Among the various kinds of fuel cell, polymer electrolyte membrane fuel cell (PEMFC) is the most prominent energy conversion device for portable applications. The catalyst-supporting materials provide active triple phase boundary for electrochemical reactions where the reactant molecules can easily interact with the catalyst surface. Catalysts play a vital role for improving the overall efficiency of the fuel cells through the advancement in the catalyst and their supporting materials for cathodic oxygen reduction reaction (ORR) in PEMFCs. The supporting materials mainly contribute to increase the electrocatalytic activity of the catalysts by providing more active surface area and extended life-time. The major roles of supporting materials are (i) they act as electron source with improved conductivity; (ii) they hold the metal nanoparticles; (iii) they possess higher surface area and (iv) they should have better stability under operating conditions. In this chapter, the various supporting materials were reviewed carefully based on their nature and performance toward the electrochemical reduction of oxygen for PEMFCs. They are classified into three major categories as (i) carbon supports; (ii) carbon-free supports, and (iii) polymer nanocomposites. In summary, the overall view on support materials and their role on electrocatalysis for fuel cell reactions is provided.
Part of the book: Proton Exchange Membrane Fuel Cell