Methods for physiochemical characteristics of chitosan derivatives.
\r\n\tIt is a relatively simple process and a standard tool in any industry. Because of the versatility of the titration techniques, nearly all aspects of society depend on various forms of titration to analyze key chemical compounds.
\r\n\tThe aims of this book is to provide the reader with an up-to-date coverage of experimental and theoretical aspects related to titration techniques used in environmental, pharmaceutical, biomedical and food sciences.
Nature is an ancient pharmacy known to human. Life originated over four billion years ago in oceans, besides sea aid ecosystems, and provides source of food for organism and man. Carbohydrates are abundant, essential natural polysaccharides consisting of carbon, hydrogen and oxygen atoms (H:O as 2:1 and empirical formula Cm[H2O]n where m is different from n and usually varies from 200 to2500), having vast health benefits. Polysaccharides contain linear to high heterogeneity linkages of more than 10 monosaccharide/glycosides with slight repeating unit modifications (discrete from their monosaccharide) while oligosaccharides contain 3–10 monosaccharides. Amid carbohydrates, various polysaccharides are found in all marine organisms, which are accountable for an innate bio‐active defense mechanism. Plant starch found as both amylose and amylopectin, which resemble cellulose (plant cell wall module), exhibit storage functions while chitin and glycogen in animals (same as starch/cellulose except NH‐substitution) afford structural component enhancement in arthropod exoskeleton and fungus cell wall. Chitins, fucoidan, carrageenan and alginate are few polysaccharides that control cell proliferation and modulate metabolism in marine organisms besides own pharmaceutics utility including antioxidative, antibacterial, antiviral, immune‐stimulatory, anticoagulant and anticancer activities poses novel ventures for harnessing potential of oceanic products.
\nOceans occupy three‐fourths of planet, which covers half of the global biodiversity envelope in certain marine species as the imperative resources for deriving novel bio‐chemicals. Marine bacteria, macro/micro algae, sponges and fishes induce defensive actions via such bio‐molecules that enable organisms to survive in hostile environment such as different degrees of salinity, pressure, temperature and no/deem light [1], as well as microbial/viral attack. Naturally occurring bio‐chemicals viz., terpenoids, polyethers, polyketides, lipo‐glycoproteins, and polysaccharides display various functions in nature such as defense against predators, aiding in cell development/differentiation, acting as cell surface receptors and providing innate immunity. Carbohydrates exacted from terrestrial marine organisms/sediments act as prospective feedstocks for medicine, fertilization, food storage, antioxidant, laxative, smooth/nonirritating hydrated bulk in the digestive tract, tablet ingredient and drug carrier agents, as shown in Figure 1.
\nResources of marine polysaccharides with their wide range of applications [2].
Marine biotechnology focuses the following goals:\n
Discovery of bioactive molecules from marine organisms to reveal their functions and actions.
Study the environmental parameters, nutritional requirements and genetic factors that control the production of primary and secondary metabolites from marine species.
Understand the genetics, biochemistry, physiology and ecology of marine organism/mariculture.
Develop diagnostic tools to improvehuman health.
Explore bioremediation for waste processing/disposal, coastal clean‐up and oil spilling.
About 20,000 metabolites yielded from marine bacteria, sponge, coral and starfish cater significant untapped promises and act as chemical library database in pharmaceutics due to their intrinsic features. MARPOL‐73/78 an international organization is engaged in enzymatic up‐gradation/modification of marine polysaccharides being substitute to oil‐based polymers in utilizing renewable resource. MARPOL via enzyme technology‐modified chitin, alginate, fucoidan, and laminaran from marine with enhanced inherent quality to cater sustainable industrial/pharmacy needs in the below targets (Figure 2):\n
To derive innovative bioactive chemicals from marine species.
To increase value creation from biomass by refining/upgrading via enzymology.
To generate cross‐sectorial technology for enzyme evolution and biomaterial design.
MARPOL via enzyme technology modified marine polysaccharide for wide application.
Advance molecular biology has innovated methods for marine organisms to isolate assorted polyunsaturated fattyacids, polysaccharides, minerals, vitamins, enzymes, and peptides. These marine polysaccharides own health benefits besides feedstock for pharmaceutics, nutrition, and pharmaceutics besides cosmetic industries (Figure 3) under the strategic activity of Horizon 2020: Targeted specific activities focus on biodiversity exploration to understand how organism can withstand extremes of temperature‐pressure and grows without light can be utilized to develop new industrial enzymes/pharmaceuticals. Drug obtained from marine polysaccharide caters diverse pharmaceutical challenges by inventing various complex/novel chemicals to be used in cancer, AIDS‐HIV treatments besides explicit broad spectrum activity for virus, bacteria, and fungus. Alginate and chitin polysaccharides have an extensive history of use in medicine, particularly, in pharmacy and basic sciences. Majority of carbohydrates in the nature occur as polysaccharides that consist not only glycosidic‐link sugars, but also polysaccharides that are covalently linked to amino acids, peptides, proteins, and lipids. Glycan contains d‐glucose, d‐fructose, d‐galactose, l‐galactose, d‐mannose, l‐arabinose, d‐xylose along with d‐glucosamine, d‐galactosamine, N‐acetylneuraminic acid, N‐acetylmuramic acid, and glucuronic acids. Branch structures are different polysaccharide from protein and nucleic acid polymers. Marine origin tunicin polysaccharide is a cellulose equivalent of invertebrate sea animal utilized for storage and/or structural functions. Exo‐polysaccharide found in extracellular of a microbial cell component contains high sulfated and uronic contents to bestow negative charge besides acidity in seawater pH 7.5–8.4, which is used as adhesives, textiles, pharmaceuticals and anticancer agents and food additives [1–3].
\nMarine polysaccharide materials for health benefits.
Agar and agarose have less sulfate content, but high uronic contents and corresponding beads are developed that exhibited better optical clarity with improved gel strength exploited in sustainable release of phenobarbital sodium hypnotic drug. Agars are effective for spatial infections such as poliovirus, herpes simplex, dengue viruses and also meats gelling, laxatives and flexible molds in dentistry and criminology. Chitin hydrogel provides cell signaling in vivo physiology [2, 3] and hydroxylation enhances its biodegradability; while sulfonation generates heparin‐like increased blood compatibility [4] besides amine quaternization imparts high solubility, muco‐adhesiveness (via hydrogen bonding) responsible for elevated drug residence‐time, inflammation reduction and antimicrobial activity). Nanochitosan‐based drug delivery systems easily cross blood‐brain barrier results in cell/tissue gap penetration to targeted spleen, spinal cord, liver, lungs, and lymphs.
\nPolysaccharides formulated with vitamins, minerals, botanical extracts, and antioxidants can promote healthy skin, hair, and nails at a cellular level which areused as creams, lotions, ointments, liquids, and pills, as shown in Figures 2 and 3. The cosmetic industry and advance biotechnology are mainlyfocused on marine polysaccharides as compared to synthetic chemicals due to perceived inherent prominent effects such as reduce free radical provoked aging, inflammation, and skin degradation. Chitin shows resemblance with living tissues that aid to maintain cutaneous homeostasis, neutralize radical activity, and induces transcutaneous penetration of active drugs. Chitosan nanofibrils induce low TGF‐β production results in skin protections by increasing the granular density of epithelial layers and fully compatible with skin cells besides complexing with vitamins, carotenoids, and collagens to facilitate transcutaneous penetration [5]. Chitosan without having amino/hydroxy groups. E.g., E-CE6 typ aid cationic pH‐sensitive molds into various shapes such as bead, hydrogel, nanofiber and nanoparticle owning fascination for other biomolecules. Chitosan hydrogel\'s excellent water absorption property is exploited in making of some moisturizers; it also provides wound healing and exhibits antioxidant and antimicrobial activities against various bacteria, yeast and fungi and metalloproteinase.
\nMarine‐derived products used as food/ingredients are developed in nutrition‐pharmaceutics to prevent/treat diseases pertaining anticancer, antiinflammatory, antioxidant, and antimicrobial activities, as shown Figures 2–4. Ulva fasciata derive sulfated galactans and fucans possess good anticoagulant, gel stabilizers, preservative, and flavoring agents that reduce LDL‐cholesterol, plasma, and triacylglycerols [6]. Align emulsions are used as bio‐flocculants in food formulation to obtain certain texture, mouth feel thickening effect, and stabilize suspended dispersed phases. Carrageenans‐polyamide hydrocolloid with starch, locust bean gum, and carboxymethyl cellulose are used for milk protein stabilization [7]. Chitins are used in antidiabetic, hypocholesterolemic, adipogenesis inhibiter, food additives, and dietary supplements in nutrition‐pharmaceutics which decrease body weight, serum lipids without digestions in GI tract (precipitates fat and reduces absorption via inhibiting pancreatic lipase actions). Cationic chitosan‐fatty/bile acid combinations delay cholesterol and steroidal emulsifications via hydrophobic interaction, thus lessening intestinal absorptions.
\nPharmacology of assorted marine polysaccharides.
About10 gigatons/year of chitins are produced in biosphere which are soft and leathery, encrusted with CaCO3 as the harden mass to obtain translucent, pliable, resilient as a tough exoskeleton of vertebrates, insects, and crustaceans. Chitin exhibited distinct characteristic against fungus pathogens resistance, autolytic, nutritional, and morphogenetic functions in plant, pathogenesis in virus and elicits lysozyme inductions, immunizations and parasitism in bacteria. Chitin is antidiabetic, hypocholesterolemic, adipogenesis inhibiters which decreases body weight/serum lipids without GI digestion prohibiting pancreatic lipase crucial for cholesterols emulsification to precipitate fat and fatty/bile acids [8].
\nChitin is feedstock for chitosan conversion via enzymatic as well chemical degradation (Figure 5) because of its cheap and commercial production, as shown in Figure 6.
\nChitosan chemical degradation.
Production of chitosan andfactors affecting stability.
Chitosan differs from concordant chitin, cellulose in fraction and distributions of their co-monomers in respective of polymeric length/sequences and found as an alternate, block, and random fashion as shown in Figure 7. N‐acetyl‐glucosamine and N‐glucosamine constitutional monomers in chitin and chitosan displayed varied, respectively, solution properties and impart slightly hydrophobic terminal in chitin and ionic character at acidic pH in chitosan. Skeletally different than others amplified in acetyl sequencing that owes vivid outcome in chain conformation and aggregation besides hydrophobic substituents is vital for self‐assembling and crumpling as found in liposphere micelles. \nThe modification in chitin/chitosan’s skeleton can be made by means of quaternization, glycosylation (via acetyl) and sulphonation (via sulphate groups) techniques that able grafting monomers at -NH2 linkages to yield terpolymer rather intricate matrix as shown in Figure 8. Chitosan compositions varied with the degree of acylation as determined by many methods such as titration, circular dichroism, FTIR, UV, NMR, and N‐acetyl group hydrolysis [9, 10]. Data from different techniques showed discrepancies in degree of acylation and solubility disparity as no technique points out appropriate clarification for solubility [11]. Differential scanning calorimetry study decomposition of amino/acetyls to provide sovereign composition and molecular weights 0–1 N‐acylation degree cheaper than NMR but more accurate than FTIR. NMR easily recognizes O‐acetyl groups that aid to obtain degree of acylation by integration/normalization of either anomeric proton or other ring protons.
\nComparison of chitin, cellulose, and chitosan.
Structures of sulfated chitin, chitosan, and chitigosaccharide.
Chitosan chemical modifications improved mechanical properties, biocompatibility, solubility, biodegradability, and shape/size by the following approaches:\n
Doping/blending/grafting chemical linkages with synthetic materials;
Micro/nanosphere surface coating by biocompatible synthetic polymers;
Cross‐linking by means of assorted physical/chemical reagents;
Hydrophobization via alkylation;
Modulating guluronic/mannuronic ratio; and
Varying deacetylation degree.
Dry weight crustacean shells contain protein 30–40%, CaCO3 and Ca3 (PO4)2about30–50%, and 20–30% chitin [11]. Industrially, acid treatment use to dissolve CaCO3 and Ca3(PO4)2followed by alkaline extraction to solubilize proteins in chitin processing from crustaceans. Deacetylation removes enough acetyls to yield chitosan with high degree chemical reactive amines that can affect physicochemical properties such as biodegradability and immunological activity [12]. Chitosan\'s deacetylation degree is determine by the ninhydrin test, potentiometric titration, near‐IR, NMR, HBr‐titrometry, FTIR, and 1st derivative UV [10] analysis. Chitosan is soluble in dilute acetic acid which has free –NH2 for modifications so supersede chitin.
