Measurement of thicknesses (T1 and T2) and internal (T3) and external (T4) diameters of a small glass bottle when rotating on its axis of symmetry.
\r\n\tWe dedicated a chapter to the principles of chest drainage which may be of cross-specialty interest from A&E to post-surgical procedures.
\r\n\r\n\tThe broad spectrum of the diseases of the pleura, which are to be considered heterogeneous by definition, may affect patients of different ages, require different treatment strategies, and have different outcomes (e.g. pneumothorax, mesothelioma).
\r\n\r\n\tIn this book, we will discuss most of the pleural diseases but we opted to analyze them from the surgical point of view because of the complexity of diagnosis, treatment, and care of such patients, which may be challenging but critically important.
",isbn:"978-1-83969-693-0",printIsbn:"978-1-83969-692-3",pdfIsbn:"978-1-83969-694-7",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"679c752debe8c1edd8a489cc9731485e",bookSignature:"Dr. Alberto Sandri",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11045.jpg",keywords:"Pleural Ultrasonography, Pleural CT-scan, Chest Tubes, Small-bore Catheters, Pneumothorax, Air-leak, Empyema, Pleural Surgery, VATS, Pleurectomy, Bronchopleural Fistula, Pneumonectomy",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 12th 2021",dateEndSecondStepPublish:"April 9th 2021",dateEndThirdStepPublish:"June 8th 2021",dateEndFourthStepPublish:"August 27th 2021",dateEndFifthStepPublish:"October 26th 2021",remainingDaysToSecondStep:"8 days",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Alberto Sandri is qualified in Medicine from the University of Torino. During his fourth year of specialty, Dr. Sandri completed a fellowship in minimally invasive thoracic surgery at St. James's University Teaching Hospital in Leeds, the UK with a significant focus on minimally invasive thoracic surgery. In the years following his specialty, Dr. Sandri worked at the European Institute of Oncology (IEO) in Milan and at Oxford University Hospitals NHS Foundation Trust, Oxford, UK.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"50811",title:"Dr.",name:"Alberto",middleName:null,surname:"Sandri",slug:"alberto-sandri",fullName:"Alberto Sandri",profilePictureURL:"https://mts.intechopen.com/storage/users/50811/images/system/50811.jpg",biography:"Thoracic Surgery Unit, Department of Oncology, San Luigi Gonzaga Hospital, Torino, Italy\nDr. Alberto Sandri is a Thoracic Surgeon at San Luigi Gonzaga Hospital, Orbassano, Torino, Italy since 2018 where he is in charge of Minimally Invasive Thoracic Surgery (uVATS).\nHe qualified in Medicine from the University of Torino in 2010. He completed his speciality in thoracic surgery at the AUO Città della Scienza e della Salute in Torino in 2016 with first class honours. During his fourth year of speciality Dr. Sandri completed a fellowship in minimally invasive thoracic surgery at St. James's University Teaching Hospital in Leeds, UK with a significant focus in minimally invasive thoracic surgery. In the years following his speciality, Dr. Sandri worked at the European Instituite of Oncology (IEO) in Milan and at Oxford University Hospitals NHS Foundation Trust, Oxford, UK.\nSince September 2018 Dr. Sandri is a consultant thoracic surgeon at San Luigi Gonzaga Hospital in Orbassano Torino, His main fields of interests are Minimally Invasive Thoracic Surgery; Uniportal VATS Lobectomy and Segmentectomy; Thoracic Oncology; Mediastinal tumours and VATS thymectomy for Myasthenia Gravis.\nHe has published more than 50 scientific articles, is author and co-author in 10+ book chapters and made many national and international presentations.\n\nhttps://orcid.org/0000-0001-6421-2270",institutionString:"Ospedale San Luigi Gonzaga",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Ospedale San Luigi Gonzaga",institutionURL:null,country:{name:"Italy"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"280415",firstName:"Josip",lastName:"Knapic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/280415/images/8050_n.jpg",email:"josip@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"68213",title:"OCT in Applications That Involve the Measurement of Large Dimensions",doi:"10.5772/intechopen.88186",slug:"oct-in-applications-that-involve-the-measurement-of-large-dimensions",body:'Optical coherence tomography (OCT) is a noninvasive, interferometric technique that provides real-time 3-D images with micrometric resolution and depth of penetration that can range from some millimeters to a few centimeters, depending on the technique employed and the material under study. OCT images provide structural information of a sample, based on backscattered light from different layers of material within it. This technique is considered the optical analogue to ultrasound; however, it achieves a higher resolution using near-infrared wavelengths, at the cost of decreasing depth of penetration.
