature:"Dr. Salvatore Di Lauro",coverURL:"https://cdn.intechopen.com/books/images_new/11702.jpg",editedByType:null,editors:[{id:"244950",title:"Dr.",name:"Salvatore",surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11881",title:"Ventricular Assist Devices - Advances and Applications in Heart Failure",subtitle:null,isOpenForSubmission:!0,hash:"4c5136113dda974a93f03ba12724b31b",slug:null,bookSignature:"Associate Prof. Enkhsaikhan Purevjav, Dr. Hugo R. Martinez, Dr. Mohammed Absi, Dr. Jeffrey Allen Towbin and Dr. Umar Boston",coverURL:"https://cdn.intechopen.com/books/images_new/11881.jpg",editedByType:null,editors:[{id:"231585",title:"Associate Prof.",name:"Enkhsaikhan",surname:"Purevjav",slug:"enkhsaikhan-purevjav",fullName:"Enkhsaikhan Purevjav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11669",title:"Fatty Acids - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"9117bd12dc904ced43404e3383b6591a",slug:null,bookSignature:"Assistant Prof. Erik Froyen",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",editedByType:null,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11800",title:"Cyanobacteria - Recent Advances and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"645b037b086ec8c36af614326dce9804",slug:null,bookSignature:"Dr. Archana Tiwari",coverURL:"https://cdn.intechopen.com/books/images_new/11800.jpg",editedByType:null,editors:[{id:"186791",title:"Dr.",name:"Archana",surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11922",title:"Watermarking - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"9843dc1d810407088ed9eef10768a64b",slug:null,bookSignature:"Prof. Joceli Mayer",coverURL:"https://cdn.intechopen.com/books/images_new/11922.jpg",editedByType:null,editors:[{id:"110638",title:"Prof.",name:"Joceli",surname:"Mayer",slug:"joceli-mayer",fullName:"Joceli Mayer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:417},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4428},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"791",title:"Polymer Engineering",slug:"polymer-engineering",parent:{id:"118",title:"Environmental Engineering",slug:"engineering-environmental-engineering"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:40,numberOfWosCitations:194,numberOfCrossrefCitations:76,numberOfDimensionsCitations:210,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"791",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"1536",title:"Material Recycling",subtitle:"Trends and Perspectives",isOpenForSubmission:!1,hash:"bfec4bb7a34ac069d4b7bcfb5d66a117",slug:"material-recycling-trends-and-perspectives",bookSignature:"Dimitris S. Achilias",coverURL:"https://cdn.intechopen.com/books/images_new/1536.jpg",editedByType:"Edited by",editors:[{id:"95620",title:"Dr.",name:"Dimitris S.",middleName:null,surname:"Achilias",slug:"dimitris-s.-achilias",fullName:"Dimitris S. Achilias"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"32561",doi:"10.5772/33800",title:"Recent Developments in the Chemical Recycling of PET",slug:"recent-developments-in-the-chemical-recycling-of-pet",totalDownloads:16384,totalCrossrefCites:32,totalDimensionsCites:77,abstract:null,book:{id:"1536",slug:"material-recycling-trends-and-perspectives",title:"Material Recycling",fullTitle:"Material Recycling - Trends and Perspectives"},signatures:"Leian Bartolome, Muhammad Imran, Bong Gyoo Cho, Waheed A. Al-Masry and Do Hyun Kim",authors:[{id:"97132",title:"Prof.",name:"Do Hyun",middleName:null,surname:"Kim",slug:"do-hyun-kim",fullName:"Do Hyun Kim"},{id:"98513",title:"Ms.",name:"Leian",middleName:null,surname:"Bartolome",slug:"leian-bartolome",fullName:"Leian Bartolome"},{id:"127751",title:"Dr.",name:"Bong Gyoo",middleName:null,surname:"Cho",slug:"bong-gyoo-cho",fullName:"Bong Gyoo Cho"},{id:"136302",title:"Prof.",name:"Waheed A.",middleName:null,surname:"Al-Masry",slug:"waheed-a.