\nAssorted chitosan matrix modifications at –NH2 in C‐2, at –OH in C‐3/C‐6 carbon are performed via etherification/etherification and amine quaternization [13]:\n
Carboxyalkylation at O‐/N: Carboxyalkylation at O‐/N of chitosan imparts the amphoteric polyelectrolyte nature needed in biomedical applications such as wound dressings, artificial bone and skin, bacteriostatic agents, and blood anticoagulants [14]. Carboxyl and amino chitosan functionality elicits special biophysical properties for controlled/sustained drug‐delivery, e.g., water‐soluble O‐carboxy methylchitosan microspheres for control pazufloxacin mesilate: antibiotic drug release.
Sulfonation: Chitosan sulfonation at amino/hydroxyl groups generates pharmaceutic heterogeneity (analogues to heparin: a natural blood anticoagulant) to pertain desired anticoagulant, antisclerotic, antitumor, and antiviral activities. Free NH2/OH sulfonation mostly disrupts chitosan crystanality by depleting inherent hydrogen bonding and amphilicity and imparted micelles can act as a drug carrier.
Acylation: Chitosan acylation by aliphatic carboxyl, hexanoyl, dodecanoyl acids, and tetradecanoyl chlorides/cyclic esters, e.g., 4‐chlorobutyl and decanoylacylation at free NH2/OH showed higher fungicidal activities via induced hydro‐phobicity to prevent particle aggregations by lowering drug irritation in stomach [14]. Such hydrophobic interaction via N‐acylation encourages rapid self‐expandability in tracheal cartilage, intervertebral discs, menisci, skin, liver, skeletal muscle, neural tissue, and urinary bladder cells. Such acylated chitosan are beneficial such as easy solubility, benign plasma proteins sorption, and drugs selectively with reduce free blood concentration [14].
Sugar‐modified chitosan: Chitosan reductive N‐alkylation by disaccharide or monosaccharide‐aldehyde derivatives acts as a liver‐specific drug carrier via specific binding at sialoglycoprotein receptors [15]. All these NH2‐alkylated chitosan derivatives are soluble at neutral and basic pH conditions, whereas lactose, maltose, and cellobiose sugars imparted all pH range solubility. Galactosyled chitosan derivatives act as the synthetic extracellular matrix for hepatocyte attachment [14, 15].
Graft copolymerization of chitosan: Chitosans are tailored to yield composites so as to improve certain aspects such as inclusion complexation [14], mucoadhesivity retaintion [13, 14], adsorption [15], bacteriostaticity, biocompatibility, and biodegradability [12, 15]. Chitosan grafting with oligol‐lactide increases hydrophilicity and control degradation rate as anticipated in wound dressing, drug carrier systems, as micelles hydrophobic core to entrap and control the release of hydrophobic drugs [12]. In last decades, grafting of chitosan with hydroxyethyl‐methacrylate, methyl methacrylate, and vinyl monomers copolymers used for control cardiovascular drug release [14], tissue engineering [11, 15], and woundhealing [12].
Skeletal cross‐linking: Cross‐linking at chitosan yields hydrogel with adequate mechanical properties and high‐drug‐loading capability having potentials in controlled drug delivery systems [11, 15]. Cross‐linking by glutaraldehyde, genipin, ethylene glycol, diglycidyl ether, and diisocyanate at chitosan -NH2 establishes speciality like nonionic/ionic drug interactions and pH‐sensitivity aids swelling in gastric conditions anticipated in site‐specific drug release [11]. Chitosan cross‐link microspheres are nontoxic, biodegradable oral drug agents [12, 15] without potential deleterious impact. Tripolyphosphate‐chitosan ionic gels encapsulate plasmid DNA/dsDNA in vitro transfection, cellular uptake, and in vivo gene expressions via intratracheal administration imparting high physical stability without DNA release (even after heparin incubation). Confocal studies revealed endocytotic cellular nanoparticle uptake with subsequent cytoplasm fast releases, mediated in vivo intratracheal strong β‐galactosidase expression. Chitosan‐tripoly‐phosphate nanogel is used in nonviral gene delivery liable to cause steric stabilization and targeting [9, 12]. Calcium sulfate‐encapsulated alginate‐N‐succinylchitosan hydrogel pastes retained structural integrity and found to decrease resorption rate responsible for bone defect healing in bone regenerative techniques [11, 15]. Hydrogels are beneficial due to easy handling, suitable molding, and instant hardening (water release from hydrogel and transform CaSO4 hemihydrate by partial cross‐link with alginate to exert cementing via egg‐box effect aid in bone regeneration).
Chitosan quality like variable appearance, turbidity, molecular weight, and mechanical stability depends on chitin resource, isolation method [9, 16], and deacetylation degree as manifested in Figure 6. Degree of deacetylation >0.5 imparts in aqueous acids soluble to chitosan but not in alkaline/physiological pH as uneven acetyl distribution lowers solubility due to aggregation as determined by FTIR 1H/13C‐NMR (liquid state, solid state) and potentiometric titration. Average molecular weight of chitosan is obtained from stearic exclusion chromatography‐viscometer, light scattering detector, matrix‐assisted laser desorption, and MS spectrometry as mentioned in Table 1.
\nPhysiochemical characteristics | \nMethod of determination | \n
---|---|
Molecular weight | \nViscometry; gel permeation chromatography; light scattering; HPLC; matrix‐assisted laser desorption/ionization‐mass spectrometer | \n
Deacetylation degree | \nFTIR; UV; 1H‐NMR and 13C‐NMR Spectroscopy; conductometry and potentiometry titration; TGA/DTA, differential scanning calorimetry | \n
Crystallinality | \nX‐ray diffraction | \n
Methods for physiochemical characteristics of chitosan derivatives.
Chitosan is the only cationic polysaccharide that is nontoxic and biodegradable in body, thus exploited by tissue engineering for wound dressings, drug delivery, and bone graft alternative in orthopaedic beside scaffolds for cartilage, intervertebral disc, and bone tissue. The relevant physicochemical and biological properties of chitosan are presented in Table 2.
\nPhysic‐chemical parameters | \nBiological parameters | \n
---|---|
Cationic polyamine | \nBiocompatibility | \n
On protonation adheres to negatively charged surface via bio/mucoadhesionandform hydrogel with polyanions | \nSecondnaturally abundant polymer after cellulose | \n
Polar salt formations with organic and inorganic acids | \nFacile biodegradation to normal monomers/oloigomers | \n
It high molecular weight linear,flexible polyelectrolyte | \nVery safe and nontoxic | \n
Viscosity can be altered (high, moderate to low) depending on degree of deacetylations | \nOwn haemostatic, bacteriostatic, and fungistatic bio‐activity | \n
Chelate formations with transition/heavy metal ions | \nIts spermicidal | \n
Benign to modify, both chemically and bio/enzymatically | \nAnticancerigen | \n
Own free reactive amino/hydroxyl functionality | \nAnticholesteremic | \n
High charge density (pH < 6.5) | \nVersatile, reasonable cost | \n
Physic‐chemical and biological proprieties of chitosan [16].
X‐ray diffraction and crystallography of chitin revealed two polymorphs, namely, hydrated/tendon and anhydrous/annealed conformers. Crystalline chitosan own ant parallel chains in two‐fold helix, zigzag pattern with almost constant pitches of 10.34 A0 for hydrate and 10.34 A0 anhydrous forms (similar to cellulose). Chitosan conformations of two‐fold extension with moderate flexibility due to salt formation/protonation of free –NH2 with acids imparting tunablehypocholesterolemic and fungicidal activity and metal chelation besides chromatographic uses and gel production [9].
\nUnderstanding of relation structure‐properties in chitosan become a matter of great interest encountered by regulatory agencies in approving chitosan uses. The critical examination of literature results in correlation between properties of nanoconstructs with component structures as advantageous due to modulating. Thus, chitosan nanoparticles are exploited in modern pharmaceutics/biomedicals by alteration of acylation, molecular weight/its distribution, nature, and fraction of substituents. In general, applications its need to examine molecular characteristics interplay with supramolecular interactions to provide size, shape, and surface‐active nanomaterials [12].
\nChitin/chitosan own wide pharmaceutical utility due to excellent biocompatibility, biodegradability, nontoxicity, and adsorption properties which fuels global research interests, e.g., 1150 articles in 1981–1990, about 5700 reviews in 1991–2000, and 23,100 publications in 6 years [9, 15]. Among all natural polysaccharides, chitin/chitosan\'s outstanding benefited industrial and pharmaceutics significance are depicted in Figure 1. Chitin/chitosan is the only high molecular weight cationic polyelectrolyte, while other polysaccharides are either neutral or anionic in nature. Moreover, chitosan owns some undesired features like large variable chemical composition differences in its resultant polymeric chain‐size and assorted acetylation degree appropriately classified as “ugly,”frustrating research applicability. Nevertheless, chitosan skeletal optimization yields biomaterials with therapeutic and biological profiles useful in drug delivery formulations and as functional excipients. Chitosan interactions with some cosolutes/biostructures revealed subtle effects in classical solution thermodynamics and in biological utility like interactions with endotoxins.
\nChitoneous administration through vascular system enhances cytokines release by macrophage, and upregulates Th1‐immunity and downregulates Th2‐immune activity [12]. Chitosan cross‐linked resin and chitosan poly‐γ‐glutamic acid nanoparticles are use as alternative vehicles for oral delivery of NSAID aceclofenac and diclofenac drugs, respectively, which inhibits prostaglandin E2 production to stifle ultimate local inflammatory responses.
\nSulfation at N‐2 and O‐3 link of chitin increases thrombin level and activates partial thromboplastin‐thrombin time [12] and at C‐2, C‐3, and C‐6 position showed anticoagulant activity at par with therapeutic heparin (mere heparin use infects animal proteins to own antiplatelet activity responsible for abnormal bleeding). Sulfated chitins anticoagulant action inhibits FXa‐mediated antithrombin‐III activity via N‐sulfo/N‐acetyls complexation with antithrombin‐III, which prolongs thrombin‐clotting time. Coagulation interfering factors in fibrin polymerization are assay via antithrombin activity andprothrombin‐atroxin time assessment (Tables 1 and 2).
\nChitosan is trusted due to nontoxicity, biodegradability, efficient drug delivery, best cell‐permeability, and antiproliferativity against adenocarcinoma HT‐29 and caco‐2, colon carcinoma HCT‐116 in kinase protein of intestinal epithelial cells, which colorectaly inhibits NF‐κB transcription and NF‐κB‐mediated inflammations. Caffeic acid and doxorubicin individually doped chitosan composites revealed strong fluorescence intensity used to vehicle anticancer drugs [17]. Curcumin‐coated chitosan nanoparticles possess significant cytotoxicity and reduce human oral cancer cell line.
\nDistinctly doped glutamine,methionine, and tryptophan in chitosan matrix exerted protection to C‐8166 cells against cytolyticity of HIV‐1RF strain and restrain HIV‐induced syncytium formation with HIV‐1 reverse transcriptase/protease enzymes by suppressing HIV‐infected C8166 cells. Similarly, sulfated chitosaccharide‐III found to suppress HIV‐1 replications,syncytium formation, lytic action, p24 antigen production, and thwarted viral entry/cell fusion by intrusive HIV‐1‐gp‐120 bound CD4‐cell receptors (unsulfated chitosan lack such actions). Polyethylated‐chitosan vehicle lamivudine curbs HIV‐replication more powerfully than lamivudine/no chitosan carrier. Thioglycolic acid‐conjugated chitosan carrying tenofovir disoproxil fumarate exhibited high mucoadhesion via intravaginal microspheres stabilization without vagina epithelial cells cytotoxicity and lactobacillus crispatus compared to native nanochitosan. Drug encapsulation and mucoadhesion are profound for chitosan‐O‐isopropyl‐5\'‐O‐d4T‐monophosphate vehicle zidovudine since it reduces the diameter to stop HIV transmission. Nanochitosan carrying saquinavir drug imparted excellent antiHIV potential and high cell target efficiency to yield efficient HIV proliferation control [18, 19]. Poly‐d,l‐lactide‐co‐glycolide nanochitosan vehicle anti‐HIV acyclic nucleoside and phosphonate aids cellular uptakes in target macrophage cells. Broad bioactivity pattern of chitosan vehicle drugs are summarize in Table 3.
\nTargets | \nChitosan composites (antibiotic stock solution minimal inhibitory concentration in ppm) | \n|
---|---|---|
Gram‐negative bacteria | \nEscherichia coli (facultative anaerobic bacteria) | \nchitosan‐Zinc 0.003%; α/β‐chitosan 9 ppm; chitosan‐N,N‐diethyl‐N‐methyl 16 ppm; chitosan‐N,N‐dihexyl‐N‐methyl 16 ppm; pure chitosan 0.02% | \n
Escherichia coli (ETEC‐K88 type) | \nchitosan 8 ppm; chitosan nano‐particle 0.063 ppm; Copper‐chitosan nanoparticle 0.03 ppm | \n|
Escherichia coli (ATCC 25922) | \nchitosan 8 ppm; chitosan nanoparticle 0.03 ppm; Copper dope chitosan nanoparticle 0.03 ppm | \n|
Escherichia coli (O157 type) | \nα‐chitosan 9 ppm and β‐ chitosan 9 ppm | \n|
Pseudomonas aeruginosa | \nchitosan 0.012%; chitosan‐Zinc complex 0.0063%; α‐chitosan 9 ppm; β‐chitosan 9 ppm; N,N‐diethyl‐N‐methylated chitosan 32 ppm | \n|
Proteus mirabilis facultative anaerobic, bacterium | \nPure chitosan 0.0251% and chitosan‐Zinc complex 0.0063% | \n|
Salmonella enterobacteriaceae | \nchitosan 0.051% chitosan‐Zinc solution 0.006% | \n|
Salmonella choleraesuis (ATCC 50020 type) | \nchitosan 16.0 ppm; chitosan nano‐particles 0.063 ppm; Cu‐chitosan nano‐particle 0.03 ppm | \n|
Salmonella typhimurium | \nα‐chitosan 5.0 ppm and β‐chitosan 9 ppm | \n|
Salmonella typhimurium (ATCC 50013 type) | \nchitosan 16 ppm; chitosan nanoparticles 0.12 ppm; Copper‐chitosan nanoparticles 0.063 ppm | \n|
Enterobacter aerogenes (nosocomial and pathogenic bacteria) | \nchitosan flakes 0.050% and chitosan‐Zinc complex 0.0063% | \n|
Gram + vebacteria | \nListeria monocytogene | \nα‐chitosan 9 ppm and β‐ chitosan 9 ppm | \n
Staphylococcus aureus (gram‐positive coccal bacteria) | \nchitosan 0.051%; chitosan‐Zn complex 0.0063%; α‐chitosan 9 ppm; α‐chitosan 9 ppm & N‐ethyl‐N,N‐dimethylchitosan 4 ppm | \n|
Staphylococcus aureus (ATCC 25923 type) | \nchitosan solution 8 ppm; chitosan nanoparticles 0.13 ppm; Cu‐chitosan nanoparticles 0.063 ppm | \n|
Corynebacteriaceae (aerobic) | \nchitosan 0.0251%; chitosan‐Zinc 0.031% | \n|
Staphylococcaceae epidermidis | \nchitosan 0.0251%; chitosan‐Zinc complex 0.013%; α‐chitosan 5 ppm and β‐chitosan 5 ppm | \n|
Enterococcaceae faecalis (commensal bacterium) | \nchitosan 0.051%; chitosan‐Zinc complex 0.013%; N,N‐diethyl‐N‐methyl‐chitosan 16 ppm | \n|
Bacillaceae cereus | \nα‐chitosan 9 ppm and β‐ chitosan 9 ppm | \n|
Bacillaceae megaterium | \nα‐chitosan 9 ppm and β‐chitosan 9 ppm | \n|
Virus | \nIC50: Half maximal inhibitory concentration for cyto‐pathogenicity by HIV‐1 strain | \nGlutamine‐, methionine‐, and tryptophan‐coatedchitosan composite solution 48 ppm | \n
IC50:for cyto‐pathogenicity by virus HIV‐1IIIB strains | \nTryptophan, Methionine and Glutamine WMQ‐chitosan composite solution 48 ppm | \n|
IC50 of luciferase oxidative enzyme to produce bioluminescence for HIV1RF | \nGlutamine‐, methionine‐,andtryptophan ‐coatedchitosan solution 68 ppm; Tryptophan‐, methionine‐, andglutamine‐coated chitosan 164 ppm | \n|
IC50 of synergistic inhibition for V3 loop of gp41 and target cell CD4 by HIV‐1strains | \nGlutamine‐, methionine‐, andtryptophan‐coatedchitosan solution 39 ppm; Tryptophan‐, methionine‐, andglutamine‐coated chitosan 52 ppm | \n|
IC50 of HIV‐Induce syncytium by HIV‐1RF strain | \nAminoethyl/sulfated chitosan composite solution 2.2 ppm | \n|
EC50 for lysis of HIV‐1‐ infected cells by HIV‐1 strains | \nCarboxylated/sulfated chitosan composite solution 1.5 ppm | \n|
IC50 of p24 antigen synthesis by HIV‐1RF strains | \nN‐carboxymethylchitosan chitosan composite solution 4.5 ppm | \n|
IC50 of antigen p24 synthesis by HIV‐1Ba‐L strain | \nN,O‐sulfated chitosan composite solution 7.8 ppm | \n|
Fungi | \nC. albicans/Debaryomycetaceae | \nChitosan‐Zinc complex 0.11%; chitosan 5.0 ppm | \n
C. parapsilosis | \nChitosan‐Zinc 0.051%; chitosan 40 ppm | \n|
C. krusei | \nPure chitosan solution 5 ppm | \n|
C. glabrata/Torulopsisglabrata | \nPure chitosan solution 20 ppm | \n|
P. digitatum (mesophilic) | \nPure chitosan solution 65 ppm | \n|
P. italicum | \nPure chitosan solution 58 ppm | \n|
Fusarium moniliforme (mould) | \nPure chitosan solution 2.5 ppm | \n|
Penicillium, Talaromyces | \nPure chitosan solution 2.5 ppm | \n|
Aspergillus fumigates | \nPure chitosan solution 1 ppm | \n|
R. stolonifer (Bread Mold) | \nPure chitosan solution 100 ppm | \n|
C. neoformans (yeast) | \nPure chitosan solution 5 ppm | \n|
Cryptococus neoformanvargati | \nPure chitosan solution 2.5 ppm | \n|
M. phaseolina | \nPure chitosan solution 12.5 mg/mL | \n
Broad bioactivity pattern of chitosan based drug delivery systems on varied targets.
Pharmaceutically, chitosan delivered tablets, microspheres, micelles, vaccines, nucleic acids, hydrogels, nanoparticles, and conjugates via implantable, injectable oral, nasal, and ocular routes. Chitosan facilitates transmucosal absorption vital in delivery of peptides and in protein vaccination [9, 12, 20] besides an excipient in oral tablet formulation. High molecularweight chitosan is more viscous to impart delayed ingredient release/drug duration activities which improve therapeutic efficiency by lessening side effects of oral tablets [12]. Chitosan‐tripolyphosphate/alginates microspheres can control or protect proteins, drugs, and vaccines absorption in the digestive tract via paracellular route on epithelial layer release in oral and nasal administrations [9]. Hydrophilic chitosan imparts low surface activity that gets improved by glucosidic modifications, hydrophobic substitutions, and by providing hydrophilic shield at hydrophobic centers [12] to protect hydrophobic drugs with improved solubility and bioavailability [20]. Chitosan 3‐D hydrogels are structured via diffusion, entrapment, and tethering with hydrophilic polymers to hold up thousands times more fluids than its dry weights is best utilized in drug delivery. Thermosensitive chitosan solution when injected into the body at phisiological conditions forms hydrogels which aids protection of drugs from degradation besides its prolonged‐steady release [21]. Biocompatible chitosan drug carriers yield via ionotropic gelation, emulsion, cross‐linking, solvent extraction, diffusion/droplet coalescence, reverse microemulsion, and self‐assembly techniques. But ionotropic gelation is preferred due to mildness and less time involved in spontaneous aggregation. Chitosan‐aided delivery systems protect drugs from chemical/enzymatic degradation in digestive system due to strong mucus binding that enhance drug adsorption in intestinal epithelial cells [20]. Chitosan‐glycol nanogel uptakes endocytosis mediated by flotillin‐1 with Cdc42 and macropinocytosis attended by actin cytoskeleton participation and internalization mechanisms by folate receptor are useful in drug delivery vectors for targeting different intracellular compartments [9]. Glipizide chitosan‐xanthan beads exhibited control‐drug release, muco‐adhesion, pH‐based swell kinetics, good bioadhesiveness, and comparable floating capacity in gastric fluids [22]. Insulin‐chitosan‐tris‐buffer (pH 6.5) nano emulsions showed physical and chemical stability in a reverse micelle system and potent hypoglycemic activity in diabetic rat [20, 22]. Colon prolongs progesterone absorption for much first‐pass metabolism with low oral bioavailability, but zinc‐pectinate‐chitosan vehicle increases drugs oral bioavailability with more residence time in plasma for colonic‐specific delivery. Glutaraldehyde‐Boswellia‐resin doped chitosan composites (phosphate buffer pH 6.8) releases 70% drug load in 7 hours with augmented drug entrapment [9, 12, 20]. Chitosan‐catechol carrier imparts higher retention for mussel adhesive proteins found in GI track via irreversible catechol‐mucin cross‐links aids in mucosal drug delivery [9]. Fish oil‐based N‐stearoyl O‐butylglyceryl‐chitosan microcapsules own desirable capacity and carrier encapsulation efficiency for sustained release of fish oil besides higher thermostability [9].
\nChito‐oligosaccharide scavenges hydroxy, carbon‐cantered superoxide, alkyl, and 2, 2‐diphenyl‐1‐picrylhydrazyl (DPPH) radicals at free NH2/OH site of pyranose skeleton and offers stability and in vitro antioxidants protection without damaging membrane lipids, protein, and DNA. Chitin‐doped carboxyethyl possesses good water solubility above pH 6.5 and potent radical scavenging activity for 2, 2\'‐azinobis (3‐ethylbenzothiazoline‐6‐sulfonic acid (ABTS) with EC50< 2 mg/mL and good in vivo bioactivity (Figure 3). Methacrylic/sodium‐acrylic etherified chitosans owing to their high surface area with mico‐porosity and tensile strength can be molded into different shape, size/forms films, fibers, sponges, beads, powder, gel, and solutions for therapeutic antioxidant activity.
\nFlexible mechanical and structural features of chitin is explored in tissue engineering to procure materials which impart improved bio‐functions to be used to repair tissues like bone, cartilage, blood vessels, bladder, skin, and muscles. Tissue engineering induces varied dimensional/shape/size chitin forms like fiber, filament, film, sponge, and gel to provide instant mechanical support and compatibility to bio‐fluids/tissues via cell, scaffold, and cell scaffold interaction as shown in Figure 9. The 3‐D chitosan scaffold act as an artificial extracellular matrix as reabsorbed by body with time till new tissue forms to aid to integrate new tissues [20]. Chitosan interacts with cellular glycosaminoglycans to enhance cell attachment and proliferation results for cell growth via mechanical enhancement which resembles replaceable hard/soft tissue like bones, cartilage, muscles, and blood vessels.
\nSchematic depiction of highly compatible cell‐chitosan scaffold interactions [20].
Medical textiles or healthcare textiles is arapidly expanding technical textile market to prepare materials for medical and healthcare products like simple gauzes, bandages, tissue culturing scaffolds, and prostheses for permanent body implants [23]. Chitosan acquire basic requirements of textile material for medical applications like biocompatible, resistance to alkali, acids, and microorganisms, high‐dimensional stability, elasticity, free from contaminates/impurities, absorption/repellence, and air permeability [24].
\nLow immunogenicity characteristics of chitosan aids to provide 3‐D tissue growth matrix with profound activities such as enhancing macrophage activity, stimulating cell proliferation to heal wound and facilitating polymorphonuclear leukocytes, macrophages besides fibroblasts induced granulation responsible for tissue repairs [25]. N‐acetyl‐β‐
(A) Schematic pathway for chitosan vehicle drug\'s wound healings, (B) wound healing steps, (C) multilayered nanochitosan‐fiber‐based wound dressings, (D) chitosan compliance for fabrication: at pH < 6 amines get protonated to polycations and at pH > 6.5 amines get deprontonated to undergo interpolymer alliance yielding fiber/globule.
