Data rate required for transmission of data.
\r\n\tTo sum up, there are numerous engineering applications of diamond which are yet to be realized and this book will address some of the mentioned and hopefully open some new topics.
\r\n\t
Solar activity drives dynamic changes in the atmosphere and ionosphere that can affect the performance and reliability of satellites in near-Earth space environment, as well as ground-based technological systems and services that rely on them. This condition is referred to as space weather. The principal medium through which the Sun’s activity is communicated to the region of the near-Earth space environment, is the solar wind, which occurs in form of a continuous outflow of streams of energized charged particles and/or momentary eruption of large-scale, high-mass plasma known as coronal mass ejections (CMEs). Sources of energised particles and strong magnetic energy also include the solar flares and galactic cosmic ray, originating from outer space. The energetic particles and electromagnetic radiation from these processes form the near-Earth radiation environment and can be divided into (i) trapped radiation environment and (ii) transient radiation environments. The charged particles that are trapped or confined by the Earth’s magnetic field to certain regions in space such as the Van Allen belts form the trapped radiation environment. The transient particles environment consists of energetic particles from solar events, and galactic cosmic radiation that exist in the interplanetary space regions and in the near-Earth regions. Satellites and other space application systems are vulnerable to both trapped and transient energetic particles since they are basically designed to operate in the space plasma environment. The particles can bombard and interact with satellites’ surfaces, and sometimes posses enough energy to penetrate their exposed surfaces with possible access to their electrical, electronic and electrochemical components (EEECs). This scenario can induce sporadic and unexplainable errors in sensitive parts of spacecrafts, degrade the critical properties of their structural materials, jeopardize the flight worthiness of spacecrafts, constitute transient and terminal health hazard to both onboard passengers and astronauts, and even lead to total failure that can end the mission of affected spacecrafts [1, 2].
There are documented cases or evidence of satellites anomaly associated with space weather (or space radiation environment). In their study, Iucci et al. [3] verified and quantified the linkage between a large fraction of spacecraft anomalies and space weather perturbations. They compiled a large database of about 5700 anomalies registered by 220 satellites in different orbits over the period of 23 years (1971–1994). Their findings revealed that very intense fluxes (>1000 particles cm−2 s−1 sr−1 (pfu) at energy >10 MeV) of solar protons are linked to anomalies registered by the satellites in high-altitude (>15,000 km) near-polar (inclination >55°) orbits and to a much smaller extent to anomalies in geostationary orbits. They also reported that elevated fluxes of energetic (>2 MeV) electrons >10 8 cm−2 d−1 sr−1 are observed by the Geostationary Operational Environmental Satellites (GOES) on days with satellite anomalies occurring at geostationary and low-altitude (<1500 km) near-polar (>55°) orbits [3]. On the 22nd and 23rd of March 1991, an intense solar event occurred, which resulted to severe geomagnetic storms. This strong solar flare event with high energetic solar radiation caused disruption in high latitude point-to-point communication, and solar panel degradation on GOES-6 and -7 satellites, and was estimated to have decreased the expected lifetime of GOES-7 by 2 to 3 years. During the event, high energetic solar particles also increased the frequency of single event upsets (SEU) recorded by the spacecrafts; up to six geostationary satellites, including GOES-6 and -7, and the Tracking and Data Relay Satellite (TDRS)-1 had about 37 reported cases of SEU during the main phase of the event. SEU will be explained in detail in Section 3.2. Other impacts associated with this solar activity include the loss of automatic altitude control of the National Oceanic and Atmospheric Administration (NOAA)-11 satellite, increased satellite drag due to the heated atmosphere, which necessitated a massive update of the North American Air Defense Command (NORAD) catalogue of orbiting objects, and the complete failure of the geosynchronous orbiting Maritime European Communication Satellite (MARECS)-1 as a result of critical damage to its solar panels [4, 5].
On September 2009, South Africa’s SumbandilaSat (in low Earth orbit [LEO]) was reported to have experienced a power distribution failure due to radiation shortly after its launch, which rendered the Z- and Y-axis wheel permanently inoperable. However, the satellite continued to work as a technology demonstrator until 25 August 2011 when it failed completely. Its failure was again attributed to solar storm event, which caused the satellite’s onboard computer to stop responding to commands from the ground station [6]. On 5 April 2010, Galaxy 15 spacecraft (at geosynchronous altitudes) was reported to have experienced an anomaly that caused it to stop responding to any ground command [7]. The failure was attributed to an onboard electrostatic discharge (ESD), which led to a lockup of the field-programmable gate array within the spacecraft baseband communications unit. The interaction of the spacecraft with substorm-injected energetic particles caused the ESD after the spacecraft experienced surface and deep dielectric charging. A concise documentation of many other cases of satellite anomalies and losses that have been attributed to space weather can be found in several literatures (e.g., p. 33 of Refs. [8] and [9].
The Sun’s activity varies with time and position on the Sun, and characterized by 11-year cycle, which can be divided into solar minimum and solar maximum phases. The sunspots (and other solar indices such as solar radio flux) are viewed as main indicators of solar activity cycle. They are transient phenomenon seen as dark patches against photospheric bright background on the Sun. Observations made over the past two centuries have shown that the number of sunspots vary periodically, moving from minimum to maximum count approximately every 11 years. Figure 1 show a historic sunspot number. The latest solar cycle (cycle 24) peaked around year 2014. Currently, solar activity is on the decline and has been predicted to reach its minimum in late 2019 or 2020, while the solar maximum is expected to occur between 2023 and 2026 [10].
Historic sunspot number (source: SILSO graphics (http://sidc.be/silso) Royal Observatory of Belgium).
Solar energetic events such as high-speed solar wind streams (HSS), solar flares and CMEs that give rise to solar particle events and geomagnetic storms affecting the space environment are more frequent during solar maximum. Therefore, their impact on the atmosphere and air-based technology are expected to be higher during this phase of the solar cycle than the declining or minimum phase. Solar events and associated phenomena mainly contribute to trapped and transient energetic particles in near space that constitute the space radiation environment, in addition to galactic cosmic ray from outer space. The summary of types of space radiation, their origin or sources, and where they are important is shown in Figure 2.
Summary of types of space radiation, their origin or sources, and where they are important in the outer planets, planetary space and Earth, including the low Earth orbit (LEO), geostationary orbit (GEO), medium Earth orbit (MEO) and high Earth orbit (HEO) (source: Ref. [11]).
When charged particles from the solar wind encounters and interacts with the Earth’s magnetic field, it compresses it sun-ward, forming the magnetosphere (see, Figure 3). This scenario creates a supersonic shock wave known as the Bow Shock. The solar wind drags out the night-side of the inner magnetosphere. This extension is known as the magnetotail. Although the magnetosphere is constantly being bombarded by charged particles, they are being deflected and cannot easily penetrate the region; however, some particles gain entrance through the polar region and become trapped in the Earth’s magnetic field. The trapped particles are contained in one of two doughnut-shaped magnetic rings surrounding the Earth called the Van Allen radiation belts, Figure 3. The inner belt contains a fairly stable population of protons with energies exceeding 10 MeV. The outer belt contains mainly electrons with energies up to 10 MeV. The charged particles which compose the belts circulate along the Earth’s magnetic lines of force. These lines of force are known to extend from the area above the equator to the North Pole, to the South Pole, and then circle back to the Equator. There is a part of the inner Van Allen belt (VAB) that dips down to about 200 km into the upper region of the atmosphere over the southern Atlantic Ocean off the coast of Brazil. This region is known as the South Atlantic Anomaly (SAA). The dip results from the fact that the magnetic axis of the Earth is tilted approximately 11° from the spin axis, and the center of the magnetic field is offset from the geographical center of the Earth by 280 miles. The largest fraction of the radiation exposure received during spaceflight missions has resulted from passage through the SAA. Low inclination flights typically traverse a portion of the SAA up to six or seven times a day (see Figure 3).
(a) The Earth’s magnetosphere showing the Van Allen radiation belt. (b) Outer and inner (proton) belt (source: Ref. [12]).
The transient particles or radiation environments consist of particles from solar events such as solar wind, solar flares, CMEs and galactic cosmic radiation in the interplanetary and near-Earth space regions. The solar wind consists of relatively low energy electrons and protons that can significantly affect externally mounted spacecraft components. Solar flares are also a major contributor to the overall ionizing radiation level. A solar flare can emit and accelerate energetic particles or protons in the interplanetary space that can reach Earth within 30 minutes of the flare’s peak. CMEs can propagate into the solar wind and drive shocks, which in turn accelerates solar energetic particles, and also deflect the galactic cosmic rays (GCRs) entering the heliosphere [13, 14]. CME can cause geomagnetic storms and other associated phenomena, leading to large-scale disturbances with adverse consequences in the geospace environment that can affect satellite systems.
Galactic cosmic radiations (GCR) are not directly connected to our Sun. They originate from outside the solar system. GCR consists of ionized atoms ranging from a single proton up to a uranium nucleus. The flux level of these particles is very low. Notwithstanding, they produce intense ionization as they pass through matter because they travel at a speed that is very close to that of light, and because some of them are composed of very heavy elements such as iron [15]. The energy of cosmic rays is usually measured in units of mega electron volt (MeV), or the giga electron volt (GeV). Most GCRs have energies between 100 MeV and 10 GeV. Cosmic rays include essentially all of the elements in the periodic table; about 85% protons, 14% alpha particles, and 1% heavy nuclei [16]. The Earth’s magnetic field provides natural shielding from both cosmic and solar particles depending primarily on the inclination and secondarily on the altitude. As inclination reaches auroral to polar regions, a satellite is outside the protection of the geomagnetic field lines. At polar orbits intense fluxes of energetic electrons, known as precipitating electrons, propagate down along magnetic field lines (and create the aurora), and as altitude increases, the exposure to these particles gradually increases [12].
