Magnetic domain memory (MDM) is the ability exhibited by certain magnetic materials to reproduce the exact same nanoscale magnetic domain pattern, even after it has been completely erased by an external magnetic field. In this chapter, we review the various circumstances under which this unusual phenomenon occurs. We explain how partial MDM was first observed in rough Co/Pt multilayers with perpendicular magnetization as a result of structural defects. We then show how 100 % MDM was achieved, even in smooth ferromagnetic films, by coupling Co/Pd multilayers to an antiferromagnetic IrMn template via exchange interactions. We describe how high MDM, extending throughout nearly the entirety of the magnetization process, is obtained when zero-field-cooling the material below its blocking temperature where exchange couplings occur. We also review the persistence of MDM through field cycling and while warming the material all the way up to the blocking temperature. Additionally, we discuss the spatial dependence of MDM, highlighting intriguing oscillatory behaviors suggesting magnetic correlations and rotational symmetries at the nanoscopic scales. Finally, we review the dependence of MDM on cooling conditions, revealing how MDM can be fully controlled, turned on and off, by adjusting the magnitude of the cooling field.
Part of the book: Magnetism and Magnetic Materials