Clinically, chitosan‐based nanofibers, composites, films, and sponges used for wound healing in plastic surgery [9, 25], skin grafting [9, 27], and endoscopic sinus surgery [26, 27]. HemCon® hemostatic latex‐free bandages derived from chitosan‐coatings acts as extreme adherent on blood contact to seal wound and controls bleeding (via affinity to red blood cells) and effectively reduces hemostasis span. ChiGel, Chitopack‐C®, Trauma‐Stat™, Tegasorb™ and Tegaderm™ Guarda‐Care®, Chito‐Flex®, and Chito‐Gauze® are chitosan‐based products used for dressings in surgical protective thickness, dermal, limb trauma, ulcers, injury, abrasions, and burns where chitosan swells with exudates to gel inaid healings. Celox™ granules/flakes are hemostatic gauze that controls emergency bleeding via swelling to gel‐clot on contact with blood and induce hemostasis in penetrating limb trauma in contrast to conventional pressure bandages [9]. Topical chitosan‐coated pads promote vascular hemostasis percutaneous catheters/tubes interventionally put on puncture site found to aggregate red blood cells and platelets, thus shortening the clot formation‐5. Carboxypolyvinylalcohol‐chitosan hydrogel film improved swelling ratio to maintain moisture over wound besides sustaining drug release and effective suppression of bacterial proliferations [27]. Curcuminbioglass‐encapsulated chitosan found many uses like wound healing dressing, quenchingactivity of DPPH and superoxide, inhibit Staphylococcus aureus bacteria, and reduce tumor necrosis [9, 27]. Varied ionic cross‐linkers aid in chitosan drug delivery as shown in Table 4.
\nIonic cross‐linker | \nTypes of agents | \n|||
---|---|---|---|---|
Metal cations | \nFe(III) | \n|||
Pt(II) | \n||||
Mo(VI) | \n||||
Smaller anions/molecules | \ncitric acid | \n|||
Butanedioic acid | \n||||
Glauber\'s salt | \n||||
Ionic phosphate compound | \ntripolyphosphate (TPP) | \n|||
sodium beta glycerophosphate* | \n||||
Sodium salt ofcori ester/glucose 1‐phosphate* | \n||||
Sodium salt Robison ester/glucose‐6‐phosphate* | \n||||
Anionic polymers | \nNatural | \nKappa/Iota‐Carrageenin (linear sulfated polysaccharide | \n||
Collagens (partial hydrolysis protein) | \n||||
Hyaluronan (nonsulfated glycosaminoglycan) | \n||||
Acidic gum (high uronic acid % natural exudates) | \n||||
D‐galacturonic acid/Heteropolysaccharide | \n||||
Gamma PGA (amino acid glutamic acid polymer) | \n||||
Alginate/algin from seaweed | \n||||
Dextran sodium sulfate (DSS) | \n||||
E 415 gum from Xanthomonascampestris | \n||||
Synthetic | \nAcrylic acid polymer | \npolyacrylic acid‐divinyl glycol cross‐link polymer | \n||
Methacrylate polymer | \nEudragit | \n|||
\n | \n | PNIPA/NIPApolymer | \nSynperonic/Pluronic/Koliphor | \n
Ionic cross‐linkers used for chitosan‐based drug delivery in biomedical devices [28].
*Relationship of polyolphosphate with chitosan is unclear and not been elucidated.
Chitosan acts as a natural adsorbent due to free amino and hydroxyl groups responsible for adsorptive interactions with water pollutants like dyes [29], metals [30–33], and organic compounds, etc. Functionality of chitosan is facile for modifications, viz., cross‐linking and grafting so as to enhance its inherent absorption efficiency and specificity. Cross‐linking of chitosan\'s functionality improved its sorption efficiency at low pH while grafting with sulfur/nitrogen improves specificity and capacity for heavy metals [30–33]. Dye adsorption by unmodified chitosan is good; but its low stability prompted researchers to modify/graft at amino, carboxyl, sulfur, and alkyl groups. Chitosan can be cross‐linked with epichlorohydrin, ethylene glycol diglycidyl ether, glutaraldehyde, and tripolyphosphate to improve its sorption efficiency besides mechanical and physical properties. Chitosan alteration is best for adsorption of dyes, phenols, polycyclic aromatic, pesticide, herbicides, and metal ions. Metal cations are chelated specifically at protonated amines in acidic conditions whereas anions by electrostatic interactions. Chitoneous adsorptive interaction includes partition, diffusion, chelation, trapping, scavenging, cation exchange, hydrogen bonding, Van der waals force, dipole–dipole, and electrostatic interactions [29–33]. Quaternary tetra‐alkylammoniumchitosans own permanent +ve charge at -OH/NH2 to boost antimicrobial activity (at wide pH) in orthopedic, wound dressing in surgery, anion exchange cartridge, dental implants, colorimetric analysis, and perchlorate removal of water [9, 20]. Fe‐chelated‐chitosan granules found to promote selective fluoride sorption over chloride from water in defluoridation technique. Protonated polyamidoamine‐grafted chitosan‐Zr (IV) beads selectively removed fluoride than other ions in spontaneous and endothermic way [34]. Magnetic hydroxypropyl‐chitosan multiwalled‐carbon nanotubes adsorbs lead (II) from water. Chitosan‐glutaraldehydenanofibers exhibited double adsorption capacity (than chitosan) forCr (VI) removal from water. Chitosan‐polyphenol‐oxidase quinine nanobeads rapidly eliminate bisphenols from water [33]. Chitosan‐pyruvic acid composites are found to adsorb Cd (II) from wastewater. Chitosan‐modified soil cyanobacterial breakdowns harmful algae blooms and microcystins via flocculation and inhibiting algal cells and sequester liberate toxins to promote biodegradation [9]. Chitosan‐doped sodium tripolyphosphate nanorods mitigate toxic Cr+6 from water via multilayer adsorption and consequent oxidation to ambient Cr+3 ions [34]. These chitosan‐based commercialized viable adsorbents own peculiar characters like high specific surface area, low internal diffusion resistance, biodegradability, quantum size effect, ecofriendliness, versatility, low cost, and high adsorption capability and selectivity.
\nN‐methacryloyl chitosan possessesdesirable features like hydro‐solubility, UV‐cross‐linkability, and injectability facilitating cell‐loaded microhydrogels and quick transdermal curing in vivo needed in localizing/sustaining protein delivery [20]. Chitosan‐α‐tricalcium phosphate exhibited histocompatibility for Beagle mesenchymal stem cells without effecting cellular growth and proliferation, further manifesting efficacy by enhancing osteogenesis and vascularization to repair bone defects in conjunction with mesenchymal stem cells [12, 20]. Silk reinforced chitosan promotes redifferentiation of caprine chondrocytes and retained more glycosaminoglycan to improve aggregate modulus construction, whichresembles with native tissues. Bone morphogenic protein‐chitosan scaffolds burst sustainable drug release and biocompatibility which is necessary for cartilage tissue [9, 20]. Chitosan hollow tubes regenerates repair sciatic and damage phrenic nerves via improved diaphragm movement besides slow phrenic nerve transfer by granulation in beagle‐dogs [12]. Cell encapsulated chitosan gels/porous chitosan fibrous matrix with biocompatible materials like CaPO4, gelatin modifying biomechanical stiffness, and cell‐matrixinteraction properties. These chitosan adaptations optimize cell/tissue differentiation and tailor transplantation to different clinical cell delivery by improving adherent ability for seeding cells to allow encapsulations.
\nChitosan dietary supplement/nutraceutical lowers serum cholesterol besides controlling obesity imparted to no digestion in our gastrointestinal tract. Chitosan gets swelled up to feel satiety by physically filling the stomach [9, 20] and inhibition of pancreatic lipase enzyme chitosan reduces dietary fat absorption in intestines. Chitosan precipitates fat in intestines via anionic binding with carboxyls of fatty/bile acids and hinder neutral cholesterol/sterol emulsification through hydrophobic interaction, thus it remains reduced/unabsorbed in GI tract for obesity and hypercholesterolemia treatments [35].
\nChitooligosaccharides entry in gastric gavages of mice in the treatment of apo‐lipoprotein‐E deficiency along with high‐fat diet feeding showed peculiar changes like lowered triglycerides and cholesterols, undermined atherosclerosis, increased atherosclerotic plaque stability, unregulated hepatic expression of low density lipoprotein receptor, macrophage scavenger receptor BI, and ATP binding cassette transporter‐A1. But in wild mice with low density lipoprotein receptors deficiency and high cholesterol absorption found no change in plasma lipid levels of LDL‐R. Chitooligosaccharides aid in hypercholesterolemia, i.e., remove low‐density lipoprotein (LDL) oxidized products: cholesterol which causes coronary atherosclerosis as toxic for endothelial cells. Chitosan increase binding of LDL to endothelium and smooth muscle by mediating inflammation such as TNF‐α, IL‐1, and macrophage colony‐stimulating factors. Hypocholesterolemic effect lowers lipid and media‐milled chitosan treatments found to decrease serum triacylglycerol, total, and LDL cholesterol which is highest than pure chitosan. The elevated serum cholesterol causing cardiovascular diseases, since 10% blood cholesterol reduction using chitosan consumptions reduces the risk of coronary heart disease by 30%.
\nDegenerative aging diseases like cardio‐/cerebrovascular, diabetes, osteoporosis, and cancer are common in old people that are diet‐affected [9]. Old people showdeficiency of Zn, Fe, Se, Cu‐metals, Vit‐A, B, C, and E, which impacts immune responses or impair immunity. But chitosan‐ascorbate can compensate such deficit and thrust neutrophils, NK/NKT/dendritic cell, monocyte/macrophage, and mediate initial pathogen interactions link to compromise signal transduction T cells pathway and gut microbiota homeostatic regulation to reduce low‐grade inflammation in age‐related diseases via triggering intestinal activity. Chitosanoligosaccharides used as functional food and aging disease therapy/treatment, pathophysiology via affecting oxidative stress, low‐density lipoprotein oxidation, enhance tissue stiffness, govern protein conformational changes, and chronic inflammations [9, 20, 35].
\nChitosan -C48/80 nanoparticle carried Bacillus anthracis protective antigen in mice have produced elevated serum titers of antibodies against protective antigen and a more balanced Th1/Th2 pattern then mere C48/80 solution and nanochitosan/alginate – C48/80 composite. C48/80 within chitosan found to promote a stronger mucosal immunity than other adjuvant groups indicating action in concert with a mast cell activator to affect nasal immunity [9, 20].
\nChitosan‐thioglycolic‐mercaptonicotinamide conjugates are nontoxic andare useful against Caco‐2 cells that remarkably improved swelling and cohesive characteristics that are promising for dry mouth syndrome therapy where lubrication and mucoadhesiveness of mucosa is needed [9, 12, 20] than that of unmodified chitosan. About 10% of older people have dry mouth syndrome/xerostomia, i.e., not enough saliva/spit in the mouth. Treatment of dry mouth syndrome includes chitin‐based products that moisten themouth, e.g., electrospun chitosan fibers decrease microorganisms, molds, yeast, to yield lighter appearance, and less muscle denaturation in comparison with traditional dryageing. Test disks were compressed out of unmodified chitosan‐TGA (thiomers) and/or TGA‐MNA conjugates to investigate cohesive properties, cytotoxicity assays, and mucoadhesion studies. Immobilized‐MNA achieved higher swelling and cohesion for chitosan‐TGA‐MNA conjugates compared to unmodified chitosan. Preactivated chitosan thiomer exhibited higher stability among all conjugates and nontoxic against Caco‐2 cells.
\nThe vector mosquitoes inflict diseases in humans, such as malaria, dengue, and yellow fever, which cause death of more than one million people per year compared to any other living organism. RNA interference mediated gene silencing/targeting the interested/responsible gene for disease using chitosan nanoparticles combined with food and ingested by larvae. Thus, a technically straightforward, high‐throughput, and cheap methodology is compatible for mosquitoes, insects, agricultural pests, and nonmodel organisms deals with long double‐stranded/small interfering RNA. Chitosan nanofibers can potentially inhibit gene functions in disease vector mosquitoes ingested by larvae when mixed with food [12, 20]. Chitosan/siRNA nanoparticles used to target semaphorin‐1‐a during olfactory system development in dengue and yellow fevers arise by vector Aedesaegypti mosquitos. Chitosan/AgCHS‐dsRNA‐basenanocrystals own repression of AgCHS‐1 and AgCHS‐2 chitin synthase genes via feeding larval in Anopheles gambiae.