When charged trapped or transient particles from solar events or cosmic sources bombards and interacts with the exposed surfaces of spacecraft, their effects can affect the system in a several ways. The effects from the natural space environment include spacecraft charging (SC), single event effects (SEEs), total ionizing dose (TID), and displacement damage (DD). However, the specific effect depends on the type of incident particle, its energy and probably the source. Trapped heavy ions do not have sufficient energy to generate the ionization required to cause SEEs, and they do not make a significant contribution to TID. Galactic cosmic rays and cosmic solar particles, which are heavily influenced by solar flares and trapped protons in the radiation belts, can cause SEEs, but electrons are not known to cause SEEs. Although their physical mechanisms are different, the ionizing radiation of the space environment causes both TID and SEEs. Charged particle effects in the space environment are summarized below according to the particle source.
Spacecraft charging (SC) is the build-up of charge on spacecraft surfaces or in the spacecraft interior; SC causes variations in the electrostatic potential of a spacecraft surface with respect to the surrounding plasma environment, and potential variations in different portions of the spacecraft [17]. The major natural space environments which contribute to SC include the thermal plasma environment, high energy electrons, solar radiation and magnetic fields. Although SC has many effects, electrostatic discharges appear to be the most dangerous of all. Electrostatic discharges can cause structural damage, degradation of spacecraft components and operational anomalies due to damages to electronics. SC can be categorised into two: Surface charging which include differential charging, and internal dielectric charging. Surface charging is caused by low energy plasma (<100 keV) and photoelectric currents. Surface charging can either be absolute or differential. Absolute charging occurs when the satellite potential relative to the ambient plasma is charged uniformly, while differential charging occurs when parts of the spacecraft are charged to different potential relative to one another. Differential charging can also be caused by satellite self-shadowing. The charge control mechanism, and differential charging in spacecrafts are depicted in Figure 4. Differential charging of spacecraft surfaces is more detrimental than the absolute charging (relative to ambient plasma). The former can have a discharge effects that can disrupt satellite operations such as physical materials damage and electromagnetic interference (EMI) generation, and resultant transient pulses. Discharge consequences also include noise in data and wiring, sputtering and attraction of chemically active species [18]. Differential charging has been reported after geomagnetic sub-storms, which result in the injection of keV electrons into the magnetosphere.
(a) Satellite’s charge control mechanism, and (b) differential charging in satellites due to self-shadowing (source: Ref. [12]).
Internal charging is caused by high-energy electrons (>100 keV), which penetrate into the spacecraft equipment where they deposit charge inside insulating materials [8]. Internal discharge is more damaging since it occurs within dielectric materials and well-insulated conductors, which are in close proximity to sensitive electronic circuitry [19]. Based on data from the Combined Release and Radiation Effects Satellite (CRRES) obtained at GEO, most environmentally induced spacecraft anomalies result from deep dielectric charging and the resulting discharge pulses and not from surface insulator charging or single-event upsets [20].
Single event effects (SEEs) are individual events which occur when a single incident ionizing particle deposits enough energy to cause an effect in a device. SEEs are generally caused by two space radiation sources: high energy protons, and cosmic rays. Single event phenomenon can be classified into four: (i) single event upset (SEU), (ii) single event latch-up (SEL), (iii) single event burnout (SEB) and (iv) single event gate rupture (SEGR). SEU is a change of state caused by ions or electromagnetic radiation striking a sensitive node in a micro-electronic device, such as in a microprocessor, semiconductor memory, or power transistors. The state change is a result of the free charge created by ionization in or close to an important node of a logic element (e.g., memory bit). The error in device output or operation caused as a result of the strike is called a soft error. The mechanisms for heavy ion and proton SEU in devices (e.g., dynamic random access memories (DRAM)), and galactic cosmic ray energy deposition in devices are depicted in Figure 5. SEU can cause a reset or re-writing in normal device such as in analogue, digital, or optical components, and may also have effects in surrounding interface circuitry. A severe SEU is the single-event functional interrupt (SEFI) in which an SEU in the device’s control circuitry places the device into a test mode, halt, or undefined state. The SEFI halts normal operations, and requires a power reset to recover [1].
(a) Mechanisms for heavy ion and proton SEU, (b) schematic showing how GCR deposit energy in an electronic device [12], and (c) upset mechanism for dynamic random-access memories (DRAMs) (from Ref. [21]).
SEL is used in integrated circuits (ICs) to describe a particular type of short circuit which can occur in an improperly designed circuit. It is the generation of a low-impedance path between the power supply rails of a MOSFET circuit that can trigger a parasitic structure which disrupts proper functioning of the part and possibly even leading to its destruction due to over-current. SELs are hard errors, and can cause permanent damage. It can results in a high operating current, above device specifications, drag down the bus voltage, or damage the power supply. Latch-up can be caused by protons in very sensitive devices [22]. An SEL is corrected or cleared by a power off–on reset or power strobing of the device. SEL is strongly temperature dependent. If power is not removed quickly, catastrophic failure may occur due to excessive heating or metallization or bond wire failure [23].
SEB is a condition caused by high current state in a power transistor. It is a highly localized phenomenon, and includes burnout of the drain-source in power MOSFETs and BJTs, gate rupture, frozen bits, and noise in charged-coupled devices (CCDs). SEGR is the formation of a conducting path or localized dielectric breakdown in the gate oxide resulting in a destructive burnout. It occurs at MOSFETs, BJTs, and CMOS.
Solar flare particle events pose the most extreme SEU producing environment, especially for spacecraft in interplanetary space [24]. Experiments aboard CRRES showed a significant increase during a solar flare [25]. Based on CRRES’s data, most SEUs come from high energy protons through nuclear interactions and not through direct deposition from either protons or cosmic rays [20]. For LEO satellites, trapped protons, especially in the SAA, are the greatest SEE threat.
Total ionizing dose (TID) refers to the amount of energy that ionization processes create and deposit in materials such as semiconductor or insulator when energized particles pass through it. TID can result in device failure or biological damage to astronauts. Radiation-induced trapped charges can build up in the gate oxide of a MOSFET and cause a shift in the threshold voltage. Such device cannot be turned off even at zero volts applied, if the shift is large enough. Under this condition the device is said to have failed by going into depletion mode [26]. TID is mostly due to electrons and protons, mainly from solar energetic particle event and passage through the SAA. In low Earth orbit, the main dose source is from electrons and inner belt protons, while the primary source is outer belt electron and solar protons in geostationary orbit. The first recorded satellite failure resulting from total dose was the Telstar. The satellite was launched a day after the Starfish nuclear test on 9 July 1962. The nuclear weapon of about 1.4 Megaton was detonated at an altitude of about 400 km above Johnston Island in the Pacific Ocean. The explosion produced beta particles (electrons) that were injected into the Earth’s magnetic field, forming an artificial radiation belt. This artificial electron belt lasted until the early 1970s. Consequently, Telstar experienced a total dose 100 times that expected before its total failure. Up to seven satellites were destroyed by the Starfish nuclear test within 7 months mainly from solar cell damage [12].
When energetic particles are incident on a solid material, they lose their energy to ionizing and non-ionizing processes as they travel through the material. The consequence of the energy loss is in the production of electron–hole pairs and atoms displacement or displacement damage. Vacancies (i.e., absence of an atom from its normal lattice position) and interstitials (i.e., movement of displaced atom into a non-lattice position) are the primary lattice defects that are initially created. The combination of a vacancy and an adjacent interstitial is known as a Frenkel or close pair. Two adjacent vacancies can form a defect known as divacancy. Also, larger local groupings of vacancies may occur in irradiated silicon. A defect resulting from vacancy and interstitials being adjacent to impurity atoms is known as defect-impurity complexes. Once formed by incident radiation, the defects will reorder to form more stable configuration. The extent to which defects alter the properties of bulk semiconductor material and devices depends on nature of the particular defects and the time following the creation of defect at a given temperature.
The effectiveness of radiation-induced displacement damage depends on factors such as bombardment condition, particle type and energy, irradiation and measurement temperature, time after irradiation, thermal history after irradiation, injection level, material type, impurity type and concentration [27]. Displacement damage causes degradation of materials and device properties. Figure 6 depicts the collision between an incoming particle and a lattice atom, causing the displacement of the atom from its original lattice position. Displacement damage can also degrade minority carrier lifetime, and a typical effect would be degradation of gain and leakage current in bipolar transistors [12].
Displacement of atom from its original lattice position by incoming particle through collision [12].
The review presented here include portion of the work [1], part of which was published in [2]. We analyzed particles, electrons and protons flux of various energies from NOAA database for 3 months (April–June 2010). The mass stopping power, range and possible deposited dose of protons were calculated, and applied to the scenario of possible interaction of the particles with satellite surface and its electrical, electronic and electrochemical components.
Stopping power is the average energy loss of a particle per unit length (measured in MeV/cm) when passing through the material. Charged particles are known to ionize the atom or molecule which they encounter when passing through matter, and they lose energy in the process. The stopping power depends on the type and energy of the particle and on the properties of the material it passes. Although numerical values and units are identical for both quantities, the Stopping power refers to the property of the material while energy loss per unit path length describes what happens to the particle. The density of ionization along the particles path is proportional to the stopping power of the material because the production of an ion pairs requires a fixed amount of energy [28]. The Bethe-Bloch formula for stopping power derived from relativistic quantum mechanics is given by:
where z is the atomic number of the heavy particle, e is magnitude of the electron charge, m is the electron rest mass, c is the speed of light, I is the mean excitation energy of the medium, v is the velocity of the particle and k0 is the Boltzmann constant (= 8.99 × 109 N m2 C−2).
The mass stopping power of the material is obtained by dividing the stopping power by the density (ρ) of the material. It is a useful quantity because it expresses the rate of energy loss of the charged particle per g/cm2 of the medium traversed [28].
The range R of a particle (e.g., proton) of initial kinetic energy Ek and mass m is the mean distance it travels before coming to a stop. R depends on the particle type, initial energy and the material through which it traverses. A theoretical approach to the determination of charged particle range utilizes stopping power expression. The range of a proton computed by numerical integration of the stopping power using the continuous slowing down approximation (CSDA) is given by:
where R (Emin) is the measured range at minimum energy Emin which is added to the integral equation and treated as a constant for a particle and material. For the calculations of ranges for proton Emin is taken to be as 1 MeV as much data is available at 1 Mev. R (Emax) is the measured range at maximum energy Emax.