OCT was developed in the early 1990s for the noninvasive imaging of biological tissue [1, 2]. The first application was in ophthalmology [3] where it has had great development [4, 5, 6], the same as in cardiology [7, 8], where commercial equipment has already been developed. In biomedicine, the use of relatively long-wavelength light allows it to penetrate into the scattering medium.
In the last years, low-coherence interferometric techniques such as OCT have been proposed as a powerful tool for industrial nondestructive testing (NDT), even leading to the development of specific equipment. Among the industrial metrological applications, the following can be mentioned: the measurement of very thin thicknesses in semiconductor wafers [9, 10], the characterization of surfaces [11, 12], the control of thickness in the coating of pills in the pharmaceutical industry [13], and others. OCT systems based on fiber optics are particularly suitable for use in industrial [14], hostile (electromagnetic interference, radioactive, cryogenic, or very high temperatures) [15], or difficult-to-access environments [16]. Moreover, optical fiber-based OCT devices can take the advantage of beam stability and lower price of IR components used in optical communications. However, applications such as 3-D inspection in large parts (greater than a centimeter) constitute a little explored area, since its implementation still has some technological limitations [17]. When using time-domain OCT, the interference signal is generated from the displacement of a mirror in the reference arm of the interferometer to equalize the sample distances. For measuring great dimensions, it implies the use of very expensive, extremely accurate, and with high resolution moving mechanical systems. On the other hand, spectral or Fourier-domain OCT allows the design of an interferometric system more robust, compact, and faster [18], thereby increasing the mechanical stability and reducing the sensitivity to vibrations. However, since it uses a spectrometer to detect the interference signal, its spectral resolution limits the measuring range below 1 cm. The SS-OCT technique offers an interesting alternative provided by the use of tunable light sources [19, 20, 21] such as fiber-optic lasers with variable spacing Fabry-Perot filters or electro-optical modulators [22] or tunable semiconductor lasers by intracavity refractive index change or by the use of microelectromechanical system (MEMS) cavities [23]. In general, in these systems, it is possible to achieve a laser linewidth narrower than the resolutions typically obtained by a spectrometer. Consequently, the depth range, in this case given by the instantaneous linewidth of the laser (coherence length), can reach values in the order of 1 cm or more and greatly expand the potential industrial applications [24, 25, 26, 27, 28]. In this case, the detection system is a photodetector in conjunction with a digitizer or oscilloscope, simplifying the system. In general, scanning sources have the inherent problem of not being able to provide accurate information about the correspondence between the wavelength, the signal voltage applied to the tuning device, and the temporary location within each sweep [29]. Some solutions have been proposed [30, 31], but in general they are complex and expensive.
In this context, this chapter reports and discusses a simple and self-calibrated fiber-optic interferometric system based on the swept source optical coherence tomography (SS-OCT) technique, especially suitable when the measurement of large dimensions (several centimeters) is necessary as those ones involved in industrial metrological applications [32, 33, 34, 35, 36, 37]. Its constituent parts are analyzed, and several applications are shown, including the measurement of several centimeter distances, characterization of multilayer structures, simultaneous determination of thickness of the wall, internal and external diameter of glass containers, thickness measurements in opaque samples (which allows the use of the system to perform profilometry of mechanical parts) or where the refractive index is unknown, etc. On the other hand, the use of a set of fiber Bragg gratings to relate the emission wavelength of the tunable laser source and the temporary position in each sweep is discussed. The factors that determine the resolution and the maximum range of distances to be measured are presented. It is shown that with this system it is possible to determine distances of up to 17 cm with a spatial resolution in the order of 21 microns, which constitutes a very encouraging scheme for the dimensional inspection applications mentioned before.