\nChitinorchitosan hasdistinctive biological/physicochemical properties and are researchedin the fields of biotechnology, medicine, cosmetics, food technology, and textiles. Marine crabs, lobsters, shrimps, and mollusks are a resource of chitin as well as arthropod, crustacean, fungi, yeasts, algae, and squid pen exoskeletons. Comparatively, chitosan is a widely used in various industries,viz., biochemical, food, drugs, as dietary fiber, wastewater treatments, surgical threads, wound healing, immune response to allergy, plant immune inducer/defense against pathogens, and is also used in antimicrobial, anticholesterol, and antitumor activities. Chitosan alteration/designing via tissue engineering is also used in various areas such as bone scaffold, drug delivery, wound healing, and metal/dye absorbents. The marine crustacean shells are rich chitooligosaccharides with calcium carbonate (20–50%), proteins (20–40%), and chitin (15–40%), contents that can be separated by using an integrated biorefinery with mechano/chemical processes for their distinct uses. This chapter presents a variety of chitooligosaccharides with specific characteristics, such as skeletal modifications, biocompatibility, and antimicrobial and antiinflammatory activities, in relation to possible solution properties.
Unregulated emerging pollutants enter aquatic systems through wastewater treatment plants after consumption and use by humans and animals [1].
This poses a significant risk to aquatic organisms and to public health. Among the main effects described to date are the appearance of changes in fish reproduction due to the presence of hormones and inhibition of photosynthesis in algae by the presence of these [2]. We know that the presence of antibiotics in the environment can make bacteria in wastewater relatively more resistant to them and resistant microorganisms develop.
To make clear how these molecules act as endocrine disruptors, we must indicate that they interfere with the body’s homeostasis, usually by mimicking the natural hormones that lead to the activation or blocking of their receptors [3].
Trimethoprim in Mexico is one of the most used drugs for treating urinary tract infections, and it is commonly used in the foreign tourism for attending the traveler’s diarrhea [4]. Trimethoprim is incompletely metabolized by humans during the therapeutic process and approximately 80% is excreted in the pharmacologically active form, which can promote the development of bacterial resistance to this compound’s form promoting it as an emerging contaminant [5].
Clavulanic acid-amoxicillin is a mixture of two drugs in typical commercial compositions of 185/125 and 500/125 mg and commercially known in México as Augmentin and Clamoxin or Gimaclav, respectively. It is indicated for the treatment of acute and chronic infections of the upper and lower respiratory tracts, meningitis and genitourinary, skin, soft tissue, gastrointestinal and biliary infections, and in general for the treatment of infections caused by pathogens sensitive to this mixture of drugs [6].
Both drugs have been studied by our research group as emerging pollutants with an effect of endocrine disruptors due to their high presence in wastewater of domestic and hospital effluents in México (work in process of being published) and their consequent impact on all types of aquifers, which could act as final receiving bodies. However, in our research group, different advanced oxidation processes have been used and improved for the removal of these kinds of contaminants, these processes include cavitation, photo-catalytic oxidation, or Fenton chemistry, but they have high costs. New expectations were found when it has been applied an electrochemical process.
Electrochemical oxidation is based on the application of an electric current or a potential difference between two electrodes (anode and cathode), wherewith hydroxyl radicals or other oxidizing species can be generated, depending on the anode material used and the type of electrolyte support used [7].
In this chapter, the use of electrolysis for the removal of pharmaceutical-type pollutants is based on the chemical reactions that are carried out between the electrodes submerged in electrolytic solutions by effect of the passage of the electric current, being the function of the electrolyte to serve as a means of transporting electrical loads and provoke the reactions of oxidation-reduction for the degradation of compounds in order to transform them into less hazardous compounds for the environment. The electrolyte being of the family of salts allows the anions to carry negative loads toward the anode and the cations transport the positive loads to the cathode [8]; the effectiveness of several visible light-activated TiO2 photocatalysts has been proven for the treatment of emerging contaminants. Doping or co-doping of titanium dioxide using nitrogen, nitrogen-silver, sulfur, carbon, and copper and incorporating graphene nano-leaves increases its effectiveness. The use of titanium dioxide is to improve photocatalytic activity [9]. Considering all the above backgrounds, the experiments reported hereby were performed in order to establish if the proposed system could breakdown or transform the pollutants (drugs) into simpler molecules.
Based on different references, it is known that the trimethoprim can be determined with an absorbance at 237.6 nm [10] or that it can be displayed at a wavelength of 283–350 nm [11], and it is mentioned that in visible light, it is still observed at a wavelength between 400 and 600 nm [12]. In the case of amoxicillin-clavulanic acid mixture, the spectra recorded are in a wavelength range of 200–380 nm [13]. Therefore, the results on the UV-Vis spectrum were analyzed within these intervals.
For the preparation of synthetic wastewater (SWW) contaminated by trimethoprim and clavulanic acid-amoxicillin, three samples with 500 mL of clean water (0.1 mS/cm) were added with different drug concentrations (trimethoprim 0.1%, trimethoprim 0.2%, and clavulanic acid-amoxicillin 0.2%). Type curves for each drug were prepared with 2 g/L (0.2%) as the highest concentration and 0.1 g/L (0.01%) as the lowest concentration.
The drugs supplied by Merck | Sigma-Aldrich were white powders, and the solutions prepared were kept in refrigeration (6°C) until needed.
For the construction of the electrodes, two glass tubes were used, each one of 6.1 cm length and 0.7 cm width, containing the following elements: an electrode connected to the negative pole (cathode) was handcrafted with mineral carbon introducing a copper wire (0.3 mm Ø) and the electrode connected to the positive pole (anode) was also handcrafted with mineral carbon doped with TiO2 and it was used a platinum wire (0.1 mm Ø). In the cathode, the reduction processes take place and oxidation occurs in the anode, where both are connected to a power supply with a 5 V electrical potential (Figure 1).
TiO2-doped electrodes and coal.
Platinum is an inert metal that does not participate in the redox reaction but only exchanges electrons [14] since it has a low reactivity with oxygen and with water [15]. Copper is a metal with great ductility and high electrical conductivity [16], which leads to the conclusion that both metal wires are good conductors and will show little corrosion. Furthermore, platinum has catalytic activity and low reactivity. Due to these characteristics, the platinum and copper wires were selected for the electrodes. Doping carbon with TiO2 aids a better oxidation process at the anode, in addition to having photocatalytic properties that can improve the dissociation reaction in the electrolytic cell.
The mineral coal was obtained from zinc-carbon battery carbon cylinders free of cadmium (0% Cd) and (0% Mg) magnesium, confirmed by atomic absorption; so, the mineral coal is free of these elements. Extracted amounts were obtained from different brands of batteries (MARKS rocket, explosive, Panasonic super hyper, King Kong, Sony-new ultra, and Kodak extra heavy-duty, among others). The cylinders were washed by immersion overnight (almost 8 hours) and rinsed with deionized water type I. The zinc and manganese content were also analyzed by atomic absorption of all the carbon cylinders obtained; determination of ammonium chloride was also performed but in the remaining rinse water used to clean the cylinders (the chlorides were quantified by the Mohr method and ammonia by the selective electrode method). Curiously after washing and rinsing the carbon cylinders, the concentrations of zinc and ammonium chloride were not detectable and there is only less than 0.1% impregnation of manganese, which was considered negligible for the experiment.
The coal cylinders were divided into two portions, one was ground directly and the other portion was doped with TiO2 and ground.
The mineral carbon was added into a TiO2 solution at 3.46 g/L (3.46%) and after that it was introduced to a stove at 100°C for approximately 2 hours. Finally, the mineral carbon doped with TiO2 was crushed, until a homogenous fine powder (0.65–1 μm) was obtained.
Having prepared both coals (doped and not doped), the glass cylinders were filled separately with them and the copper and platinum wires were placed along leaving 7.5 cm of free wire.
To assemble the electrochemical cell, it was designed with an acrylic cell, a power supply (5 V DC) from STEREN, a porous rectangle glass membrane (length 8.5 cm, height 3.8 cm, and width 7.0 mm), and the handcrafted electrodes. For the proper functioning of the electrolyte cell, moving of charges from the anode to the cathode and to balance the aqueous solution, a KOH electrolyte (0.01 M) from Merck | Sigma-Aldrich was used. The experiments were performed using 50 mL of the mentioned electrolyte solution and about 200–240 mL of SWW, inside the cell. All the experiments were performed in triplicate.
Twenty milliliters of samples of treated synthetic wastewater (TSWW) were taken every half an hour for an experimentation time period between 1.5 and 2 hours, and at time 0, intermediate and final time samples were collected for each experiment. Parameters such as pH, conductivity, and temperature for each sample were measured. A Hach brand Pro HR pocket conductivity tester was used; the temperature is given in °C and the conductivity in mS/cm.
Determination of total organic carbon (TOC) was performed for all the samples using a Thermo Scientific HiperTOC using the US standard US EPA 415.3. Another analytical method performed also for all the samples was the chemical oxygen demand (COD) under the Mexican Standard NMX-AA-030/2-SCFI-2011. Both methods were carried out by an IPN reference laboratory, which is certified by the Mexican Accreditation Entity (MAE). Also, each sample was taken for analyzing with thin layer chromatography (TLC) and UV-Vis spectrometry analysis at different wavelengths.
A visible ultraviolet spectrometer BECKMAN brand model DU 7500i was used for the UV-Vis spectrometry technique. First, an absorbance sweep was performed with the SWW samples at different concentrations, in order to find the highest absorbance wavelength to perform their type curves for both drugs. Subsequently, each of the TSWW samples was also measured at a wavelength ranging from 200 to 350 nm (UV absorbance) and 400 to 800 nm (Vis absorbance) in order to observe the degree of degradation or breakage that was achieved.
In order to validate the analytical methodology, the technical guide on traceability and uncertainty is used with those analytical measurements performed with an ultraviolet-visible spectrophotometry technique, which supports the application of the NMX-17025-IMNC-2006 standard, the foregoing established by the National Metrology Center (NMC) and the Mexican Accreditation Entity (MAE) [17].
For thin-layer chromatography, a 2.5 cm by 4 cm thin gel plate was used as a stationary phase; also, both drug standards from Merck | Sigma-Aldrich, two glass chromatographic cameras, and a 254 nm wavelength UV frame were needed. Polar and non-polar (intermediate) solutions were used as mobile phases (eluents). The polar and non-polar (intermediate) eluent solutions were prepared with different concentrations of hexane and ethyl acetate, both from chromatographic grade (Merck | Sigma-Aldrich). The non-polar (intermediate) contained a 4:6 ratio of ethyl acetate and hexane. The polar eluent does a 6:4 ratio of ethyl acetate and hexane. The TSWW samples were mixed with ethyl acetate in a 4:3 ratio inside a test tube and agitated for 30 seconds.
From the test tube, an aliquot of the TSWW samples was taken with a capillary. For each experiment, the TSWW samples were taken at the start, intermediate, and final times, the aliquots were placed subsequently on the thin plate, and the plate was introduced to the chromatographic chambers each with a different eluent (polar and non-polar). After taken out from the camera, plates were revealed under the 254 nm ultraviolet light. The running fronts for standards and sample components were calculated. The intention to use this method is because it is applied in the pharmaceutical industry as a compound purity determination. Therefore, with this technique, it has been able to see qualitatively whether there is a decrease or breaking of the contaminants in the TSWW sample compared against a SWW sample.
The model designed and constructed for the electrolytic cell used in the breakdown of the trimethoprim and acid clavulanic-amoxicillin is described in Figure 2.
Main components of an electrolytic cell.
The type curves for both drugs that were obtained and are showed in Figures 3 and 4 with their corresponding equations and linear coefficient.
Type curve of trimethoprim at a wavelength of 300 nm.
Clavulanic acid-amoxicillin type curve with a wavelength of 300 nm.
Eq. (1) shows the linearity, for the trimethoprim.
Equation (3) shows the linearity for the acid clavulanic.
The results obtained from the UV-Vis spectrometry technique at 350 nm is shown in Figure 5 and results with a 400 nm wavelength is shown in Figure 6, where the absorbance units were plotted with respect to the treatment time. When handling a compound that has rings and double bonds in its molecular structure, it is able to absorb ultraviolet light, and according to the Lambert-Beer law, the absorbance of a substance is proportional to the concentration of the compound.
Mean absorbance decreasing of trimethoprim at different treatment times, at a wavelength of 350 nm.
Absorbance units of the clavulanic acid-amoxicillin mixture at different treatment times, at a wavelength of 400 nm.
From the graphs above, we can observe a decay of the absorbance in the trimethoprim at 90 minutes and an increase in the clavulanic acid-amoxicillin mixture experiment after 30 minutes of treatment. These results indicate that there is surely a breakdown in both molecules, but the structure of the molar fragments for trimethoprim differs with respect to the clavulanic acid-amoxicillin mixture. In the first one, the absorbance decreases, but in the second, it increases. It is known that the molecules whose absorbance decays in an electrochemical process present a process of chemical reduction (electron gain), while the compounds whose absorbance increases are understood to undergo chemical oxidation processes (loss of electrons).