In previous work we used the empirical relations suggested by [28] to calculate the mass stopping power of particles in spacecraft materials [1, 2]. However, we anticipate limitations in the equations because they were originally formulated for low energy particles. Values obtained using Bethe’s equations are higher and assumed more accurate at higher particle energies.
The total ionizing dose (TID), explained in Section 3.3, can be measured in terms of the absorbed dose; which is a measure of the energy absorbed by matter. Absorbed dose is quantified using either a unit called the rad (radiation absorbed dose) or the SI unit which is the gray (Gy). 1 Gy = 100 rads = 1 J/kg. The total accumulated dose on a satellite depends on orbit altitude, orientation, and time spent in orbit. To compute TID we need to know the integrated particle energy spectrum, ø(E) or the fluence as a function of particle energy. The dose is a function of the particle flux. It becomes important as the spacecraft spends more time in the space radiation environment. The stopping power is used to determine dose from charged particle by the following relationship:
where
Satellite and space probes typically encounter TID between 10 krad (100 Gy) and 100 krad(Si) (1000 Gy(Si)). The time taken, t (in years) for a satellite’s component to fail due to total ionizing dose can be obtained by dividing the maximum absorbed dose or TID threshold by the total absorbed dose per year, given as:
We performed theoretical calculations to predict the mean time to failure of a model satellite due to TID. The assumption is that the model satellite’s body is made of aluminum alloy and 20 mm thickness (without impact mitigation such as protective coating on the satellite), in which the electrical, electronic and electrochemical components (mainly of silicon (Si) and germanium (Ge) materials) are housed [1, 2]. Our calculations were based on particles with E ≥ 78 MeV. When particles of this energy range bombard and penetrate the satellite, parts of their energies are lost due to the stopping power of the alloy but the reminder constitute significant dose to the components. With continuous exposure, the dose continues to build over time until the threshold is exceeded leading to completed failure of the affected satellite. Our calculations showed that a dose of 10 krad can build up on the model satellite’s component within 3 years and 100 krad within 29 years.
The electrons impinging on spacecraft surface in the space environment are faster than their ion counterpart because of their very small mass (when compared to that of ions). As a result the ambient electron flux is usually more than the ambient ion flux, leading to high level negative charging of the spacecraft. The regions of concern (in space) for internal charging of spacecrafts is illustrated in [29] and shown in Figure 7. Spacecraft charging can be mitigated by the methods of electron emission and ion reception [30]. Electron emission is the method in which a device pulls (or draws) electrons from the spacecraft ground and ejects them into space, while the ion reception is the method in which positive ions arrive at a spacecraft that is negatively charged to neutralize the negative charges. The former method is effective for reducing the negative charge of the spacecraft ground but not effective for dielectric surfaces. As a demerit, the process can lead to differential charging between the dielectric and the conducting ground. The later method is effective for mitigating negatively charged surface (whether dielectric or conductor), and reducing differential charging. However, it has the disadvantage of electroplating the entire spacecraft with extended use. Because each method has advantage (or disadvantage) over the other, the use of a combination of both types has been recommended. Other mitigation methods include plasma emission, partially conducting paint, polar molecule emission, mirror reflection and violet irradiation [31].
Regions of concern for internal charging of spacecrafts in space (source: Ref. [29]).
For memories and data related devices, some of the error mitigation approach or methods include Parity check, cyclic-redundancy check (CRC) coding, Hamming code, Reed-Solomon (R-S) coding, convolutional encoding and overlying protocol (see: Ref. [32] and references therein). Parity is a single bit added to the end of a data structure, such that it states whether an odd or even number of ‘ones’ was in the structure. The parity method counts the number of logic-one states or ‘ones’ that are occurring in a data path. The CRC coding method detects if any errors occurred in a given data structure based on performing modulo-two arithmetic operations on a given stream of data, and interpreting the results as a polynomial. The hamming code method detects the position of a single error and the existence of more than one error in a data structure. The R-S code can detect and correct multiple and consecutive errors in a data structure. The convolutional encoding can also detect and correct multiple bit errors. However, it is distinguishable from block coding (e.g., R-S code) by interleave of the overhead or check bits into the actual stream of data instead of being grouped into separate words at the end of the data structure. Errors in the control-related devices can also be mitigated using some of the above mentioned methods. A more effective mitigation approach for control-related devices with complex difficulties (e.g., large scale integration circuitry or microprocessors) is the software-based mitigation, which includes tasks or subroutines dubbed health and safety (H&S). The H&S tasks can perform memory scrubbing that utilizes parity or other method on either external memory devices or registers that are internal to the microprocessor. In the software mitigation methods, the internal microprocessor timers can also be used to operate a watchdog timer or for passing H&S messages between spacecraft systems (see: Ref. [32] for more detail).
TID on satellites system can be mitigated by methods such as shielding, derating and conservative circuit design [33]. Shielding is the processes of protecting spacecraft (and the occupants) from ionizing radiation using a configuration of appropriate massive materials. Derating refers to techniques usually employed in electrical power and electronic devices in which devices are operated at maximum power dissipation that is less than their rated value, with consideration of the case or body temperature, ambient temperature and the type of cooling mechanism used. This method can increase the safety margin between part design limits and applied stresses, consequently enhancing protection of the part [34]. Hardening of critical components in satellites at design level is also a viable method. This has, however, been the practice of satellite manufacturers. These methods can also be used to mitigate Displacement damage because DD is similar to TID as the effect is also cumulative [33].
Other important mitigation approach includes the development of appropriate environmental model that can mimic the perturbed scenarios that are expected under extreme space environmental condition. A well-accomplished or more sophisticated model should account for the individual effects of various solar forcing mechanisms, which cause fluctuations in neutral and ionized density [35]. One other very important mitigation approach to consider is the development of extensive warning system for solar energetic events. Although solar activity can be predicted days in advance but ascertaining their level of impact on the satellite and the Earth environment is quite challenging. Therefore, effective monitoring of solar activity is essential in order to be able to predict atmospheric or ionospheric responses to solar events and their consequence on satellite in orbit. In all, orbit consideration (and satellite’s trajectory) is also important. Satellites in medium Earth orbit (MEO) and geostationary orbit (GEO) are subject to impacts of outer Van Allen radiation belt. LEO satellites encounter the most intense particle fluxes in the SAA [36], which is considered to be the main region where spacecrafts receive the largest fraction of the radiation exposure during spaceflight missions. The schematic diagram of Earth’s radiation belts and their space weather concerns is shown in Figure 8.
Schematic diagram of Earth’s radiation belts and their space weather concerns (from Ref. [36]).
The space radiation environment driven by solar activity (and galactic cosmic rays) poses potent and unequivocal treat to satellites in near-Earth space. Understanding atmospheric and ionospheric dynamic responses to solar-driven particles and radiation, and their space weather implications are critical and of practical importance to satellites design and operation. The specific effects of radiation environment on as satellite depends on the source, type and energy of incident particle, as well as the satellite’s orbit and/or position at the time of solar energetic events. Radiation mitigation measures can increase the safety margin between part design limits and the applied stresses resulting from particles impact, consequently enhancing protection of the part. However, it is important that the solar maximum phase be given more consideration in all mitigation effort because the rate of impact is higher during this interval. Severe solar storms can occur during the solar maximum that can produce huge short-lived increase in radiation levels, as well as high levels of SEEs that current mitigation measures might not be able to bear [37]. Also as dependence on satellites services increase, the economic and societal risk associated with space weather also increases, and likely impact can be unprecedented. In view of this, a contingency plans that include the possibility of switching to or benefitting from other independent satellite services have been recommended [8]. The upcoming multi-constellation GNSS receivers can play a significant role in this regard, such that the individual GNSS receivers will be inherently robust to a satellite service denial. Space weather-induced enhancement of atmospheric drag on satellites and consequent accelerated orbit decay is also a major perturbing force to reckon with, for satellites in low Earth orbit [35, 38, 39, 40, 41, 42]. A concise review of the impact and mitigation of this phenomenon will be published in the future. We note that this review (on the space radiation effects on satellites and their mitigation methods) is succinct when compared to the large body of work in the subject area. Therefore, we encourage readers to also consult other well-accomplished texts for specific space radiation effect and the appropriate mitigation approach.
In order to enhance road safety as well as to satisfy increasingly stringent government regulations in western countries, automobile makers are confronted with incorporating a range of diverse technologies for driver assistance to their new model. These technologies help drivers to avoid accidents, both at high speeds and for backward movement for parking. This system can be placed into the category of advanced driver-assistance systems (ADAS). Besides increasing safety, ADAS [1] applications are concerned with to enhancing comfort, convenience, and energy efficiency. It is emerging as new driving technology supported with Adaptive Cruise Control, Automatic Emergency Brake, blind spot monitoring, lane change assistance, and forward collision warnings etc. It is an important platform to integrate these multiple applications by using data from radar, lidar, and ultra sound sensors etc. The vehicle engine related to hardware such as actuators, engine, brake, steering get the commands from the above sensors to enable the ADAS to take desired actions with respect to alerting the driver for detection of hazardous object or location or stopping the vehicle if necessary. For example, the recognition of black spot warning, lane change assistance and forward collision warning are extremely becoming useful in the ADAS.
During the gradual emergence of Connected and Automated vehicle (CAV), driver behavior modeling (DBM) coupled with simulation system modeling appears to be an instrumental in predicting driving maneuvers, driver intent, vehicle and driver state, and environmental factors, to improve transportation safety and the driving experience as a whole. These models can play an effective role by incorporating its desired safety-proof output into Advanced Driver Assistance System (ADAS. To cite an example, it could be said with confidence that the information generated from all types of sensors in an ADAS driven vehicle with accurate lane changing prediction models could prevent road accidents by alerting the driver ahead of time of potential danger. It is increasingly felt that DBM developed by incorporating personal driving incentives and preferences, with contextual factors such as weather and lighting, is still required to be refined, calibrated and validated to make it robust so that it turns into more better personalized and generic models. In regard to the modeling of personalized navigation and travel systems, earlier studies in this area have mainly considered ideal knowledge and information of the road network and environment, which does not seem to be very realistic. More researches are required to be conducted to address this real life challenges to make ADAS more acceptable to society.
