Cyclodextrin (CD)-based electrospun nanofibers have become critical role players in the water treatment arena due to their high porosities, small diameters, high surface area-to-volume ratio and other unique properties they exhibit. Investigations demonstrate that nanofibers containing CD molecules can be facially blended with other polymeric species and/or photocatalytic and magnetic nanoparticles to enhance their rates of adsorption, inclusion complexation and selective photodegradation. These properties make them excellent candidates for the removal of water pollutants. On the other hand, the electrospinning process has become the method of choice in the fabrication of various types of CD nanofibrous mats due to its versatility, cost-effectiveness and its potential for the mass production of uniform nanofibers. CDs and CD-derivatives have also found application in membrane technologies, particularly in mixed matrix and thin film composite membranes. CD-blended membranes display improved performances in terms of selectivity, rejection, permeation and flux with reduced fouling propensities and can be used for drinking water purification and removal of emerging micropollutants. This chapter critically reviews CD-based electrospun nanofibers looking at their production, characterization methods and various applications. The use of CDs as membrane materials and how they can be fully explored in water treatment are also investigated.
Part of the book: Cyclodextrin