For the clavulanic acid-amoxicillin mixture, the increase in absorbance may be due to structural changes in the molecule, so the chemical structure was modified during the reaction, generating resonance systems that will show higher absorbances. Furthermore, this increase in absorbance may be due to the formation of other compounds in the electrolysis reaction, such as hydrogen near the cathode and oxygen near the anode. In the disintegration of water, both ozone and hydrogen peroxide are formed in small quantities [18]; it is known that ozone strongly absorbs radiation in the infrared, visible, and ultraviolet regions [19]. The maximum absorption occurs at a wavelength of 253.7 nm [19], which can be observed in the scanning of the spectrophotometer in Figure 7. For these experiments, the wavelength was taken at 400 nm because the sample presented a light yellow hue coloration, which may be due to the fact that the spectral properties of organic molecules depend on the type of valence electrons, on their quantum possibilities of absorption of UV-Vis radiation, and on the presence of chromophoric groups in their structures [20]; therefore, the sigma (σ) electrons make up the single saturated bonds or molecular bonding orbitals of the sigma type, while the pi (π) electrons make up the multiple unsaturated bonds or pi orbitals. These unsaturated groups are called chromophoric groups [21]. The appearance of color in some organic substances is related to the presence of one or more chromophoric groups whose pi electrons are easily excited by the absorption of radiation from the near and visible ultraviolet region (200–800 nm), of corresponding energy (specific length) to the quantum possibilities for the electronic transition [21]. Therefore, it is not certain that in the case of the clavulanic acid-amoxicillin mixture, there is an adequate decomposition, but for the trimethoprim component, this degradation is observed.
Full scan of the UV-Vis spectrometer for samples at different treatment times of the clavulanic acid-amoxicillin mixture.
The electrical conductivity is in correlation of the amount of ionizable molecules or radicals present in the water as shown in Figures 8 and 9; as time passes, conductivity increases, meaning that the drug molecules are being broken and more ionizable fragments are generated.
Conductivity against time for experiments with trimethoprim.
Conductivity against time for experiments with the clavulanic acid-amoxicillin mixture.
The COD graph that was obtained from the Trimethoprim TSWW samples showed a tendency to decrease according to the time elapsed. The initial COD at time 0 for the first experiment (trimethoprim 0.2%) had a concentration of 199.1 mg/L and the second experiment (trimethoprim 0.1%) had the lowest drug concentration of 90.3 mg/L of COD; you can see that in 1 hour, the COD concentration of the first trimethoprim 0.2% experiment dropped to 142.8 mg/L, and in the second experiment, it dropped to a concentration of 88.5 mg/L. This shows that the degree of contamination of the water by organic compounds (TSWW) decreases, that is, the organic matter (drug) decreases, and therefore there is a break in the contaminant.
It is also observed that in the second experiment (trimethoprim 0.1%), there is a slightly lower concentration of drug and that when passing through the electrolysis treatment it presents a greater removal efficiency, since the COD decreases more as time passes, compared to the trimethoprim 0.2%, which has a slight increase and decay (Figure 10).
Chemical oxygen demand with respect to time.
The results of total organic carbon can be seen in Figure 11. It is observed in the graph that there is a tendency to decrease the concentration of carbon as time goes by. The initial TOC of the first experiment had a concentration of 98.5 mg/L and the second experiment had an initial concentration of 59.4 mg/L. In both cases, from the 30th minute on, it is observed that trimethoprim 0.2% decreases to a concentration of 56.5 mg/L and trimethoprim 0.1% to a concentration of 33.5 mg/L. The above proves that the electrolytic system is an alternative for trimethoprim decomposition.
Total organic carbon with respect to time.
Table 1 shows that during the electrolytic breakdown, carbon portions are mineralized but some fragments must have been ionized in different forms that affects the UV-Vis absorbance.
TOC (mg/L) | |
---|---|
Trimethoprim 0.2% | Trimethoprim 0.1% |
98.5 | 59.4 |
90 | 53.9 |
71.6 | 45.2 |
67.4 | 40.8 |
56.5 | 33.5 |
Total organic carbon results from experiments 1 and 2 with trimethoprim.
Finally, Table 2 shows the maximum percentage of degradation that was obtained from the synthetic wastewater when it was treated with the electrolytic cell, for the first and second experiments with trimethoprim.
%Degradation according to TOC | |
---|---|
The first experiment (trimethoprim 0.2%) | The second experiment (trimethoprim 0.1%) |
91.3706 | 90.7407 |
Maximum percentages of degradation obtained from TSWW samples with electrolysis treatment.
In the case of the clavulanic acid-amoxicillin TSWW mixture, the COD had an oscillating behavior because at 1 minute it began to decrease and at 60 minutes it abruptly increased and then it decreased again. The initial COD at time 0 for the clavulanic acid-amoxicillin TSWW sample (0.2%) has a concentration of 266.5 mg/L, after 30 minutes, there is a concentration of 257.3 mg/L, but it is observed that at 60 minutes, the COD concentration abruptly increased to 261.2 mg/L. This experiment ended his treatment with a concentration of 242.3 mg/L. According to the bibliography analyzed, the phenomenon obtained in Figure 12 by the clavulanic acid-amoxicillin (TSWW) mixture could be due to the fact that when the sample is subjected to radiation, the molecule fragments and groups with free electron pairs are exposed and they absorb more radiation, generating increase in the values obtained. These formed fragments absorb a greater amount of energy after 60 minutes and as they continue to degrade and lose this capability.
Chemical oxygen demand against to time.
The total organic carbon (TOC) results for clavulanic acid-amoxicillin TSWW can be seen in Figure 13; there is a tendency to decrease the carbon concentration as time passes. The initial TOC of the clavulanic acid-amoxicillin TSWW mixture had a concentration of 182.8 mg/L and drops to a concentration of 164.6 mg/L. The above indicates the decrease in the sample of organic compounds due to the breakdown of the organic molecules to molecules with simpler structures.
Total organic carbon over time.
The results from the clavulanic acid-amoxicillin mixture experiments presented for the UV-Vis spectrophotometric studies give negative absorbance values, which is observed in Figure 6, probably due to the effects of the breakage of the molecule by chemical changes suffered in its structure, which generated ions or fragments with higher absorbances. This is because UV-Vis spectrophotometry excites the free electrons of oxygen, nitrogen, and sulfur that are present in both molecules, just as the molecule contains double bonds in its structure. In the pi bond, the electrons are excited and migrate to a higher energy level, modifying the structure. Therefore, the TOC was not used because negative values were being given in the absorbance.
The results of the clavulanic acid-amoxicillin mixture experiments presented for UV-Vis spectrophotometric studies in Figure 6 give high absorbance values, probably due to the effects of the breakdown of the molecule due to the electrochemical changes suffered in its structure, whereby ions or fragments with higher absorbances are generated. The modification of its structure is due to the fact that UV-Vis spectrophotometry excites the oxygen, nitrogen, and sulfur free electrons that are present in both molecules, as well as the pi electrons of the conjugated double bonds in its structure. In the pi bond, the electrons are excited but they can be delocalized by resonance effects, modifying the energy absorbed by the structure.
During the reaction, the formation of free radicals like HO• could occur, which are species with high reactivity, which allows them to attack organic molecules. It is worth mentioning that the photochemical process is not developing in the electrolytic cell, despite the fact that TiO2 reacts with light.
For the thin layer chromatography (see Figure 14), it is observed that there is a change of displacement between the 0 time and 60 minutes of the experiment. That is, the RF pattern for both drugs is not observed in comparison with the standards of trimethoprim and clavulanic acid-amoxicillin mixture; this indicates that the molecules at 60 minutes do not present the same structure. This is an expected result because in an electrolytic cell when an electric potential is applied, it generates an electric current passage, which is a flow of electrons between the electrodes creating a circuit of ionic and electric charges transport, besides getting the help of the electrolyte that maintains a balance of charges, which improves the transport of the charges between electrodes, causing the oxidation of fragments of the molecule in the surface of the anode and a reaction of reduction of other fragments of the molecule in the cathode.
Results of the thin layer chromatography demonstrating the rupture or breakdown of trimethoprim as also in the clavulanic acid-amoxicillin mixture, in which a great modification is observed, being less polar the product obtained with the treatment.
In addition, the electrode that is doped with titanium dioxide generates a greater oxidative effect, debt to its catalytic properties and the mineral carbon, has a porous structure and a large contact surface, and allows an adsorption process to take place between the organic compounds and the mineral carbon. Another advantage of using charcoal is that the problem of forming products that may be toxic does not arise, due to its high absorption capacity as mentioned before, although its efficiency may depend on the amount of material organic present in the solution.
The electrolyte cell demonstrated based on the results that it has the feasibility of breaking or/and debugging emerging endocrine disrupting contaminants like trimethoprim. The work developed by Sirés et al. in 2005 on the electrochemical degradation of water acetaminophen by catalytic action of Fe2+, Cu2+, and light showed that the acidic aqueous solutions of the drug acetaminophen were degraded by anodic oxidation in an undivided electrolytic cell with a Pt anode and an O2 supply [22], proving that the electrolysis process is functional. However, the materials and reagents to be used in this project are cheaper, and for a process tested in a single drug, there is no certainty how it will work in others.
Hirose et al. applied electrolysis for degradation of epirubicin, bleomycin, and mitomycin C with Pt/Ir electrodes and a NaCl solution as electrolyte. The results obtained were a partial degradation of the antibiotics but their cytotoxic and mutagenic activity was absolutely eliminated [23].
This research establishes that an elimination or rupture of different drugs can be carried out with an electrolytic cell, based on the work performed by Giraldo Aguirre et al. in 2016 on the electrochemical treatment of waters containing β-lactam antibiotics, where by means of electrolysis, the degradation of the drugs oxacillin (OXA), cloxacillin (CLX), and dicloxacillin (DCX) was achieved. Those drugs are also used as antibiotics [7] like trimethoprim and the clavulanic acid-amoxicillin mixture and can affect aquatic systems and health due to the fact that antibiotics are among the most consumed and released drugs to the environment [24]. This release is also due to the unwarranted prescription with antibiotics, its inadequate dispensing, and the laxity in the regulation on the sale of medicines that allows self-medication with antibiotics, which are some of the factors that have been related to this high consumption [24] because it is a chemically defined substance capable of modifying the biochemical and physiological activity in an organism and therefore can produce a biological, beneficial, or toxic effect depending on the dose delivered [25]. Another problem is based on worldwide studies that have evidenced the presence of pharmaceutical compounds in effluents from fully operational treatment plants and with their respective control parameters, apparently operating with a high wastewater purification efficiency [26]; so, it is now known that with conventional wastewater treatments, it is not possible to eliminate this type of compounds in an efficient level [26], having as a consequence the proliferation of bacteria resistant to antibiotics, which will cause major problems in aspects of public health. In the research of Giraldo Aguirre et al. [7], a Ti/IrO2 electrode was used which led to the oxidation process being better, which is due to the characteristics already mentioned for titanium and oxygen; also, the electrolyte that used sodium chloride helped them in the inhibition of microbial activity. This is because during the electrolysis reaction, chlorine gas is released from the electrolyte, but in our case, potassium hydroxide was used with the intention that the system can be incorporated to a wastewater treatment plant, since this technology usually uses biological reactors; therefore, only the breakdown of the molecule was sought without affecting the bio-catalytic bacteria during the subsequent processes. However, Giraldo Aguirre et al. conclude that electrochemical oxidation induces structural changes in antibiotic molecules and their results also indicate that electrochemical treatment is an effective technique for reducing the antibiotic potential that these compounds present, reducing the environmental risk due to the proliferation of bacteria resistant to antibiotics [7]. The aforementioned was also demonstrated within our experimentation when observed the graph of total organic carbon for the two experiments with trimethoprim and the thin layer chromatography for results with the clavulanic acid-amoxicillin mixture. This helps us show that the systems that use electrolysis break these compounds down into compounds that are less harmful to organisms and the environment. This experiment ends up being an important contribution to science in drug treatment and for a later use of electrolytic cells at higher levels, in addition to being highly versatile and to some extent economical oxidation processes.