There are an increasing evidences from the various literatures that a single vehicle making inferences based on sensed measurement of the driver, the vehicle, and its environment is mostly focused for DBM where there is any hardly attempt made to develop DBM in the traffic environment in the presence of vehicle to vehicle (V2V), and vehicle to infrastructure (V2I) scenario- communications system. It would be interesting to develop DBM with respect to connected and automated vehicle (CAV) to leverage information from multiple vehicles so that more global behavioral models can be developed.. This would be useful to apply the output of the CAV modeling in the design of ADAS driven vehicle to create a safety proof driving-scenario for diverse applications.
There are a number of sensors which are increasingly being used. These are namely cameras, medium and long-range radar, ultrasonic, and LIDAR.. Data generated from these sensors go through fusion process to authenticate the data so as to enable the computer software perform the necessary tasks to activate the driver assistance system to take correct decisions. These decisions are related to parking assistance, automatic emergency breaking, pedestrian detection, surrounding view, and even drowsiness of the driver. The functional components such as various types of sensors collecting data from immediate surrounding environment are related to ADAS architecture that helps to perform necessary tasks as shown in the Figure 1. The forward collision-avoidance ECU module is located in the windshield, supported with the blind spot ultrasonic sensors and related ADAS processor may be located in the side mirrors or other location areas.
Functional components and various types of sensors. Source: http://www.hitachi-automotive.us/Products/oem/DCS/ADAS/index.htm
The architecture [2, 3, 4] of the electronic control units (ECUs) is responsible for executing advanced driver assistance systems (ADAS) in vehicles which is changing for its response during the process of driving. Automotive system architect integrates multiple applications into ADAS ECUs that serve multiple functions of ITS architecture as shown in the Figure 2. Figures 3 and 4 show Architecture for other functions related to Forward Collision and Parking Assistance respectively.
Architecture of ADAS, source: Ref [3].
Architecture of forward collision avoidance & blind spot avoidance. Source: Ian Riches, strategy analytics.
Architecture of ADAS -Parking Avoidance & Blind. Source: http://www.techdesignforums.com/practice/technique/managing-the-evolving-architecture-of-integrated-adas-controllers/.
Hardware architecture of ADAS and autonomous driving, includes automotive Ethernet, TSN, Ethernet switch and gateway, and domain controller while Software architecture of ADAS and autonomous driving, including AUTOSAR Classic and Adaptive, ROS 2.0 and QNX.
Advanced driver assistance systems (ADAS) need a number of integrated sensors to accurately determine situational assessment and action implementation. In ADAS technologies [5, 6, 7] sensors such as video, radar, LIDAR, ultrasonic and infrared (IR) sensors are being increasingly utilized. Sensor fusion with advanced algorithms and computing power, connectivity and data transmission, contextual awareness and processing, and virtual sensors is extremely important for success of ADAS.
There are six levels of vehicle automation as shown in Figure 5 defined by the Society of Automotive Engineers (SAE) [8] with a span from Level 0, which has no automation, to Level 5, which involve fully autonomous vehicles. As automation expands, driver assistance and ADAS plays an increasingly important role.
Various levels of ADAS, source: https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving- automation%E2%80%9D-standard-for-self-driving-vehicles.
Level 0: Driver only: the driving is controlled by the human driver using with driving aids independently including steering, throttle, brakes, etc.
Level 1: Assisted driving: driver needs assistance during vehicle operation with respect to Cruise Control, ACC.
Level 2: Partial automation: the system is monitored during driving. At least one system, such as cruise control and lane centering, is fully automated.
Level 3: Conditional automation: the system is monitored by the operator and can intervene when it is necessary. Safety-critical functions, under certain circumstances, are shifted to the vehicle.
Level 4: High automation: there is no monitoring required by the driver. Vehicles are designed to operate safety-critical functions and monitor road conditions for an entire trip. However, the functions do not cover all every driving scenario and are limited to the operational design of the vehicle.
Level 5: Full automation: it ensures operator-free driving without any intervention.
As of today, no car manufacturer has achieved level 3 or higher in production, although several have produced demonstration vehicles. The legislature of some countries is working on a possible admission of “Level 3” vehicles, which is expected to be available in 2020/21. Driver assistance systems enabling autonomous driving from level 3 onwards will require at least three types of sensor systems: camera, radar, and LIDAR systems. As can be seen in Figure 5, several of each type of sensor operates at various locations on the vehicle. The development of the LIDAR system is still posing the bigger and most dynamic challenge in technical and commercial terms.
There are a number of sub systems associated in performing various tasks of ADAS. A vehicle’s movement detected by the ADAS can be seen in the main system inside the vehicle when the driver is present. This system interacts with the environment. There are different functions of the system as can be clearly distinguished in Figure 6. The following distinctive features of fusion are mentioned as under:
Information has to be gathered;
Information needs to be evaluated;
A safety measure need to be taken;
Fusion of data at ECU received from various types of sensors housed in ADAS, Source: Ref No: [3].
These functions are synonymous to as Sense (1), Think(2), and Act(3). Only the Sense sensors are reviewed and only the systems in which the driver is inside the loop. Figure 6 shows the process of ‘multi sensor processing’, starting with the sensor data acquisition. Next, the sensors processing, divided into several tasks, as ‘Calibration, ‘Feature Extraction’, ‘Object Detection’, etc., begins to analyze the sensors data and, in the end, serves the application with a more or less detailed model of the environment [4].
Fusion of data received from complementary and independent sources place the data into a single description. Data association and data assimilation are two important components to be addressed for data fusion as a part of the process that matches sensor data with the description of the environment that requires synchronization of the sensor data and the associated object state (e.g., position and velocity).
It is extremely important to know which sensors are required for autonomous driving from Levels 1 to 5. As already mentioned, there are three main groups of sensor systems camera-, radar-, and LIDAR-based systems. Although, for parking, ultrasonic sensors are available today and are widespread, they are of minor importance for autonomous driving. Camera and radar systems are in the Level 1 and 2 vehicles today and are prerequisite for all further levels of automation.
This advanced Camera (digital HDR CMOS cameras) with large dynamic range is well suited to poor light conditions and primary differences are due to its brightness.
A large number of digital interfaces are available with camera for automobiles along with digital signal processor and internal memory capacity. The camera generates processed video images for evaluation using software algorithm. It also help images transformed in to signals to merge with other sensor signals such as other as radar and lidar etc. Due to the inherent intelligence of the camera, all the signals are processed in the fusion mode to enable the ADAS to take correct decision. The camera used as sensor [9] is required to go through the quality management (ISO/TS/16949 in the automobile industry and are suited for adaptability which is quick and flexible. Current digital camera system is continuously receiving raw data that is then processed and forwarded to the display unit for image display. This procedure is shown in Figure 7.
Video data transfer to head unit of camera through Ethernet, source: https://www.fierceelectronics.com/components/three-sensor-types-drive-autonomous-vehicles
Besides this, the infrared (IR) camera consists of several components. It is important to distinguish 2 different versions of the IR camera:
The infrared (IR) camera consists of several components. It is important to distinguish 2 different versions of the IR camera:
Near Infra Red(NIR);
Far Infra-Red(FIR);
In both systems a camera plays an important role in identifying radiation of objects. It may be mentioned that NIR technology offer an extra illumination by IR-headlights while the FIR systems is not characterized with special headlights. The primary difference between the two is picking up the extra-radiated objects by the NIR systems while FIR only accepts only the regular radiation of objects.
Table 1 presents transmission of data rate from sensors [10].Figure 8 shows the functioning of Lidar.
Sensor | Data rate required to transmit raw data |
---|---|
Camera | 1Gb/sec to 24Gb/sec |
Radar | 5Gb/sec to 120Gb/sec |
Lidar | 2 Mb/sec to 10Gb/sec |
Data rate required for transmission of data.
Principle of the functioning of LIDAR. Source: https://www.fierceelectronics.com/components/three-sensor-types-drive-autonomous-vehicles.
For purpose of measuring distance and creation of three-dimensional images of the environment, LIDAR system [11] is fitted and integrated ever more frequently into vehicles and mobile machines. A pulsed laser beam assesses the signal‘s transit time from the object back to the detector as shown in Figure 8. A highly sensitive technique using Avalanche Photodiodes along with internal amplification measure the light pulses in the nanosecond range across wider bandwidths. Lidar optical system requires the high spatial resolutions. Therefore sensor has the capability to develop APD arrays comprising with multiple sensor elements. The APD arrays from sensor addresses the effect of temperature due to its high voltage. Their highly accurate amplification offers excellent APD signal quality. The modules can be adapted to as per the specific application. Development boards with digital output signal and Low Voltage Differentiating Signal (LVDS) is interfaced. With the help of Lidar and Radar System, the object of the road can easily be identified. But in addition to these, there is a necessity for a camera for classification and detection of an object in a correct way. With the development of point density cloud from the reflections from radar and lidar, the distance and closing speed of the object can easily be measured. It may be mentioned that due to lower resolutions from these sensors as compared to camera, the detection of the objects are not easily made. To optimize the detection at varying ranges with lower resolution, a number of units are installed from a medium-range unit for emergency brake assist to long-range radar for adaptive cruise control although LIDAR & radar, functions in a similar way at longer ranges with lower point-density.