-al-masry",fullName:"Waheed A. Al-Masry"},{id:"136304",title:"Prof.",name:"Muhammad",middleName:null,surname:"Imran",slug:"muhammad-imran",fullName:"Muhammad Imran"}]},{id:"32560",doi:"10.5772/33457",title:"Recent Advances in the Chemical Recycling of Polymers (PP, PS, LDPE, HDPE, PVC, PC, Nylon, PMMA)",slug:"recent-advances-in-the-chemical-recycling-of-polymers",totalDownloads:11838,totalCrossrefCites:10,totalDimensionsCites:41,abstract:null,book:{id:"1536",slug:"material-recycling-trends-and-perspectives",title:"Material Recycling",fullTitle:"Material Recycling - Trends and Perspectives"},signatures:"Dimitris S. Achilias, Lefteris Andriotis, Ioannis A. Koutsidis, Dimitra A. Louka, Nikolaos P. Nianias, Panoraia Siafaka, Ioannis Tsagkalias and Georgia Tsintzou",authors:[{id:"95620",title:"Dr.",name:"Dimitris S.",middleName:null,surname:"Achilias",slug:"dimitris-s.-achilias",fullName:"Dimitris S. Achilias"}]},{id:"32571",doi:"10.5772/31804",title:"Possible Uses of Steelmaking Slag in Agriculture: An Overview",slug:"possible-uses-of-steelmaking-slag-in-agriculture-an-overview",totalDownloads:7864,totalCrossrefCites:2,totalDimensionsCites:18,abstract:null,book:{id:"1536",slug:"material-recycling-trends-and-perspectives",title:"Material Recycling",fullTitle:"Material Recycling - Trends and Perspectives"},signatures:"Teresa Annunziata Branca and Valentina Colla",authors:[{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla"},{id:"88742",title:"MSc.",name:"Teresa Annunziata",middleName:null,surname:"Branca",slug:"teresa-annunziata-branca",fullName:"Teresa Annunziata Branca"}]},{id:"32562",doi:"10.5772/31841",title:"Overview on Mechanical Recycling by Chain Extension of POSTC-PET Bottles",slug:"overview-on-mechanical-recycling-by-chain-extension-of-postc-pet-bottles",totalDownloads:4980,totalCrossrefCites:3,totalDimensionsCites:10,abstract:null,book:{id:"1536",slug:"material-recycling-trends-and-perspectives",title:"Material Recycling",fullTitle:"Material Recycling - Trends and Perspectives"},signatures:"Doina Dimonie, Radu Socoteanu, Simona Pop, Irina Fierascu, Radu Fierascu, Celina Petrea, Catalin Zaharia and Marius Petrache",authors:[{id:"49018",title:"Dr.",name:"Radu",middleName:null,surname:"Socoteanu",slug:"radu-socoteanu",fullName:"Radu Socoteanu"},{id:"88916",title:"Dr.",name:"Doina",middleName:null,surname:"Dimonie",slug:"doina-dimonie",fullName:"Doina Dimonie"},{id:"137268",title:"Dr.",name:"Simona",middleName:null,surname:"Pop",slug:"simona-pop",fullName:"Simona Pop"},{id:"137269",title:"Dr.",name:"Radu Claudiu",middleName:null,surname:"Fierascu",slug:"radu-claudiu-fierascu",fullName:"Radu Claudiu Fierascu"},{id:"137270",title:"Dr.",name:"Irina",middleName:null,surname:"Fierascu",slug:"irina-fierascu",fullName:"Irina Fierascu"},{id:"137271",title:"Dr.",name:"Celina",middleName:null,surname:"Petrea",slug:"celina-petrea",fullName:"Celina Petrea"},{id:"137272",title:"Dr.",name:"Catalin",middleName:null,surname:"Zaharia",slug:"catalin-zaharia",fullName:"Catalin Zaharia"},{id:"137273",title:"MSc.",name:"Marius",middleName:null,surname:"Petrache",slug:"marius-petrache",fullName:"Marius Petrache"}]},{id:"32570",doi:"10.5772/33887",title:"Reuse of Waste Shells as a SO2/NOx Removal Sorbent",slug:"reuse-of-waste-shells-as-a-so2-nox-removal-sorbent",totalDownloads:4561,totalCrossrefCites:5,totalDimensionsCites:10,abstract:null,book:{id:"1536",slug:"material-recycling-trends-and-perspectives",title:"Material