The electrolytic cell modifies the structures of both molecules through different mechanisms, but in functional aspects, the electrolytic cell achieves the efficient degradation of trimethoprim unlike the clavulanic acid-amoxicillin mixture. It is established that the electrolytic cell can degrade some molecules more easily than others; so, we can establish that those compounds with a structure similar to trimethoprim could be degraded efficiently. However, it is also shown that to achieve the degradation of other compounds, it is necessary that the conditions of the electrolytic cell are adjusted again.
Addressing the problem of emerging pollutants that are endocrine disruptors is something really important and urgent, due to the impact they have not only on the environment but also on the health of living beings; so, it is important to transform them into less dangerous compounds for environment. Unfortunately, the methods of removing these contaminants are now expensive. That is why the implementation of the electrolytic cell is intended to create an economical option for the possible removal of these compounds, as it was shown to have a good degradation rate of trimethoprim. However, in the case of the clavulanic acid-amoxicillin mixture, it is necessary to modify its operating conditions.
All the authors appreciate the financial support given by the Instituto Politécnico Nacional (IPN) through the projects: SIP 20181685, SIP 20180081, and SIP 20190101.
The authors declare no conflict of interest.
nm | nanometer |
ml | milliliter |
μm | micrometric |
L | liter |
g | gram |
min | minute |
Abs | absorbance |
ECED | emerging contaminants endocrine disruptors |
TOC | total organic carbon |
COD | chemical oxygen demand |
Redox | reduction-oxidation reaction |
V | volts |
SWW | untreated synthetic waste water |
STWW | synthetic wastewater with treatment |
TLC | thin-layer chromatography |
mS | millisiemens |
IntechOpen aims to ensure that original material is published while at the same time giving significant freedom to our Authors. To that end we maintain a flexible Copyright Policy guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Chapters",metaDescription:"IN TECH aims to guarantee that original material is published while at the same time giving significant freedom to our authors. For that matter, we uphold a flexible copyright policy meaning that there is no transfer of copyright to the publisher and authors retain exclusive copyright to their work.\n\nWhen submitting a manuscript the Corresponding Author is required to accept the terms and conditions set forth in our Publication Agreement as follows:",metaKeywords:null,canonicalURL:"/page/publication-agreement-chapters",contentRaw:'[{"type":"htmlEditorComponent","content":"The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\\n\\n1. DEFINITIONS
\\n\\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\\n\\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\\n\\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\\n\\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\\n\\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\\n\\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\\n\\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\\n\\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\\n\\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\\n\\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\\n\\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\\n\\n3. CORRESPONDING AUTHOR'S DUTIES
\\n\\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\\n\\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\\n\\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\\n\\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\\n\\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\\n\\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\\n\\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\n4. CORRESPONDING AUTHOR'S WARRANTY
\\n\\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\\n\\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\\n\\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\n5. TERMINATION
\\n\\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\\n\\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\\n\\n6. INTECHOPEN’S DUTIES AND RIGHTS
\\n\\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\\n\\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\n7. MISCELLANEOUS
\\n\\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\\n\\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\\n\\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\\n\\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\\n\\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\\n\\nLast updated: 2020-11-27
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:"
The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\n\n1. DEFINITIONS
\n\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\n\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\n\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\n\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\n\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\n\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\n\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\n\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\n\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\n\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\n\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\n\n3. CORRESPONDING AUTHOR'S DUTIES
\n\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\n\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\n\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\n\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\n\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\n\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\n\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\n4. CORRESPONDING AUTHOR'S WARRANTY
\n\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\n\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\n\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\n5. TERMINATION
\n\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\n\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\n\n6. INTECHOPEN’S DUTIES AND RIGHTS
\n\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\n\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\n\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\n7. MISCELLANEOUS
\n\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\n\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\n\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\n\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\n\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\n\nLast updated: 2020-11-27
\n\n\n\n
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:117096},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:63},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Health",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-health",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"85",title:"Organic Chemistry",slug:"organic-chemistry",parent:{title:"Chemistry",slug:"chemistry"},numberOfBooks:52,numberOfAuthorsAndEditors:1262,numberOfWosCitations:1996,numberOfCrossrefCitations:1129,numberOfDimensionsCitations:2831,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"organic-chemistry",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9673",title:"Lactose and Lactose Derivatives",subtitle:null,isOpenForSubmission:!1,hash:"ab106ead5209f74acb0860d5651aac0b",slug:"lactose-and-lactose-derivatives",bookSignature:"Néstor Gutiérrez-Méndez",coverURL:"https://cdn.intechopen.com/books/images_new/9673.jpg",editedByType:"Edited by",editors:[{id:"176648",title:"Prof.",name:"Néstor",middleName:null,surname:"Gutiérrez-Méndez",slug:"nestor-gutierrez-mendez",fullName:"Néstor Gutiérrez-Méndez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8410",title:"Heterocycles",subtitle:"Synthesis and Biological Activities",isOpenForSubmission:!1,hash:"be48bce98d6bfb21b41247aaa28844d1",slug:"heterocycles-synthesis-and-biological-activities",bookSignature:"B. P. Nandeshwarappa and Sadashiv S. O.",coverURL:"https://cdn.intechopen.com/books/images_new/8410.jpg",editedByType:"Edited by",editors:[{id:"261141",title:"Dr.",name:"Belakatte Parameshwarappa",middleName:null,surname:"Nandeshwarappa",slug:"belakatte-parameshwarappa-nandeshwarappa",fullName:"Belakatte Parameshwarappa Nandeshwarappa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9197",title:"Organic Synthesis",subtitle:"A Nascent Relook",isOpenForSubmission:!1,hash:"03e0a3f9177c215d245ac49f0275e604",slug:"organic-synthesis-a-nascent-relook",bookSignature:"Belakatte Parameshwarappa Nandeshwarappa",coverURL:"https://cdn.intechopen.com/books/images_new/9197.jpg",editedByType:"Edited by",editors:[{id:"261141",title:"Dr.",name:"Belakatte Parameshwarappa",middleName:null,surname:"Nandeshwarappa",slug:"belakatte-parameshwarappa-nandeshwarappa",fullName:"Belakatte Parameshwarappa Nandeshwarappa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9405",title:"Quinazolinone and Quinazoline Derivatives",subtitle:null,isOpenForSubmission:!1,hash:"95a736fcc80804d0875730b3515aa659",slug:"quinazolinone-and-quinazoline-derivatives",bookSignature:"Ali Gamal Al-kaf",coverURL:"https://cdn.intechopen.com/books/images_new/9405.jpg",editedByType:"Edited by",editors:[{id:"191580",title:null,name:"Ali Gamal",middleName:null,surname:"Al-kaf",slug:"ali-gamal-al-kaf",fullName:"Ali Gamal Al-kaf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7750",title:"Acrylate Polymers for Advanced Applications",subtitle:null,isOpenForSubmission:!1,hash:"de343721338b474b64fae0339e85b4a7",slug:"acrylate-polymers-for-advanced-applications",bookSignature:"Ángel Serrano-Aroca and Sanjukta Deb",coverURL:"https://cdn.intechopen.com/books/images_new/7750.jpg",editedByType:"Edited by",editors:[{id:"202230",title:"Prof.",name:"Ángel",middleName:null,surname:"Serrano-Aroca",slug:"angel-serrano-aroca",fullName:"Ángel Serrano-Aroca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7313",title:"Nuclear Magnetic Resonance",subtitle:null,isOpenForSubmission:!1,hash:"455285c6ea843991712abb7b27592471",slug:"nuclear-magnetic-resonance",bookSignature:"Navin Khaneja",coverURL:"https://cdn.intechopen.com/books/images_new/7313.jpg",editedByType:"Edited by",editors:[{id:"249371",title:"Prof.",name:"Navin",middleName:null,surname:"Khaneja",slug:"navin-khaneja",fullName:"Navin Khaneja"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8357",title:"Organic Polymers",subtitle:null,isOpenForSubmission:!1,hash:"ff2ffd663fed5810f0d78bf8487ade97",slug:"organic-polymers",bookSignature:"Arpit Sand and Elsayed Zaki",coverURL:"https://cdn.intechopen.com/books/images_new/8357.jpg",editedByType:"Edited by",editors:[{id:"202274",title:"Associate Prof.",name:"Arpit",middleName:null,surname:"Sand",slug:"arpit-sand",fullName:"Arpit Sand"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7674",title:"Modern Spectroscopic Techniques and Applications",subtitle:null,isOpenForSubmission:!1,hash:"da3cb0d978d197ed95c07e8090e06136",slug:"modern-spectroscopic-techniques-and-applications",bookSignature:"Maaz Khan, Gustavo Morari do Nascimento and Marwa El-Azazy",coverURL:"https://cdn.intechopen.com/books/images_new/7674.