The objective of this chapter is to provide a concise overview of lignin composition and structure in different species and materials (wood, barks and nonwood plants). It includes a brief review on the lignin precursors and their polymerization as well as of the analytical tools used for lignin characterization from wet chemical to spectroscopic methods. Wood of gymnosperms is characterized by high lignin content (25–35%) and a HG-type of lignin with more guaiacyl (G) units and a small portion of p-hydroxyphenyl (H) units. Wood of angiosperms has a lignin content of 15–28%, with a GS-lignin having different proportions of syringyl (S) units. Nonwoody monocotyledon species have different lignin content (9–20%) and a HGS type of lignin, characterized by a high proportion of H units. Bark lignin content ranges from 13 to 43% and is of HGS-type with species-specific composition and different in the bark components, phloem and cork. Lignin composition and macromolecular structure are key issues to understand the properties of lignocellulosic materials and to design a lignin-based pathway within biomass biorefineries. The available information on lignin composition is still limited to a few species and plant components. This is certainly an area where more research is needed.
Part of the book: Lignin
Analytical pyrolysis is used to chemically study complex molecular materials and is applied in a wide range of fields. Pyrolysis is a thermochemical process associated to the breaking of chemical bonds using thermal energy, transforming a nonvolatile compound into a volatile degradation mixture. This chapter refers to analytical pyrolysis of lignocellulosic materials, i.e., when pyrolysis is used for chemical characterization, applied to samples with small particle sizes, at 500–650°C, and with short residence times. The reactions that occur during pyrolysis of the structural components are discussed regarding the mechanisms and the pyrolysis products obtained from cellulose, hemicelluloses, and lignin. A compilation of data is made on the characterization of lignocellulosic materials using Py-GC/FID(MS) or Py-GC/MS as analytical tools including woods and barks of several species. The pyrogram profiles and important parameters on lignin chemical composition such as the H:G:S relation and the S/G ratio are summarized. Analytical pyrolysis is a versatile methodology that may be applied to characterize the lignin directly on the lignocellulosic material or after isolation from the cell wall matrix (e.g., as MWL or dioxane lignin) or from pulps or spent liquors. It is therefore an excellent tool to study lignin compositional variability in different materials and along various processing pathways.
Part of the book: Analytical Pyrolysis
Cork is a world-renowned material used for sealing wine bottles. Cork is a cellular material with chemical inertia and a set of physical and mechanical properties that provide an outstanding performance for in-bottle wine aging, by combining minute oxygen transfer with sealing, durability, and chemical stability, for example, inertness toward the liquid content and along storage, preventing sensory deterioration. Cork is a natural material, one of the most important nontimber forest products, that is associated with sustainability and ecosystem preservation. The cork industry has steadily improved production processes and adopted innovative technologies, quality control measures, and certification, regarding prevention of potential wine taints and off-flavors. This chapter makes a review of cork stoppers, their properties, and quality and role for wine bottle aging, tackling their importance for wine aroma and off-flavors while presenting the latest advances in cork research.
Part of the book: Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging