The cartilage is a flexible tissue, which supports the adjacent soft tissues. The damages that cause degenerative articular diseases are marked by the increase of cytokines such as tumor necrosis factor-α (TNF-α), IL-1β, IL-6, IL-18, and IL-17, which cause intense inflammatory process and release of metalloproteinases and disintegrin enzymes that lead to cartilage degradation. The Curcuma longa possesses bioactive compounds designated as curcuminoids that display therapeutic potential in several pathologies. Curcumin is one of these compounds that may exhibit anti-inflammatory, antioxidant, antiviral, antibacterial, and antitumor effects. It may promote decrease of IL-1β, IL-6, IL-8, TNF-α, COX-2, and reactive oxygen species. Furthermore, curcumin inhibits the activity of several kinases related to the degradation of the cartilage, including tyrosine kinase, p21-activated kinase, mitogen-activated protein kinase, protein kinase C, the activator protein 1 pathway, and NF-κB leading to the suppression of the production of metalloproteinases and inflammatory cytokines. Curcumin has also been related to the stimulation of the production of type II collagen and glycosaminoglycan by chondrocytes. Studies have shown that this compound may alleviate joint pain and crepitation, reduce the use of other drugs for pain relief, stimulate the production of type II collagen and glycosaminoglycan resulting in a protective and anti-inflammatory action of cartilage and bones, and improve the quality of life of the patients.
Part of the book: Cartilage Repair and Regeneration