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",middleName:null,surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9319",title:"Thermosoftening Plastics",subtitle:null,isOpenForSubmission:!1,hash:"02c4a3b7dcd88ffbe6adcdc060c2465b",slug:"thermosoftening-plastics",bookSignature:"Gülşen Akın Evingür, Önder Pekcan and Dimitris S. Achilias",coverURL:"https://cdn.intechopen.com/books/images_new/9319.jpg",editedByType:"Edited by",editors:[{id:"180256",title:"Associate Prof.",name:"Gülşen",middleName:null,surname:"Akın Evingür",slug:"gulsen-akin-evingur",fullName:"Gülşen Akın Evingür"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7715",title:"Recent Advances in Pyrolysis",subtitle:null,isOpenForSubmission:!1,hash:"76f7f501be4b6e4f5d3f97e81bac2c26",slug:"recent-advances-in-pyrolysis",bookSignature:"Hassan Al- Haj Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/7715.jpg",editedByType:"Edited by",editors:[{id:"12400",title:"Prof.",name:"Hassan Al- Haj",middleName:null,surname:"Ibrahim",slug:"hassan-al-haj-ibrahim",fullName:"Hassan Al- Haj Ibrahim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8889",title:"Solvents, Ionic Liquids and Solvent Effects",subtitle:null,isOpenForSubmission:!1,hash:"75c7231408f17b5af0ff2952627dd5fa",slug:"solvents-ionic-liquids-and-solvent-effects",bookSignature:"Daniel Glossman-Mitnik and Magdalena Maciejewska",coverURL:"https://cdn.intechopen.com/books/images_new/8889.jpg",editedByType:"Edited by",editors:[{id:"32498",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7363",title:"Cellulose",subtitle:null,isOpenForSubmission:!1,hash:"ed333d89928591f1a4b2710130fddee3",slug:"cellulose",bookSignature:"Alejandro Rodríguez Pascual and María E. Eugenio Martín",coverURL:"https://cdn.intechopen.com/books/images_new/7363.jpg",editedByType:"Edited by",editors:[{id:"141654",title:"Dr.",name:"Alejandro",middleName:null,surname:"Rodríguez Pascual",slug:"alejandro-rodriguez-pascual",fullName:"Alejandro Rodríguez Pascual"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:52,mostCitedChapters:[{id:"36171",doi:"10.5772/36942",title:"Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy",slug:"research-of-calcium-phosphates-using-fourier-transformation-infrared-spectroscopy",totalDownloads:8432,totalCrossrefCites:100,totalDimensionsCites:267,book:{slug:"infrared-spectroscopy-materials-science-engineering-and-technology",title:"Infrared Spectroscopy",fullTitle:"Infrared Spectroscopy - Materials Science, Engineering and Technology"},signatures:"Liga Berzina-Cimdina and Natalija Borodajenko",authors:[{id:"110522",title:"Prof.",name:"Liga",middleName:null,surname:"Berzina-Cimdina",slug:"liga-berzina-cimdina",fullName:"Liga Berzina-Cimdina"},{id:"112181",title:"MSc.",name:"Natalija",middleName:null,surname:"Borodajenko",slug:"natalija-borodajenko",fullName:"Natalija Borodajenko"}]},{id:"36178",doi:"10.5772/36323",title:"Applications of FTIR on Epoxy Resins - Identification, Monitoring the Curing Process, Phase Separation and Water Uptake",slug:"applications-of-ftir-on-epoxy-resins-identification-monitoring-the-curing-process-phase-separatio",totalDownloads:19865,totalCrossrefCites:54,totalDimensionsCites:151,book:{slug:"infrared-spectroscopy-materials-science-engineering-and-technology",title:"Infrared Spectroscopy",fullTitle:"Infrared Spectroscopy - Materials Science, Engineering and Technology"},signatures:"María González González, Juan Carlos Cabanelas and Juan Baselga",authors:[{id:"107857",title:"Prof.",name:"Juan",middleName:null,surname:"Baselga",slug:"juan-baselga",fullName:"Juan Baselga"},{id:"138113",title:"Dr.",name:"María",middleName:null,surname:"González",slug:"maria-gonzalez",fullName:"María González"},{id:"138114",title:"Dr.",name:"Juan C.",middleName:null,surname:"Cabanelas",slug:"juan-c.-cabanelas",fullName:"Juan C. Cabanelas"}]},{id:"36167",doi:"10.5772/35522",title:"Application of Infrared Spectroscopy to Analysis of Chitosan/Clay Nanocomposites",slug:"application-of-infrared-spectroscopy-to-analysis-of-chitosan-clay-nanocomposites",totalDownloads:7479,totalCrossrefCites:25,totalDimensionsCites:100,book:{slug:"infrared-spectroscopy-materials-science-engineering-and-technology",title:"Infrared Spectroscopy",fullTitle:"Infrared Spectroscopy - Materials Science, Engineering and Technology"},signatures:"Suédina M.L. Silva, Carla R.C. Braga, Marcus V.L. Fook, Claudia M.O. Raposo, Laura H. Carvalho and Eduardo L. Canedo",authors:[{id:"104808",title:"Prof.",name:"Suedina Maria",middleName:"De Lima",surname:"Silva",slug:"suedina-maria-silva",fullName:"Suedina Maria Silva"},{id:"111910",title:"Prof.",name:"Carla",middleName:"Lima",surname:"R. C. Braga",slug:"carla-r.-c.-braga",fullName:"Carla R. C. Braga"},{id:"142933",title:"Prof.",name:"Marcus Vinícius",middleName:null,surname:"Lia Fook",slug:"marcus-vinicius-lia-fook",fullName:"Marcus Vinícius Lia Fook"},{id:"142934",title:"Prof.",name:"Claudia Maria",middleName:null,surname:"De Oliveira Raposo",slug:"claudia-maria-de-oliveira-raposo",fullName:"Claudia Maria De Oliveira Raposo"},{id:"142936",title:"Prof.",name:"Laura",middleName:null,surname:"Hecker De Carvalho",slug:"laura-hecker-de-carvalho",fullName:"Laura Hecker De Carvalho"},{id:"142939",title:"Dr.",name:"Eduardo Luis",middleName:null,surname:"Canedo",slug:"eduardo-luis-canedo",fullName:"Eduardo Luis Canedo"}]}],mostDownloadedChaptersLast30Days:[{id:"53128",title:"Phenolic Compounds: Functional Properties, Impact of Processing and Bioavailability",slug:"phenolic-compounds-functional-properties-impact-of-processing-and-bioavailability",totalDownloads:7014,totalCrossrefCites:26,totalDimensionsCites:45,book:{slug:"phenolic-compounds-biological-activity",title:"Phenolic Compounds",fullTitle:"Phenolic Compounds - Biological Activity"},signatures:"Igor Otavio Minatel, Cristine Vanz Borges, Maria Izabela Ferreira,\nHector Alonzo Gomez Gomez, Chung-Yen Oliver Chen and\nGiuseppina Pace Pereira Lima",authors:[{id:"146379",title:"Prof.",name:"Giuseppina",middleName:null,surname:"Lima",slug:"giuseppina-lima",fullName:"Giuseppina Lima"},{id:"194002",title:"MSc.",name:"Cristine",middleName:null,surname:"Vanz Borges",slug:"cristine-vanz-borges",fullName:"Cristine Vanz Borges"},{id:"194003",title:"Ph.D.",name:"Igor Otavio",middleName:null,surname:"Minatel",slug:"igor-otavio-minatel",fullName:"Igor Otavio Minatel"},{id:"194004",title:"Dr.",name:"Maria Izabela",middleName:null,surname:"Ferreira",slug:"maria-izabela-ferreira",fullName:"Maria Izabela Ferreira"},{id:"194005",title:"Prof.",name:"Hector",middleName:null,surname:"Gomez-Gomez",slug:"hector-gomez-gomez",fullName:"Hector Gomez-Gomez"},{id:"194006",title:"Prof.",name:"Chung-Yen Oliver",middleName:null,surname:"Chen",slug:"chung-yen-oliver-chen",fullName:"Chung-Yen Oliver Chen"}]},{id:"49666",title:"Crystalline Nanocellulose — Preparation, Modification, and Properties",slug:"crystalline-nanocellulose-preparation-modification-and-properties",totalDownloads:9531,totalCrossrefCites:36,totalDimensionsCites:67,book:{slug:"cellulose-fundamental-aspects-and-current-trends",title:"Cellulose",fullTitle:"Cellulose - Fundamental Aspects and Current Trends"},signatures:"Mikaela Börjesson and Gunnar Westman",authors:[{id:"142372",title:"Prof.",name:"Gunnar",middleName:null,surname:"Westman",slug:"gunnar-westman",fullName:"Gunnar Westman"},{id:"174946",title:"MSc.",name:"Mikaela",middleName:null,surname:"Borjesson",slug:"mikaela-borjesson",fullName:"Mikaela Borjesson"}]},{id:"55931",title:"A Focus on Aflatoxin in Feedstuffs: New Developments in Analysis and Detection, Feed Composition Affecting Toxin Contamination, and Interdisciplinary Approaches to Mitigate It",slug:"a-focus-on-aflatoxin-in-feedstuffs-new-developments-in-analysis-and-detection-feed-composition-affec",totalDownloads:1439,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"aflatoxin-control-analysis-detection-and-health-risks",title:"Aflatoxin",fullTitle:"Aflatoxin - Control, Analysis, Detection and Health Risks"},signatures:"Fabio Granados-Chinchilla",authors:[{id:"178287",title:"B.Sc.",name:"Fabio",middleName:null,surname:"Granados",slug:"fabio-granados",fullName:"Fabio Granados"},{id:"190722",title:"Dr.",name:"Rebeca",middleName:null,surname:"Zamora",slug:"rebeca-zamora",fullName:"Rebeca Zamora"},{id:"201855",title:"Dr.",name:"Andrea",middleName:null,surname:"Molina",slug:"andrea-molina",fullName:"Andrea Molina"}]},{id:"56001",title:"A Focus on Aflatoxins in Feedstuffs: Levels of Contamination, Prevalence, Control Strategies, and Impacts on Animal Health",slug:"a-focus-on-aflatoxins-in-feedstuffs-levels-of-contamination-prevalence-control-strategies-and-impact",totalDownloads:2542,totalCrossrefCites:5,totalDimensionsCites:8,book:{slug:"aflatoxin-control-analysis-detection-and-health-risks",title:"Aflatoxin",fullTitle:"Aflatoxin - Control, Analysis, Detection and Health Risks"},signatures:"Andrea Molina Alvarado, Rebeca Zamora-Sanabria and Fabio\nGranados-Chinchilla",authors:[{id:"178287",title:"B.Sc.",name:"Fabio",middleName:null,surname:"Granados",slug:"fabio-granados",fullName:"Fabio Granados"}]},{id:"53973",title:"Phenolic Compounds in Water: Sources, Reactivity, Toxicity and Treatment Methods",slug:"phenolic-compounds-in-water-sources-reactivity-toxicity-and-treatment-methods",totalDownloads:5514,totalCrossrefCites:30,totalDimensionsCites:67,book:{slug:"phenolic-compounds-natural-sources-importance-and-applications",title:"Phenolic Compounds",fullTitle:"Phenolic Compounds - Natural Sources, Importance and Applications"},signatures:"William W. Anku, Messai A. Mamo and Penny P. Govender",authors:[{id:"195237",title:"Dr.",name:"Messai",middleName:"A.",surname:"Mamo",slug:"messai-mamo",fullName:"Messai Mamo"},{id:"196465",title:"Dr.",name:"William",middleName:"Wilson",surname:"Anku",slug:"william-anku",fullName:"William Anku"},{id:"196466",title:"Dr.",name:"Penny",middleName:null,surname:"Govender",slug:"penny-govender",fullName:"Penny Govender"}]},{id:"40591",title:"Exopolysaccharides of the Biofilm Matrix: A Complex Biophysical World",slug:"exopolysaccharides-of-the-biofilm-matrix-a-complex-biophysical-world",totalDownloads:7651,totalCrossrefCites:14,totalDimensionsCites:41,book:{slug:"the-complex-world-of-polysaccharides",title:"The Complex World of Polysaccharides",fullTitle:"The Complex World of Polysaccharides"},signatures:"Pierre Lembre, Cécile Lorentz and Patrick Di Martino",authors:[{id:"141871",title:"Prof.",name:"Patrick",middleName:null,surname:"Di Martino",slug:"patrick-di-martino",fullName:"Patrick Di Martino"},{id:"142551",title:"Mr.",name:"Pierre",middleName:null,surname:"Lembre",slug:"pierre-lembre",fullName:"Pierre Lembre"},{id:"142552",title:"Dr.",name:"Cécile",middleName:null,surname:"Lorentz",slug:"cecile-lorentz",fullName:"Cécile Lorentz"}]},{id:"53528",title:"Anthocyanin Pigments: Importance, Sample Preparation and Extraction",slug:"anthocyanin-pigments-importance-sample-preparation-and-extraction",totalDownloads:6155,totalCrossrefCites:6,totalDimensionsCites:16,book:{slug:"phenolic-compounds-natural-sources-importance-and-applications",title:"Phenolic Compounds",fullTitle:"Phenolic Compounds - Natural Sources, Importance and Applications"},signatures:"Julia Martín, María José Navas, Ana María Jiménez-Moreno and\nAgustín G. Asuero",authors:[{id:"190870",title:"Dr.",name:"Agustín G.",middleName:null,surname:"Asuero",slug:"agustin-g.-asuero",fullName:"Agustín G. Asuero"},{id:"190871",title:"Dr.",name:"Julia",middleName:null,surname:"Martín",slug:"julia-martin",fullName:"Julia Martín"},{id:"195470",title:"Dr.",name:"Mª José",middleName:null,surname:"Navas",slug:"ma-jose-navas",fullName:"Mª José Navas"},{id:"195471",title:"Dr.",name:"Ana María",middleName:null,surname:"Jiménez",slug:"ana-maria-jimenez",fullName:"Ana María Jiménez"}]},{id:"56996",title:"Application of Mass Spectroscopy in Pharmaceutical and Biomedical Analysis",slug:"application-of-mass-spectroscopy-in-pharmaceutical-and-biomedical-analysis",totalDownloads:3237,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"spectroscopic-analyses-developments-and-applications",title:"Spectroscopic Analyses",fullTitle:"Spectroscopic Analyses - Developments and Applications"},signatures:"Uttam Singh Baghel, Atamjit Singh, Deeksha Singh and Manish\nSinha",authors:[{id:"204152",title:"Dr.",name:"Uttam",middleName:"Singh",surname:"Baghel",slug:"uttam-baghel",fullName:"Uttam Baghel"},{id:"204438",title:"Mrs.",name:"Deeksha",middleName:null,surname:"Singh",slug:"deeksha-singh",fullName:"Deeksha Singh"},{id:"204439",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh"},{id:"207608",title:"Dr.",name:"Manish",middleName:null,surname:"Sinha",slug:"manish-sinha",fullName:"Manish Sinha"}]},{id:"66517",title:"Microbial Cellulases: An Overview and Applications",slug:"microbial-cellulases-an-overview-and-applications",totalDownloads:1946,totalCrossrefCites:7,totalDimensionsCites:22,book:{slug:"cellulose",title:"Cellulose",fullTitle:"Cellulose"},signatures:"Sandhya Jayasekara and Renuka Ratnayake",authors:null},{id:"66340",title:"Biological Degradation of Polymers in the Environment",slug:"biological-degradation-of-polymers-in-the-environment",totalDownloads:2009,totalCrossrefCites:3,totalDimensionsCites:9,book:{slug:"plastics-in-the-environment",title:"Plastics in the Environment",fullTitle:"Plastics in the Environment"},signatures:"John A. Glaser",authors:null}],onlineFirstChaptersFilter:{topicSlug:"organic-chemistry",limit:3,offset:0},onlineFirstChaptersCollection:[{id:"65119",title:"Introductory Chapter: Polyaniline - From Synthesis to Practical Applications",slug:"introductory-chapter-polyaniline-from-synthesis-to-practical-applications",totalDownloads:696,totalDimensionsCites:0,doi:"10.5772/intechopen.83397",book:{title:"Polyaniline - From Synthesis to Practical Applications"},signatures:"Florin Nastase"}],onlineFirstChaptersTotal:1},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/209655/adrieli-alves-pereira-radaelli",hash:"",query:{},params:{id:"209655",slug:"adrieli-alves-pereira-radaelli"},fullPath:"/profiles/209655/adrieli-alves-pereira-radaelli",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()