Recycling",fullTitle:"Material Recycling - Trends and Perspectives"},signatures:"Jong-Hyeon Jung, Jae-Jeong Lee, Gang-Woo Lee, Kyung-Seun Yoo and Byung-Hyun Shon",authors:[{id:"97605",title:"Prof.",name:"Byung-Hyun",middleName:null,surname:"Shon",slug:"byung-hyun-shon",fullName:"Byung-Hyun Shon"},{id:"97609",title:"Prof.",name:"Jong-Hyeon",middleName:null,surname:"Jung",slug:"jong-hyeon-jung",fullName:"Jong-Hyeon Jung"},{id:"97612",title:"Dr.",name:"Jae-Jeong",middleName:null,surname:"Lee",slug:"jae-jeong-lee",fullName:"Jae-Jeong Lee"},{id:"97613",title:"Prof.",name:"Jyung-Seun Yoo",middleName:null,surname:"Yoo",slug:"jyung-seun-yoo-yoo",fullName:"Jyung-Seun Yoo Yoo"},{id:"127523",title:"Dr.",name:"Gang-Woo",middleName:null,surname:"Lee",slug:"gang-woo-lee",fullName:"Gang-Woo Lee"}]}],mostDownloadedChaptersLast30Days:[{id:"32560",title:"Recent Advances in the Chemical Recycling of Polymers (PP, PS, LDPE, HDPE, PVC, PC, Nylon, PMMA)",slug:"recent-advances-in-the-chemical-recycling-of-polymers",totalDownloads:11838,totalCrossrefCites:10,totalDimensionsCites:41,abstract:null,book:{id:"1536",slug:"material-recycling-trends-and-perspectives",title:"Material Recycling",fullTitle:"Material Recycling - Trends and Perspectives"},signatures:"Dimitris S. Achilias, Lefteris Andriotis, Ioannis A. Koutsidis, Dimitra A. Louka, Nikolaos P. Nianias, Panoraia Siafaka, Ioannis Tsagkalias and Georgia Tsintzou",authors:[{id:"95620",title:"Dr.",name:"Dimitris S.",middleName:null,surname:"Achilias",slug:"dimitris-s.-achilias",fullName:"Dimitris S. Achilias"}]},{id:"32586",title:"Recycling of Scrap Tires",slug:"use-of-scrap-tires-in-industry",totalDownloads:13688,totalCrossrefCites:3,totalDimensionsCites:10,abstract:null,book:{id:"1536",slug:"material-recycling-trends-and-perspectives",title:"Material Recycling",fullTitle:"Material Recycling - Trends and Perspectives"},signatures:"Ahmet Turer",authors:[{id:"92543",title:"Prof.",name:"Ahmet",middleName:null,surname:"Turer",slug:"ahmet-turer",fullName:"Ahmet Turer"}]},{id:"32572",title:"From PET Waste to Novel Polyurethanes",slug:"from-pet-waste-to-novel-polyurethanes",totalDownloads:7338,totalCrossrefCites:3,totalDimensionsCites:7,abstract:null,book:{id:"1536",slug:"material-recycling-trends-and-perspectives",title:"Material Recycling",fullTitle:"Material Recycling - Trends and Perspectives"},signatures:"Gity Mir Mohamad Sadeghi and Mahsa Sayaf",authors:[{id:"88081",title:"Dr.",name:"Gity",middleName:null,surname:"Mir Mohamad Sadeghi",slug:"gity-mir-mohamad-sadeghi",fullName:"Gity Mir Mohamad Sadeghi"},{id:"127651",title:"MSc.",name:"Mahsa",middleName:null,surname:"Sayaf",slug:"mahsa-sayaf",fullName:"Mahsa Sayaf"}]},{id:"32561",title:"Recent Developments in the Chemical Recycling of PET",slug:"recent-developments-in-the-chemical-recycling-of-pet",totalDownloads:16384,totalCrossrefCites:32,totalDimensionsCites:77,abstract:null,book:{id:"1536",slug:"material-recycling-trends-and-perspectives",title:"Material Recycling",fullTitle:"Material Recycling - Trends and Perspectives"},signatures:"Leian Bartolome, Muhammad Imran, Bong Gyoo Cho, Waheed A. Al-Masry and Do Hyun Kim",authors:[{id:"97132",title:"Prof.",name:"Do Hyun",middleName:null,surname:"Kim",slug:"do-hyun-kim",fullName:"Do Hyun Kim"},{id:"98513",title:"Ms.",name:"Leian",middleName:null,surname:"Bartolome",slug:"leian-bartolome",fullName:"Leian Bartolome"},{id:"127751",title:"Dr.",name:"Bong Gyoo",middleName:null,surname:"Cho",slug:"bong-gyoo-cho",fullName:"Bong Gyoo Cho"},{id:"136302",title:"Prof.",name:"Waheed A.",middleName:null,surname:"Al-Masry",slug:"waheed-a.