RADAR is meant to define its full form “Radio Detection And Ranging.”. By this sensor, the object is detected with the identification of localization of objects using radio waves with a frequency range from 24 to 77 GHz. It is noteworthy to mention that the higher measurement of accuracy with respect to distance and speed along with precise angular resolution depends on high intensity of radio wave frequency. Generally the frequency over 24 GHz is used for the smaller antenna size with the lower interference problem. The examples of various types of frequency band [12] used for different sensors are as under:
Short-range radio applications include:
Blind Spot Detection (Blind Spot Monitoring)
The lane and the lane-change assistant
Rear end radar for collision warning or collision avoidance
Park Assist
Brake Assist
Emergency braking,
Automatic distance control
Radar configurations can be broadly categorized into three categories namely short-range radar with a maximum distance of about 30 meters, medium range radar with about 60 meters and long- range radar with about 250 meters. It may be mentioned that the use of Short Range Radar is increasingly seen with the detection of blind spot, rear and forward mitigation, parking assist etc. On the other, there are a number of detection system namely forward collision warnings, cross traffic alert, stop & go etc. operated by Medium Range Radar. So far there is no specific distinction made between SRR and MRR by the industry. It is seen now a days that ultrasonic sensors and highly automated driving are gradually replaced by the SRR. We do not have as such specific definitions and distinctions between the SSR and MDR as formulated by the industries. As far as the placement of sensors in the vehicles, the forward looking sensor for long range detection is generally placed in the front of the vehicle.
For a ‘cocoon’ radar system, extra sensors are placed on each side mid-body. Ideally, these radar sensors work on the 79-GHz frequency band with a 4-GHZ bandwidth. It may be mentioned that, global frequency specifications so far allow only 1 GHZ bandwidth at 77 GHz. Now a days a radar MMIC (monolithic microwave integrated circuit) comprises of three transmission channels (TX) and four-receiver channel (RX) to be monolithically integrated. Whether it creates a sense to integrate base band processing in the monolithic microwave integrated circuit (MMIC) or whether it is better to concentrate on a raw data radar sensor, it is a matter of debate.
The difference is that the output of the baseband processor provides so called pre-targets. In this case, data is pre-processed such as unverified information on speed, distance, signal strength, horizontal angle, and vertical angle for each detected object. The raw data radar sensor presents unfiltered raw data, to the ECU for processing. Figure 9 demonstrates the architecture of such a raw data radar sensor. The radar sensor used as partitioned simplifies the data fusion of the video and radar data, and LIDAR data since the same communication interface can be used A prerequisite for the development of MWICs (Millimeter Wave Integrated Circuit) is dedicated high-frequency (HF) technologies to realize the frequencies (24 GHz or 77 GHz) and the corresponding output power. Table 2 presents summary table of the properties of a radar sensor in certain ADAS.
Radar architecture for processing of raw data. Source: (https://www.sensorsmag.com/components/three-sensor-types-drive-autonomous-vehicles
Property | Present in systems | Comment |
---|---|---|
Frequency: 76–77 GHz Range: 1 to 200 m Search Area: 12° Speed measurement precision: < 0.2 km/h |
| Long range, Pulse Doppler, Active sensor, |
Angular Precision: < 0.3° | ||
Frequency: 24.125 Ghz Distance range: 10 m Velocity range: 60 m/s Field of view:
Dimensions: 90 x 40 x 15 mm |
| Short range |
Frequency: 24 GHz |
| Forward looking, long Range |
Frequency: 24 GHz Frequency: 5.8 GHz |
| Side looking, short range Side looking, short Range |
F = 76.5 GHz Resolution = 100 cm Bandwidth = 100–500 MHz Range = 7–150 m | Long range, Pulse Doppler, Active sensor, | |
Radar |
| Active sensor, |
Frequency: 24 GHz UWD (Ultra Wide Band) Resolution = 3 cm Bandwidth = 5 GHz Range: 0.3–30 m |
| Short range, Active sensor, |
Transmission Power = −41.3 dBm/ MHz | ||
Infrared Radar |
| Near InfraRed (NIR), Far Infra Red (FIR), |
Summary table of the properties of a radar sensor in certain ADAS, source: Ref. [12].
Multiple transmitters and receivers are generally are in-built to determine range, angle, and velocity of objects in their field of view. As various sensors are concerned, it consists of ultra-short-range- radar (USRR), short-range-radar (SRR), medium-range-radar (MRR), and long-range-radar (LRR) sensors or systems.
The primary philosophy of working with the ultrasonic technology is to transmit short bursts of sound waves that return back after hitting objects for which the measurement are to be taken in terms of time required to bounce back with speed of approximately 346 m/s which is the speed of the sound. For detection of short distance range obstacle, Ultrasonic sensors are increasing being used in the automobile industries which is generally characterized by with a sound pressure kHz and detection covering range of one to three meters supported by horizontal beam width of maximum100°and60°vertical. The ultrasonic and radar technology complements each other to determine the higher degree of accuracy,
Ultrasonic sensing is generally meant for short-distance applications at low speeds, such as park assist, self-parking, and blind-spot detection. For maximum coverage, an automotive ultrasonic system typically performs with multiple sensors placed in the wing mirror and front and rear bumpers. Ultrasonic sensing is a more cost-effective approach than cameras, which have poor close- distance detection. Though infrared sensing is cheaper than ultrasonic, it’s less accurate and cannot function properly in direct sunlight. Objects closer to the transmitter generate a stronger echo than an object with more distantly located. In order to avoid false positives, the system neglects all inputs that are less than that of the noise. The important parameters related to the specifications of ultrasonic sensor are the frequency, sensitivity, and directivity. The system is further characterized by the tunable transformer that is required to excite the transducer.
A tuning capacitor built into the system is concerned with matching the resonant frequency between the transducer and transformer. The speed of sound in air is affected by air temperature, humidity, and wind. If multiple sensors are applied, they must be placed in sufficient space so that the sensor signals do not interfere. Figure 10 shows the features of ultrasonic system (Table 3).
This ultrasonic system features a PGA450 analog front end (source: Author/PGA450-Q1 PDF).
Property | Present in systems | Comment |
---|---|---|
F = 40 kHz Distance range: 0 to 3 |
| In adverse weather conditions |
meter Distance accuracy: | ||
10 cm Angular range: | ||
120° Angular accuracy: | ||
+/− 5° | ||
Response time: 60 ms |
Summary table of the properties of an ultrasonic sensor in certain ADAS, source:
It is realized that in order to make the ADAS commercially viable, three aspects on designing, testing and validating are of great importance and challenge to researchers/ scientists and manufacturer. The processing and sharing of information requiring a huge computation effort, within its fusion system in real time situation is a complex and difficult task in view of the computational load and the time-constraints placed on the system.
The inertial navigation systems identify, measures position, orientation, and velocity measurements. The sensor of RT-Ranges [13] is responsible for creating a real-time network, which is capable of tracking multiple targets, calculating distance, time to collision, and other relative measurements. Targets include primarily road vehicles, vulnerable road users (VRUs) such as cyclists or pedestrians. Euro NCAP (The European New Car Assessment Programme,) targets traffic assets and more. Euro NCAP is a European car safety performance assessment programme. Data is available in real-time on a software dashboard captured to verify test outcomes. Vehicle-to-vehicle measurements can be made over a 1 km range. Many similar systems in different parts of the world are increasingly seen, all with a slightly different name.
Various system of ADAS associated with various sensors is presented in the Table 4. A number of sensors developed during the process of development of ADAS are briefly discussed below.
During night vision, one is more concerned with the proper visibility where the camera plays an important role. Therefore the camera for this purpose is designed with the use of near or far infrared to improve the perception of the driver in dark conditions. The improved sight vision created by the above near or far- infrared camera is displayed in the monitors of the vehicle. Human Machine interface though poses an issue for correctly showing the road-side picture for timely intervention plays an important role to the driver to enhance the safety to the driver so that the driver is not distracted. Table 5presents available sensors with their properties for night vision.
Various sensors related to their applications. Source: Automotive ADAS Systems, ST Developers Conference, Sep, 12, 2019, Santa Clara Convention Centre, Mission City Ballroom, Santa Clara, CA.
Sensor | Property | Comment | |
---|---|---|---|
Infrared camera | l = 800 nm | Near InfraRed (NIR) | |
(CMOS) | = 7–14 μm | Far InfraRed (FIR) | |
Both systems are mono-camera, | mono-camera, |
Available sensor and properties in night vision systems, source: [12].
Lane departure warning mechanism works on the principles of certain thresholds with respect to distance, time to lane crossing. It is based on the decision made out from the data fusion analysis supported with computer software algorithm to warn the driver that he or she is about commit mistake in departing traffic lane. For example, sensors such as acoustic, optic means continuously generate and analyze the data along with the video image processing data created by the vehicle cameras results in the detection of warning to the vehicle. In order to make the warning system effective, the carriage way would have to be laid with Good visible lane markings system. These influence the complexity of the system on the roadside. This system aims to prevent involuntary lane departure, which constitutes a relevant cause of road accidents. With real-time measurement and positional accuracy which is generally at less than 2 cm, the system captures the data that the sensor performs the task of lane departure action as shown in Figure 11. This warns the Lane Departure Warning system if the vehicle suddenly decides to change the lane without proper indication. The camera used for the lane detection system is low cost generally mounted on the windscreen near the rear view. The position of this location of the camera helps continuously capture the image of solid lane line marking of the road towards the front side of driving. it also works along with the front (adaptive cruise control and, ii) forward collision warning), side (lane departure warning), and iii) rear side (blind spot detection).
How it works: Windshield camera tracks lane markings. Source:https://www.extremetech.com/extreme/165320-what-is-lane-departure-warning-and-how- does-it-work.
There are multiple collision warning systems (12) mentioned on the Table 6.
Sensor | Property | Comment | |
---|---|---|---|
Infrared camera | l = 800 nm | Near InfraRed (NIR) | |
(CMOS) | = 7–14 μm | Far InfraRed (FIR) | |
Both systems are mono-camera, | mono-camera, |
Available sensor and properties in night vision systems.
The finest example of the application of near field collision warning is the detection of blind spot, which takes very close proximity of the presence of vehicle. Lidar, radar or vision based sensors are generally used. It may also be acoustical, haptical or optical also. In many cases, the frequency of this kind sensor is found to be 24 GHz. To test and develop blind-spot detection systems, it is necessary to accurately measure the position and trajectory of targets relative to the vehicle under test (VUT). The system may require the following protocol accuracy:
Relative accuracy 2 cm
Heading accuracy 0.1°
Free post-processing software
Ability to track multiple objects in real-time
Perfectly suited to open-road testing
To evaluate blind-spot detection systems, an RT inertial navigation system and RT- Range S [7] are installed in the vehicle under test. This powerful system is designed to work in conjunction with GNSS-aided inertial navigation products. Automobiles can be equipped with GNSS receivers, which display moving maps and information about location, speed, direction, and nearby streets and points of interest. The manner in which sensor works is based the measurement of real-time distance between the sensor and the identified object. It may include any type of vehicle, blind corner of a junction, pedestrian and bicycle etc.
