Sugarcane, not only fulfills 70% of world sugar needs but is also a prime potential source of bioethanol. It is majorly grown in tropical and subtropical regions. Researchers have improved this grass to great extent and have developed energy cane with ability to accumulate up to 18% sucrose in its Culm. Improvement of this crop is impeded by its complex genome, low fertility, long production cycle and susceptibility to various biotic and abiotic stresses. Biotechnological interventions hold great promise to address these impediments paving way to get improved sugarcane crop. Further, being vegetatively propagated in most of the agroecological regions, it has become more attractive plant to work with. This chapter highlights, how advanced knowledge of omics (genomics, transcriptomics, proteomics and metabolomics) can be employed to improve sugarcane crop. In addition, potential role of in vitro techniques and transgenic technology has also been discussed for developing improved sugarcane clones with enhanced sugar recovery.
Part of the book: Sugarcane
Chloroplasts are highly organized cellular organelles after master organelle nucleus. They not only play a central role in photosynthesis but are also involved in several crucial cellular activities. Advancements in molecular biology and transgenic technology have further groomed importance of the organelle, and they are the most ideal ones for the expression of transgene. No doubt, limitations are there, but still research is advancing to resolve those. Certain valuable traits have been engineered for improved agronomic performance of crop plants. Industrial enzymes and therapeutic proteins have been expressed using plastid transformation system. Synthetic biology has been explored to play a key role in engineering metabolic pathways. Further, producing dsRNA in a plant’s chloroplast rather than in its cellular cytoplasm is more effective way to address desired traits. In this chapter, we highlight technological advancements in chloroplast biotechnology and its implication to develop biosafe engineered plants.
Part of the book: Transgenic Crops
Biofuels are gaining increased scientific as well as public attention to fulfill future energy demands and can be the only potential candidates to safeguard and strengthen energy security by reducing the world’s reliance on exhausting fossil energy sources. Sugarcane is an important C4 crop with great potential to contribute to global biofuel production as sugarcane juice can be easily fermented to produce ethanol. The success of bioethanol production from sugarcane in Brazil has widened the scope of the technology and has led to increased demand of purpose-grown sugarcane for biofuel production. Scientific interventions have not only helped to improve the cane crop but industrial procedures have also been upgraded resulting in improved production of bioethanol. Likewise, advancements in omics have led to high hopes for the development of energy cane. This chapter highlights the advancements as well as potential and challenges in the production of sugarcane biofuel, focusing on genetic and genomic interventions improving the crop as energy-cane. Further, controversies in the production and usage of biofuel derived from sugarcane have also been discussed.
Part of the book: Sugarcane