Coal burst is referred to as the violent failure of overstressed coal, which has been recognised as one of the most critical dynamic failures in coal mines. This chapter aims to analytically and numerically evaluate the energy transformation between the different strata and coal layers. An accurate closed-form solution is developed. Due to the complexity of the causes and mechanisms contributing to the coal burst occurrence, 3D finite element modelling as well as discrete element models will be developed to validate the suggested analytical assessments of rock/coal burst occurrence. The energy concept is emphasised in order to improve the understanding of the underlying mechanisms of coal burst. Only with enhanced understanding of the driving mechanisms, a reliable coal burst risk assessment can be achieved.
Part of the book: Finite Element Method
The dynamic capacity of a support system is dependent on the connectivity and compatibility of its reinforcement and surface support elements. Connectivity refers to the capacity of a system to transfer the dynamic load from an element to another, for example, from the reinforcement to the surface support through plates and terminating arrangements (split set rings, nuts, etc.), or from a reinforcement/holding element to others via the surface support. Compatibility is related to the difference in stiffness amongst support elements. Load transfer may not take place appropriately when there are strong stiffness contrasts within a ground support system. Case studies revealed premature failures of stiffer elements prior to utilising the full capacity of more deformable elements within the same system. From a design perspective, it is important to understand that the dynamic-load capacity of a ground support system depends not only on the capacity of its reinforcement elements but also, and perhaps most importantly, on their compatibility with other elements of the system and on the strength of the connections. The failure of one component of the support system usually leads to the failure of the system.
Part of the book: Computational Models in Engineering