-al-masry",fullName:"Waheed A. Al-Masry"},{id:"136304",title:"Prof.",name:"Muhammad",middleName:null,surname:"Imran",slug:"muhammad-imran",fullName:"Muhammad Imran"}]},{id:"32562",title:"Overview on Mechanical Recycling by Chain Extension of POSTC-PET Bottles",slug:"overview-on-mechanical-recycling-by-chain-extension-of-postc-pet-bottles",totalDownloads:4980,totalCrossrefCites:3,totalDimensionsCites:10,abstract:null,book:{id:"1536",slug:"material-recycling-trends-and-perspectives",title:"Material Recycling",fullTitle:"Material Recycling - Trends and Perspectives"},signatures:"Doina Dimonie, Radu Socoteanu, Simona Pop, Irina Fierascu, Radu Fierascu, Celina Petrea, Catalin Zaharia and Marius Petrache",authors:[{id:"49018",title:"Dr.",name:"Radu",middleName:null,surname:"Socoteanu",slug:"radu-socoteanu",fullName:"Radu Socoteanu"},{id:"88916",title:"Dr.",name:"Doina",middleName:null,surname:"Dimonie",slug:"doina-dimonie",fullName:"Doina Dimonie"},{id:"137268",title:"Dr.",name:"Simona",middleName:null,surname:"Pop",slug:"simona-pop",fullName:"Simona Pop"},{id:"137269",title:"Dr.",name:"Radu Claudiu",middleName:null,surname:"Fierascu",slug:"radu-claudiu-fierascu",fullName:"Radu Claudiu Fierascu"},{id:"137270",title:"Dr.",name:"Irina",middleName:null,surname:"Fierascu",slug:"irina-fierascu",fullName:"Irina Fierascu"},{id:"137271",title:"Dr.",name:"Celina",middleName:null,surname:"Petrea",slug:"celina-petrea",fullName:"Celina Petrea"},{id:"137272",title:"Dr.",name:"Catalin",middleName:null,surname:"Zaharia",slug:"catalin-zaharia",fullName:"Catalin Zaharia"},{id:"137273",title:"MSc.",name:"Marius",middleName:null,surname:"Petrache",slug:"marius-petrache",fullName:"Marius Petrache"}]}],onlineFirstChaptersFilter:{topicId:"791",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,annualVolume:11410,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,annualVolume:11411,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,annualVolume:11413,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,annualVolume:11414,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:5,paginationItems:[{id:"82394",title:"Learning by Doing Active Social Learning",doi:"10.5772/intechopen.105523",signatures:"Anat Raviv",slug:"learning-by-doing-active-social-learning",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82310",title:"Knowledge of Intergenerational Contact to Combat Ageism towards Older People",doi:"10.5772/intechopen.105592",signatures:"Alice Nga Lai Kwong",slug:"knowledge-of-intergenerational-contact-to-combat-ageism-towards-older-people",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"81993",title:"Emergent Chemistry: Using Visualizations to Develop Abstract Thinking and a Sense of Scale Within the Preschool Setting",doi:"10.5772/intechopen.105216",signatures:"Karina Adbo",slug:"emergent-chemistry-using-visualizations-to-develop-abstract-thinking-and-a-sense-of-scale-within-the",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82252",title:"Early Childhood: Enriched Environments and Roles of Caring Adults",doi:"10.5772/intechopen.105157",signatures:"Analía Mignaton",slug:"early-childhood-enriched-environments-and-roles-of-caring-adults",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}}]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 29th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{id:"95",type:"subseries",title:"Urban Planning and Environmental Management",keywords:"Circular economy, Contingency planning and response to disasters, Ecosystem services, Integrated urban water management, Nature-based solutions, Sustainable urban development, Urban green spaces",scope:"