The number of CKD sufferers that require renal replacement techniques (RRTs) is increasing. The severity of cardiovascular disease (CVD) is disproportionate in these kinds of patients and contributes considerably to mortality in CKD patients. We evaluated the association between oxidative DNA damage, antioxidant activity and vascular calcification (VC) in CKD. An analytical cross-sectional study was performed. Two simple plaques were taken for each patient (pelvis-hip, and hands-wrists). The presence of VC was scored as presence (1) and absence (0). Oxidative stress was determined by activity of catalase, superoxide dismutase (SOD) and oxidative DNA damage by determination of 8-OHdG marker. Eighty-one patients were included. The RRT type was similar for hemodialysis (HD) and peritoneal dialysis (PD). Thirty-eight patients (47%) presented VC (p < 0.01); in 61%, the VC was severe (≥3 points). VC prevalence in women was significantly higher, (67%) (p < 0.001), and (29%) men. Sixty four percent of the patients submitted to HD presented VC and 27% to PD (p < 0.001). The activity of the catalase enzyme was significantly decreased in CKD vs. the healthy control (HC) (p < 0.0001). The oxidative DNA damage in CKD was greater vs. HC (p < 0.0001). In conclusion, the VC was frequent (47%) in CKD, and decreased catalase activity and greater oxidative DNA damage.
Part of the book: Free Radicals, Antioxidants and Diseases