This chapter describes an innovative modeling and simulation approach using newly proposed Advanced Game-based Mathematical Framework (AGMF), Unified Game-based Acquisition Framework (UGAF) and a set of War-Gaming Engines (WGEs) to address future space systems acquisition challenges. Its objective is to assist the DoD Acquisition Authority (DAA) to understand the contractor’s perspective and to seek optimum Program-and-Technical-Baseline (PTB) solution and corresponding acquisition strategy under both the perspectives of the government and the contractors. The proposed approach calls for an interdisciplinary research that involves game theory, probability and statistics, and non-linear programming. The goal of this chapter is to apply the proposed war-gaming frameworks to develop and evaluate PTB solutions and associated acquisition strategies in the context of acquisition of future space systems. Our simulation results suggest that our optimization problem for the acquisition of future space systems meets the affordability and innovative requirements with minimum acquisition risk.
Part of the book: Simulation and Gaming
In a modern mobile satellite communication (SATCOM) system, a ground terminal receiver receives a radio frequency signal that is demodulated to generate a baseband digital signal waveform containing a self-clocking bit stream of digital data. The received baseband digital signal waveform is recovered and tracked using a timing recovery loop (TRL). The traditional TRLs use early-and-late gates, digital transition tracking, filter-and-square, and delay-and-multiply functions. In bit timing detection, the bit stream is self-clocking and the timing differential dithers about correct bit timing in the TRLs. For mobile satellite communication environments, the traditional TRLs drop lock when the loop signal-to-noise ratio (SNR) is smaller than a threshold value or the residual Doppler frequency is larger than the operating loop bandwidth. After dropping lock, the traditional TRLs experience long hang up time due to the need to reacquire the timing pulses. Recently, random walk filters (RWF) have been adapted to improve the bit clock locking stability and are applied to recover bit timing information of a digital data stream. This chapter describes random walk model for timing jitter and discusses how RWF solution can address the timing recovery challenges in mobile satellite communication environments.
Part of the book: Recent Trends in Communication Networks