For real-time testing, range measurements from the RT-Range S Hunter can be used as output via Ethernet or CAN (Controller Area Network) which is a communication hardware that allows communication between parts of a system without the intermediary of a central computer. Or data can be logged internally and analyzed back at base where it can be post-processed and exported in CSV file format ((“Comma Separated Values”) which is often used to exchange data between differently similar applications).
Warning system developed by EATON-VORAD in the USA for trucks and busses [13] as the first step towards the Advanced Driver Assistance Systems (ADAS) can be considered as Forward Collision Warning System. Forward Collision warning with a frequency of 24 Ghz is first seen in the USA market in 1995. It used to detect the object with signal emitted through either optical or acoustical method to the driver when the object happens to be close to the path of collision.
This system addresses a side looking short-range radar that operates at 24 GHz. This sensor identifies and detects side obstacles that are signaled with a proper display. As a further option, the system can also be linked to engine control with a view to controlling speed. This function is called “Smart Cruise”. More recently, the side obstacle detection System has been introduced also on Volvo cars based on camera sensor and image processing.
This system communicates with the driver about speed limits and informed the recommended speed at curves. There are a number of relevant information generated from digital maps, image processing or communication system between the interactions of vehicles and road infrastructure. That is the reason that updated real time data is important to the driver generated from the above which helps in recognizing the speed limit of the road where the vehicle is traveling. It may be mentioned that the details of the road features such exact location of traffic marking, position of street light etc. are available in the form of digital map in ADAS that helps in identifying and recognizing the speed limit.
This system was introduced firstly inside Japan, and then in Europe for the car market. ACC systems are based on a front looking sensor designed with laser radar, (LIDAR) or microwave radar with a maximum detection range of around 100 m. The microwave radar sensor operates in the 76–77 GHz bands that have been reserved for application of automotive obstacle detection. Based on front vehicle information, mainly distance and speed, the ACC system regulates own vehicle speed by acting on engine control and braking system. The ACC is an extension of the standard Cruise.
Control system, with the extra capability to adapt the speed of the vehicle to the speed of the preceding one. This function was firstly introduced in Japan on 1995 based on LIDAR technology.
Europe experienced the emergence of lidar and microwave technology in the following years which led the introduction of these technologies in the Mercedes car during the year 1999. It is noteworthy to mention that the automatic cruise control system (ACC) was seen fitted with truck manufactured by Mercedes automobile industry. Presently around twenty automobile manufacturers are producing this type car and truck.
It is based on a high performance GNSS/INS for dynamic applications developed on the convenience of a conventional cruise control system by automatically changing speed to match the vehicular flow in front. It’s important to determine precisely when and how the system intervenes, how well it acquires and then it tracks the targets and how it performs in a number of different real-world scenarios [6]. Measurements such as target bearing, distance, relative velocity and time-to-collision are key to the evaluation of these systems. Sensors with RT and RT range for ACC offers the following characteristics:
Relative accuracy 2 cm
Heading accuracy 0.1°
Real-time birds eye view showing measurements
Ability to track multiple objects in real-time
Perfectly suited to open-road testing
In order to get accurate vehicle-to-vehicle measurements, an RT inertial navigation system and RT-Range S [7] are installed in the vehicle under test (VUT) and any target vehicles. An RT inertial navigation takes into account a number of parameters for operation. These include position with respect to latitude, longitude, altitude distance and its coordinate position. Besides the position of these, velocity, acceleration, orientation, angular rates and acceleration and slip angle are also taken into account. RT-XLAN Wi-Fi radios then send real-time information from target vehicles back to the VUT where the RT-Range S calculates, logs and outputs real- time measurements about the relative position of the target vehicles. The measurements being the output include the position of both the Hunter and target vehicles, orientation and velocity. The current status of the ACC hardware can also be logged with the data via a CAN bus interface, which is a robust vehicle bus standard designed to allow microcontrollers and devices to communicate with each other in applications without a host computer. It can also be or later synchronized with the measurements via a GPS time stamp. Moreover, from some manufacturers, ACC is given in combination with lane warning system.
It will have frequency allocation for 24 GHz sensors. The properties of various sensors associated with the functioning this ACC are presented in Table 7 as under:
Sensor | Property |
---|---|
LIDAR | Wavelength l: 850 nm |
Radar | Frequency: 76–77 GHz Range: 1 to 200 m Resolution: 100 cm Search Area: 12° Speed measurement precision: < 0.2 km/h Angular Precision: < 0.3° Frequency: 24.125 Ghz Distance range: 10 m Velocity range: 60 m/s Field of view:
|
Available sensors with their properties in ACC (source: Ref No. [12]).
Adaptive cruise control (ACC) permits a driver to travel with the flow in traffic. In this situation, a radar sensor monitors the situation in front of the vehicle. As the road is observed to be clear, ACC operates with the desired speed. If the radar sensor finds a slower vehicle ahead of it, ACC automatically maintains and adjusts the speed a preset distance. In the Stop & Go version, the system results in slowing the car down in a traffic jam, or even comes to a halt it completely. If the car has an automatic transmission, Stop & Go also restarts the engine once traffic gets moving again after a brief pause.
In this system the driver continues to receive support from this sensor with respect longitudinal control for the formation of queue. During the stop & go of the vehicle facing the front side, longitudinal control is carried out by the system for detecting the near side objects.
The function of a lane keeping assistant system includes the lane detection and the feedback to the driver if he is leaving a defined trajectory within the lane. Lane departure warning systems merely alert the driver when the car is leaving its lane, while lane-keeping assist actually works to keep the car from moving out of the lane. An active steering wheel can help the driver with a force feedback to keep on this trajectory. The lane is detected by a video image processing system. Additionally to the lane departure warning aspects especially regarding the infrastructure, the HMI becomes more important.
The driver gets all assistance through his touch with steering and other devices for taking decisions for the vehicular movement linking with the controller that also helps to lane keeping assistance to adhere to lane driving.
The Protocol accuracy requirements [12] for this are as under:
Axes to be in ISO 8855:1991 orientation
Longitudinal speed to 0.1 km/h
Update rate at least100 Hz
Time is required as a synchronization DGPS (Differential GPS)
Position to 0.03 m
Yaw velocity to 0.1°/s
Acceleration to 0.1 m/s2
Vehicle edge to lane edge measurements
For the LSS (Lane support System) LKA tests, the key measurements are the distance between the outer-edge bulge of the front tires and the inside edge of the lane markings when any intervention is triggered..
If a hazard occurs far away in front of the vehicle, so that the driver cannot see it, this system will warn him. By the means of communication, it is possible, to transfer this information over long distances. A usable frequency has to be allocated. Local Hazard Warning [14, 15] is a system that uses short-range communication between cars, and between a car and its surroundings, to give drivers early warning of safety hazards. For example, a car equipped with Local Hazard Warning might issue a warning to other vehicles if it had broken down in the middle of a carriageway or had been involved in a collision. Similarly, emergency vehicles equipped with such a system might send a signal to nearby vehicles to warn them of their presence, or temporary roadwork barriers could issue for such warnings. As well as transmitting such warnings, cars equipped with Local Hazard Warning can also receive these signals and use them to alert the driver to the danger [16].
The automatic parking is a function that helps the driver entering into a parking slot in a parallel maneuver by automatically acting on the steering wheel and engine control. The sensors measure [12] the object with following accuracy:
Relative accuracy 2 cm
Heading accuracy 0.1°
Real-time birds eye view showing measurements
Ability to track multiple objects in real-time
The vehicle is fitted with a GNSS-aided inertial navigation system (GNSS/INS). In most cases (because of the low speeds involved), a dual-antenna model is fitted to maintain the best headway accuracy at all times. The properties of various sensors [12] are presented in Table 8.
Sensor | Property | Comment |
---|---|---|
Laser | Beam deflection: horizontal Range: 0–80 m Range: 0–35 m @ Rr = 5% Resolution: 20 mm Accuracy: ± 50 mm Frequency: 10–40 Hz Cycle time: 25–100 ms Vertical opening angle: ~ 3,5° Horizontalangularfield:+ − 120° Lateral resolution: 0,25° - 1° | |
Radar | Frequency: 24.125 Ghz | Short range |
Distance range: 10 m Velocity range: 60 m/s Field of view:
| ||
Dimensions: 90 x 40 x 15 mm |
Various sensors available for automatic parking and their properties.
Pre Crash Safety Systems identify an imminent crash and deploy safety devices such as seat belt pretensions.
Pre Crash Safety Systems identify an imminent crash and deploy safety devices such as seat belt pretensions. In order to reduce the damages of an accident, this system has been designed that is capable of applying brake automatically after identification of imminent occurrence of collision. As discussed earlier, various sensors such as Lidar, Camera etc. play an important role in identifying the hindrance for an imminent collision. This feature is primarily designed to address the problem of safety, which integrates the sensitivity of seatbelt. If one happens to wear the seat belt during the occurrence of road accident, the chances of being injured is quite less. Most of the seat belts now available in the car are very sensitive, as the vehicle will not move if car users or someone does not wear seat belt.
The driver will be warned if a potential collision is detected with e.g. another car or obstacle. This warning can be, for example acoustic, visual. The functional limits of these systems have to be clearly pointed out.
In city environments, collision between vehicles and pedestrians or cyclists often result in serious injuries as there is a little time for either party to react. Protocol accuracy requirements [12] for this kind of collision are the following.