The measuring scheme used in this work is essentially composed of the stages or subsystems indicated in Figure 1. The light source, the self-calibration system, and the interferometric system used for the different applications were implemented using monomode optical fiber operating in the 1550 nm spectral region. In the following subsections, each of them will be discussed in detail.
Block diagram of the measuring system.
Basically, an erbium-doped fiber laser tunable in the 1550 nm spectral region was used as the light source. It has sufficient coherence length to allow the formation of great depth images. A passive self-calibration stage based on fiber Bragg gratings allows counteracting the possible variation in the scanning speed of the laser caused by the tuner module, in addition to linking the emission wavelength of the laser and the temporal position in each sweep. The interferometric system consists of a Michelson-type arrangement for the measurement of distances and transparent object thickness or a ring interferometer with a Sagnac-Michelson configuration for the measurement of opaque samples (or with unknown refractive index). The temporal distribution of the interference signals was obtained using an InGaAs photodetector with 2 GHz bandwidth connected to a digital oscilloscope, although it can be replaced by any 200 MHz bandwidth DAC system and two acquisition channels. As will be explained in detail later, in order to carry out the processing of the detected signal while the light source sweeps in wavelength, the Fourier transform was applied, and the position of the interfering peaks allowed obtaining the desired distance or thickness.
The light source was a continuous wave emission erbium-doped fiber laser, tunable in a spectral range from about 1520 to 1570 nm using a variable spaced Fabry-Perot filter (Micron Optics, FFP-TF2) that has a free spectral range (FSR) of 60 nm and a bandwidth of 60 pm. Sweeping is achieved by applying a periodical signal like a triangular voltage waveform to the filter cavity PZT actuator [38]. By varying the parameters (amplitude and offset) of this signal, it is possible to modify the tuning range of the fiber laser and consequently the value of the maximum measurable distance. The sweep frequency could be varied up to 100 Hz. The erbium-doped fiber was pumped by a semiconductor laser diode emitting at 980 nm. The length of the doped fiber was selected taking into account a trade-off between spectral emission flatness and output power. The fiber laser output beam was extracted from the ring cavity through the 10% port of a 10/90 optical coupler. Figure 2 shows the laser emission as it sweeps the tuning range, recorded by an optical spectrum analyzer (OSA) (Yokogawa, model AQ6370B). Since the acquisition speed of this instrument is much slower than the speed at which the F-P filter can be moved, the OSA records several sweeps of the laser finding it in different spectral positions. One of them is highlighted and the arrows represent the sweeping of the emission. As can be seen, despite the relatively low output power, the fiber laser has a very good S/N ratio. When the laser operates at any fixed wavelength within the tuning range, the emission spectrum has a typical width of 20 pm at 3 dB.
Scanning spectrum of the laser source.
By considering a rectangular spectral profile when the laser source is tuned in the abovementioned range, the maximum theoretical axial resolution (or depth resolution) of the measurement system can reach 21 μm, which is derived from the following expression (Eq. (1)):
where
In applications of low-coherence interferometry by swept source, the linear sampling process of spatial frequency (
With these values of
The error of the frequency
In principle, the number of FBGs to use is a trade-off between obtaining the best calibration curve to minimize adjustment errors and generating the least possible deterioration in the detected signal due to insertion losses and noise caused by backward reflections.
As it is known, FBGs are sensitive to thermal changes, so variations in the temperature of the environment induce changes in their spectral positions. However, since all the gratings that integrate our calibration system are recorded in the same type of optical fiber and all of them experience the same temperature change, this will not generate measurement errors of the OCT system. This is because to determine the value of the sampling frequency, it is only relevant that the value Δ
The configuration used for the measurement of distances or thicknesses of transparent samples consists of a Milchelson-type interferometric system that is shown schematically in Figure 3.
