Approximately 80% of the human genome contains functional DNA, including protein coding genes, non-protein coding regulatory DNA elements and non-coding RNAs (ncRNAs). An altered transcriptional signature is not only a cause, but also a consequence of the characteristics known as the hallmarks of cancer, such as sustained proliferation, replicative immortality, evasion of growth suppression and apoptotic signals, angiogenesis, invasion, metastasis, evasion of immune destruction and metabolic re-wiring. Post-transcriptional events play a major role in determining this signature, which is evidenced by the fact that alternative RNA splicing takes place in more than half of the human genes, and, among protein coding genes, more than 60% contain at least one conserved miRNA-binding site. In this chapter, we will discuss the involvement of post-transcriptional events, such as RNA processing, the action of non-coding RNAs and RNA decay in cancer development, and how their machinery may be used in cancer diagnosis and treatment.
Part of the book: Gene Expression and Regulation in Mammalian Cells