Update rate at least 100 Hz
Lateral path error
Time is required as a synchronization DGPS
Position to 0.03 m
VUT (Vehicle under test) Speed to 0.1 km/h
Yaw velocity to 0.1°/s
Acceleration to 0.1 m/s2
Polygon perimeter shapes
In an intersection situation especially in cities, a driver has to fulfill several tasks in parallel. In order to assist the driver in such situations, it is necessary to support certain tasks like approaching a stop sign/traffic light or right of way of crossing traffic. The complexity of the possible intersection scenarios leads to the high risk probabilities of causing accidents. As any intersections are designed to address a number of turning movements of automobile traffic coupled with the non-motorized and pedestrian traffic, the detection and recognition are not as simple as on a straight section of a road. Due to these complexities, the safety of the road intersection would have to be taken into all possible scenarios to make hazard free zone.
The driving of vehicle is controlled by a computeralgorithm in each situation. It is presently viewed that this fully AV cannot be reached at the present situation in the actual road network immediately. There is an expectation that true Level − 5 of AV to attain full autonomy is about ten-plus years away. It is also expected that geo-fenced applications of autonomous vehicles (AVs) would reach in the next three to five years. The progress on the hardware as well as software has actually been very significant. The cost of LIDARs [light detection and ranging sensors], for example, has dropped by a factor of ten over the last five years. Similarly, the amount of computational capacity that the GPUs [graphic processing unit] has also increased significantly. ISO 39003 is now working on Guidance on Safety Ethical Considerations for Autonomous Vehicles in order to ensure that this vehicle is absolute safe and smooth from operational point.
Although there are many demonstration seen on advanced vehicles up to Level 3 or more, so far automobile manufacturers have not been able to commercialize to the high level automated vehicle which requires detailed and comprehensive legislation in the countries.. International Standard Organization is presently working on the standards for this automated vehicle. A number of fundamentals aspects of ADAS that are a part of the complex process of the system have been discussed. ADAS with level-2 are becoming increasingly available in the market in western countries with implication of increase in its cost. It may be mentioned that the manufacturers of ADAS driven vehicles have not been able to make any significant impact on the sale of this type of vehicle. It may be mentioned that there is not significant negative values experienced so far. The R&D into ADAS is increasingly being accelerated to enhance safety.
Though the ADAS driven vehicle is yet to find its place in the market in spite of apprehension raised by many sections of people on the safety related issues, it would be important to appreciate when it turns into Cooperative Road Vehicle Highways System reducing the probability of accident to almost zero level.
The European Community (16) is leading by investing significantly in R&D into ADAS in Europe. Many countries such as France, the Netherlands and the UK are increasingly taking an active role by participating in research activities and promoting successful implementation. The most important issues of ADAS have two key factors: i) a high level of usability and ii) a low financial risk to the manufacturer. It seems for the time being, ADAS user benefits are not clear yet and financial risks still exists.
As far as legal aspects are concerned, the relation between ADAS and product liability is very important. The product liability for ADA systems will address specific additional requirements, in particular taking into account the interaction of the drivers/users with the product in view of the current legal framework. The Code of Practice is being developed by the European car manufacturers by addressing these requirements. Presently the ADASE II technology roadmap for ADAS confirmed the expectation that ADAS will have potential benefits on safety, throughput and comfort, ranging from positive to very positive. Related technology development, R&D is still required to improve the performance of ADAS to cover wider ranges of traffic scenarios and to bring down costs. Political motivations and intervention may be needed to advise to the different decision makers to accelerate and facilitate (or regulate) the market the introduction of ADAS.
Therefore the government should come forward along with the concerned stake holders like road operators, car manufactures, users etc. by jointly setting up proper conducive environment in order to promote the advances of ADAS. The ADAS driven vehicles should be commercially viable in the market by addressing concerned legal issues in the society.
IntechOpen aims to ensure that original material is published while at the same time giving significant freedom to our Authors. To that end we maintain a flexible Copyright Policy guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Chapters",metaDescription:"IN TECH aims to guarantee that original material is published while at the same time giving significant freedom to our authors. For that matter, we uphold a flexible copyright policy meaning that there is no transfer of copyright to the publisher and authors retain exclusive copyright to their work.\n\nWhen submitting a manuscript the Corresponding Author is required to accept the terms and conditions set forth in our Publication Agreement as follows:",metaKeywords:null,canonicalURL:"/page/publication-agreement-chapters",contentRaw:'[{"type":"htmlEditorComponent","content":"The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\\n\\n1. DEFINITIONS
\\n\\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\\n\\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\\n\\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\\n\\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\\n\\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\\n\\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\\n\\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\\n\\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\\n\\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\\n\\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\\n\\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\\n\\n3. CORRESPONDING AUTHOR'S DUTIES
\\n\\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\\n\\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\\n\\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\\n\\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\\n\\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\\n\\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\\n\\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\n4. CORRESPONDING AUTHOR'S WARRANTY
\\n\\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\\n\\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\\n\\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\n5. TERMINATION
\\n\\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\\n\\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\\n\\n6. INTECHOPEN’S DUTIES AND RIGHTS
\\n\\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\\n\\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\n7. MISCELLANEOUS
\\n\\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\\n\\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\\n\\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\\n\\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\\n\\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\\n\\nLast updated: 2020-11-27
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:"
The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\n\n1. DEFINITIONS
\n\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\n\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\n\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\n\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\n\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\n\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\n\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\n\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\n\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\n\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\n\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\n\n3. CORRESPONDING AUTHOR'S DUTIES
\n\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\n\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\n\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\n\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\n\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\n\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\n\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\n4. CORRESPONDING AUTHOR'S WARRANTY
\n\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\n\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\n\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\n5. TERMINATION
\n\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\n\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\n\n6. INTECHOPEN’S DUTIES AND RIGHTS
\n\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\n\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\n\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\n7. MISCELLANEOUS
\n\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\n\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\n\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\n\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\n\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\n\nLast updated: 2020-11-27
\n\n\n\n
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5699},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10244},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15650}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:15},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:56},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:5},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5145},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"90",title:"Computer Science and Engineering",slug:"computer-science-and-engineering",parent:{title:"Computer and Information Science",slug:"computer-and-information-science"},numberOfBooks:33,numberOfAuthorsAndEditors:771,numberOfWosCitations:720,numberOfCrossrefCitations:637,numberOfDimensionsCitations:1179,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"computer-science-and-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8423",title:"Security and Privacy From a Legal, Ethical, and Technical Perspective",subtitle:null,isOpenForSubmission:!1,hash:"dc4f0b68a2f903e7bf1ec7fbe042dbf2",slug:"security-and-privacy-from-a-legal-ethical-and-technical-perspective",bookSignature:"Christos Kalloniatis and Carlos Travieso-Gonzalez",coverURL:"https://cdn.intechopen.com/books/images_new/8423.jpg",editedByType:"Edited by",editors:[{id:"219671",title:"Associate Prof.",name:"Christos",middleName:null,surname:"Kalloniatis",slug:"christos-kalloniatis",fullName:"Christos Kalloniatis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editedByType:"Edited by",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6958",title:"High Performance Parallel Computing",subtitle:null,isOpenForSubmission:!1,hash:"dd811128360e48c520a91871f0279659",slug:"high-performance-parallel-computing",bookSignature:"Satyadhyan Chickerur",coverURL:"https://cdn.intechopen.com/books/images_new/6958.jpg",editedByType:"Edited by",editors:[{id:"239076",title:"Dr.",name:"Satyadhyan",middleName:null,surname:"Chickerur",slug:"satyadhyan-chickerur",fullName:"Satyadhyan