Space missions involving multi-vehicle teams require the cooperative navigation and attitude slewing of the spacecraft or satellites, for such purposes as interferometry and optimal sensor coverage. This introduces extra constraints of exclusion zones between the spacecraft, in addition to the default exclusion constraints already introduced by damaging or blinding celestial objects. In this work, we present a quaternion-based attitude consensus protocol by using the communication topology of the spacecraft team. By using the Laplacian matrix of their communication graph and a semidefinite program, a synthesis of a time-varying optimal stochastic matrix P is done, which is used to generate various consensus and cooperative attitude trajectories from the initial attitudes of the spacecraft. The concept of quaternion-based quadratically constrained attitude control is then employed to satisfy cone avoidance constraints, where exclusion zones are identified, expressed as linear matrix inequalities (LMI), and solved by semidefinite programming (SDP).
Part of the book: Advanced Path Planning for Mobile Entities