Chickerur"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6715",title:"Petri Nets in Science and Engineering",subtitle:null,isOpenForSubmission:!1,hash:"b0b98cd043ed2dc582d8365630929d33",slug:"petri-nets-in-science-and-engineering",bookSignature:"Raul Campos-Rodriguez and Mildreth Alcaraz-Mejia",coverURL:"https://cdn.intechopen.com/books/images_new/6715.jpg",editedByType:"Edited by",editors:[{id:"178524",title:"Dr.",name:"Raul",middleName:null,surname:"Campos-Rodriguez",slug:"raul-campos-rodriguez",fullName:"Raul Campos-Rodriguez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5368",title:"Radio Frequency Identification",subtitle:null,isOpenForSubmission:!1,hash:"c86dd0c6a48afce125a9f8f2363fd4b8",slug:"radio-frequency-identification",bookSignature:"Paulo Cesar Crepaldi and Tales Cleber Pimenta",coverURL:"https://cdn.intechopen.com/books/images_new/5368.jpg",editedByType:"Edited by",editors:[{id:"38288",title:"Prof.",name:"Paulo",middleName:"Cesar",surname:"Crepaldi",slug:"paulo-crepaldi",fullName:"Paulo Crepaldi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6038",title:"Wireless Sensor Networks",subtitle:"Insights and Innovations",isOpenForSubmission:!1,hash:"e63cb7f71bc1fed54902b371cbe21a2a",slug:"wireless-sensor-networks-insights-and-innovations",bookSignature:"Philip Sallis",coverURL:"https://cdn.intechopen.com/books/images_new/6038.jpg",editedByType:"Edited by",editors:[{id:"10893",title:"Prof.",name:"Philip John",middleName:null,surname:"Sallis",slug:"philip-john-sallis",fullName:"Philip John Sallis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5966",title:"Heuristics and Hyper-Heuristics",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"da699185a8b84a430d96d54bc35acdb2",slug:"heuristics-and-hyper-heuristics-principles-and-applications",bookSignature:"Javier Del Ser Lorente",coverURL:"https://cdn.intechopen.com/books/images_new/5966.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5745",title:"Recent Progress in Parallel and Distributed Computing",subtitle:null,isOpenForSubmission:!1,hash:"dba64b23d703d16339860ebf4a13f022",slug:"recent-progress-in-parallel-and-distributed-computing",bookSignature:"Wen-Jyi Hwang",coverURL:"https://cdn.intechopen.com/books/images_new/5745.jpg",editedByType:"Edited by",editors:[{id:"108614",title:"Prof.",name:"Wen-Jyi",middleName:null,surname:"Hwang",slug:"wen-jyi-hwang",fullName:"Wen-Jyi Hwang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5707",title:"Computer Simulation",subtitle:null,isOpenForSubmission:!1,hash:"9eec1723d4d4775dc9755db55aa387a6",slug:"computer-simulation",bookSignature:"Dragan Cvetkovic",coverURL:"https://cdn.intechopen.com/books/images_new/5707.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5183",title:"Face Recognition",subtitle:"Semisupervised Classification, Subspace Projection and Evaluation Methods",isOpenForSubmission:!1,hash:"d693acce19fca9cbf40d8f3f759e491d",slug:"face-recognition-semisupervised-classification-subspace-projection-and-evaluation-methods",bookSignature:"S. Ramakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/5183.jpg",editedByType:"Edited by",editors:[{id:"116136",title:"Dr.",name:"Srinivasan",middleName:null,surname:"Ramakrishnan",slug:"srinivasan-ramakrishnan",fullName:"Srinivasan Ramakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5150",title:"Electronics Cooling",subtitle:null,isOpenForSubmission:!1,hash:"b95856cfcc87ef3cb7d7c7c7bac4010d",slug:"electronics-cooling",bookSignature:"S M Sohel Murshed",coverURL:"https://cdn.intechopen.com/books/images_new/5150.jpg",editedByType:"Edited by",editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",middleName:null,surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4655",title:"Applications of Digital Signal Processing through Practical Approach",subtitle:null,isOpenForSubmission:!1,hash:"b20308efd28e8a487949997c8d673fb8",slug:"applications-of-digital-signal-processing-through-practical-approach",bookSignature:"Sudhakar Radhakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/4655.jpg",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:33,mostCitedChapters:[{id:"50801",doi:"10.5772/62898",title:"Performance Evaluation of Nanofluids in an Inclined Ribbed Microchannel for Electronic Cooling Applications",slug:"performance-evaluation-of-nanofluids-in-an-inclined-ribbed-microchannel-for-electronic-cooling-appli",totalDownloads:1949,totalCrossrefCites:44,totalDimensionsCites:78,book:{slug:"electronics-cooling",title:"Electronics Cooling",fullTitle:"Electronics Cooling"},signatures:"Mohammad Reza Safaei, Marjan Gooarzi, Omid Ali Akbari, Mostafa\nSafdari Shadloo and Mahidzal Dahari",authors:[{id:"178854",title:"Dr.",name:"Mohammad Reza",middleName:null,surname:"Safaei",slug:"mohammad-reza-safaei",fullName:"Mohammad Reza Safaei"},{id:"179807",title:"Dr.",name:"Mostafa",middleName:null,surname:"Safdari Shadloo",slug:"mostafa-safdari-shadloo",fullName:"Mostafa Safdari Shadloo"},{id:"179809",title:"Dr.",name:"Mahidzal",middleName:null,surname:"Dahari",slug:"mahidzal-dahari",fullName:"Mahidzal Dahari"},{id:"179813",title:"MSc.",name:"Marjan",middleName:null,surname:"Goodarzi",slug:"marjan-goodarzi",fullName:"Marjan Goodarzi"},{id:"185093",title:"MSc.",name:"Omid",middleName:null,surname:"Ali Akbari",slug:"omid-ali-akbari",fullName:"Omid Ali Akbari"}]},{id:"5184",doi:"10.5772/6180",title:"From the Lab to the Real World: Affect Recognition Using Multiple Cues and Modalities",slug:"from_the_lab_to_the_real_world__affect_recognition_using_multiple_cues_and_modalities",totalDownloads:3132,totalCrossrefCites:34,totalDimensionsCites:51,book:{slug:"affective_computing",title:"Affective Computing",fullTitle:"Affective Computing"},signatures:"Hatice Gunes, Massimo Piccardi and Maja Pantic",authors:null},{id:"5197",doi:"10.5772/6167",title:"Generating Facial Expressions with Deep Belief Nets",slug:"generating_facial_expressions_with_deep_belief_nets",totalDownloads:3140,totalCrossrefCites:1,totalDimensionsCites:46,book:{slug:"affective_computing",title:"Affective Computing",fullTitle:"Affective Computing"},signatures:"Joshua M. Susskind, Geoffrey E. Hinton, Javier R. Movellan and Adam K. Anderson",authors:null}],mostDownloadedChaptersLast30Days:[{id:"68505",title:"Research Design and Methodology",slug:"research-design-and-methodology",totalDownloads:16004,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"cyberspace",title:"Cyberspace",fullTitle:"Cyberspace"},signatures:"Kassu Jilcha Sileyew",authors:null},{id:"15946",title:"Wake-Up-Word Speech Recognition",slug:"wake-up-word-speech-recognition",totalDownloads:4003,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"speech-technologies",title:"Speech Technologies",fullTitle:"Speech Technologies"},signatures:"Veton Kepuska",authors:[{id:"24379",title:"Prof.",name:"Veton",middleName:null,surname:"Kepuska",slug:"veton-kepuska",fullName:"Veton Kepuska"}]},{id:"51031",title:"Face Recognition: Issues, Methods and Alternative Applications",slug:"face-recognition-issues-methods-and-alternative-applications",totalDownloads:10292,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"face-recognition-semisupervised-classification-subspace-projection-and-evaluation-methods",title:"Face Recognition",fullTitle:"Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods"},signatures:"Waldemar Wójcik, Konrad Gromaszek and Muhtar Junisbekov",authors:[{id:"24059",title:"Dr.Ing.",name:"Konrad",middleName:null,surname:"Gromaszek",slug:"konrad-gromaszek",fullName:"Konrad Gromaszek"}]},{id:"56541",title:"Routing Protocols for Wireless Sensor Networks (WSNs)",slug:"routing-protocols-for-wireless-sensor-networks-wsns-",totalDownloads:4344,totalCrossrefCites:9,totalDimensionsCites:11,book:{slug:"wireless-sensor-networks-insights-and-innovations",title:"Wireless Sensor Networks",fullTitle:"Wireless Sensor Networks - Insights and Innovations"},signatures:"Noman Shabbir and Syed Rizwan Hassan",authors:[{id:"206600",title:"Mr.",name:"Noman",middleName:null,surname:"Shabbir",slug:"noman-shabbir",fullName:"Noman Shabbir"},{id:"206601",title:"Mr.",name:"Syed Rizwan",middleName:null,surname:"Hassan",slug:"syed-rizwan-hassan",fullName:"Syed Rizwan Hassan"}]},{id:"62639",title:"Reliability Evaluation for Mechanical Systems by Petri Nets",slug:"reliability-evaluation-for-mechanical-systems-by-petri-nets",totalDownloads:514,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"petri-nets-in-science-and-engineering",title:"Petri Nets in Science and Engineering",fullTitle:"Petri Nets in Science and Engineering"},signatures:"Jianing Wu and Shaoze Yan",authors:[{id:"238979",title:"Dr.",name:"Jianing",middleName:null,surname:"Wu",slug:"jianing-wu",fullName:"Jianing Wu"}]},{id:"70973",title:"Social Media, Ethics and the Privacy Paradox",slug:"social-media-ethics-and-the-privacy-paradox",totalDownloads:850,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"security-and-privacy-from-a-legal-ethical-and-technical-perspective",title:"Security and Privacy From a Legal, Ethical, and Technical Perspective",fullTitle:"Security and Privacy From a Legal, Ethical, and Technical Perspective"},signatures:"Nadine Barrett-Maitland and Jenice Lynch",authors:[{id:"311821",title:"Ph.D. Student",name:"Nadine",middleName:null,surname:"Barrett-Maitland",slug:"nadine-barrett-maitland",fullName:"Nadine Barrett-Maitland"},{id:"311822",title:"Ms.",name:"Jenice",middleName:null,surname:"Lynch",slug:"jenice-lynch",fullName:"Jenice Lynch"}]},{id:"50437",title:"Face Recognition: Demystification of Multifarious Aspect in Evaluation Metrics",slug:"face-recognition-demystification-of-multifarious-aspect-in-evaluation-metrics",totalDownloads:2343,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"face-recognition-semisupervised-classification-subspace-projection-and-evaluation-methods",title:"Face Recognition",fullTitle:"Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods"},signatures:"Mala Sundaram and Ambika Mani",authors:[{id:"180904",title:"Mrs.",name:"Mala",middleName:null,surname:"Sundaram",slug:"mala-sundaram",fullName:"Mala Sundaram"},{id:"180905",title:"Mrs.",name:"Ambika",middleName:null,surname:"Mani",slug:"ambika-mani",fullName:"Ambika Mani"}]},{id:"50065",title:"Heat Pipes for Computer Cooling Applications",slug:"heat-pipes-for-computer-cooling-applications",totalDownloads:4038,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"electronics-cooling",title:"Electronics Cooling",fullTitle:"Electronics Cooling"},signatures:"Mohamed H.A. Elnaggar and Ezzaldeen Edwan",authors:[{id:"178453",title:"Dr.",name:"Mohamed",middleName:null,surname:"Elnaggar",slug:"mohamed-elnaggar",fullName:"Mohamed Elnaggar"},{id:"184278",title:"Dr.",name:"Ezzaldeen",middleName:null,surname:"Edwan",slug:"ezzaldeen-edwan",fullName:"Ezzaldeen Edwan"}]},{id:"5175",title:"Facial Expression Recognition Using 3D Facial Feature Distances",slug:"facial_expression_recognition_using_3d_facial_feature_distances",totalDownloads:3825,totalCrossrefCites:5,totalDimensionsCites:10,book:{slug:"affective_computing",title:"Affective Computing",fullTitle:"Affective Computing"},signatures:"Hamit Soyel and Hasan Demirel",authors:null},{id:"68561",title:"Cyberspace and Artificial Intelligence: The New Face of Cyber-Enhanced Hybrid Threats",slug:"cyberspace-and-artificial-intelligence-the-new-face-of-cyber-enhanced-hybrid-threats",totalDownloads:527,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cyberspace",title:"Cyberspace",fullTitle:"Cyberspace"},signatures:"Carlos Pedro Gonçalves",authors:[{id:"278948",title:"Prof.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves"}]}],onlineFirstChaptersFilter:{topicSlug:"computer-science-and-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/212586/florian-gohr",hash:"",query:{},params:{id:"212586",slug:"florian-gohr"},fullPath:"/profiles/212586/florian-gohr",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()