Basic configuration of the Michelson-type interferometer. BS, beam splitter; RA, reference arm; SA, sample arm;
If the light source has a spectral profile
where
If a sample with multiple interfaces (
The first term of Eq. (7) is the intensity reflected in the mirror of the reference arm, and the second is the sum of the intensities reflected in the different interfaces of the sample. These two terms are often referred to as “constant” or “DC” components. The first one generates the largest contribution to the detected intensity if the reflectivity of the reference dominates over the reflectivity of the different layers of the sample. The second sum is called “cross-correlation” for each reflector of the sample, and it depends on both the wave number of the light source and the OPD between the reference arm and the reflector considered in the sample arm. These terms are usually smaller than the DC part. However, the dependence of the square root represents an important logarithmic gain factor over the direct detection of the reflections of the sample. The third sum is called “autocorrelation” and represents the interference that occurs between the different interfaces present in the sample. Since the autocorrelation terms depend linearly on the reflectivity of each layer of the sample which cannot be controlled, a way to manage their intensities is the appropriate selection of the reference reflectivity. In the last two sums, the direct interactions of each interface with the reference arm (
As regards the fiber-optic implementation of the aforementioned interferometric system, two variants were used, which can be seen in Figure 4. In the case of distance measurement, the light beam is divided by a fiber-optic coupler (FC 50/50). One of the beams is directed to the reference surface (a mirror) and the other to the sample. After being reflected in each of these surfaces, both beams are directed to the detection system, where their superposition generates the interference signal. From its processing, the optical path difference (OPD) between both arms is obtained and, consequently, the unknown distance. When it is desired to measure transparent or semitransparent samples, light is reflected from subsurface structures within it (e.g., from both sides of the sample if its thickness is being measured or from the different interfaces if it is a multilayer sample), so it is possible to perform a tomography measurement.
Detailed setup employed to measure distances and thicknesses of multilayer transparent samples. PS, positioning system; C, collimator; FC, fiber coupler.
For the measurement of opaque samples, it is necessary to modify the interferometric system and use a configuration based on a combination of the Michelson interferometer with the Sagnac interferometer. This configuration allows the determination of thicknesses of opaque samples or whose refractive index is unknown, as well as the surface characterization of nontransparent objects (profilometry of mechanical parts).
Figure 5 shows the configuration of the Sagnac-Michelson interferometer in optical fiber, where E1 is the mirror of the reference arm, while BS1 and BS2 are beam splitters implemented with fused fiber-optic couplers with a coupling ratio 50:50. The beams that illuminate both the mirror in the reference arm and both sides of the sample are collimated by means of two single-mode GRIN fiber-optic collimators (Col.). The ring that forms at the output of BS2 with the beams that illuminate the sample forms the Sagnac configuration.
Sagnac-Michelson interferometer implemented in optical fiber.
The path performed by the light beam can be described as follows. After the first splitter (BS1), one beam travels toward the reference (E1) and the other toward the second splitter (BS2), where it is separated again into two beams, each of which illuminates opposite faces of the sample. Upon reaching the sample (M), the beams are reflected and perform the reverse way. The reflections on the three surfaces, the mirror E1 and the two faces of the sample C1 and C2, are superimposed on the detector and produce the interference signal containing the information of interest (the thickness of the sample in the direction of illumination).
The optical path differences between the distances traveled by the different light beams generate the modulations in the interference signal, which are analyzed in the Fourier space. From this analysis, the OPDs can be determined in each case, obtaining the position of the maximum of the “interference peak” in the Fourier transform.
We will call
By operating with the above equations, it is possible to determine the thickness of the sample from
From this last expression, it is possible to determine the thickness of the sample under study. It is interesting to note that it was not necessary to make considerations regarding the lengths that the interferometer branches should have or the position of the sample so that Eq. (12) is general and can be used in any condition.
The temporal distribution of the optical intensity corresponding to the interference signal was obtained using an InGaAs photodetector connected to a digital oscilloscope. Figure 6 shows a typical record of (a) a triangular voltage signal used to tune the fiber laser, (b) an interferometric signal that contains the dimensional information of the sample, and (c) the calibration signal with FBG attenuation peaks used to relate the emission wavelength of the source and the temporal position in each sweep.
Typical records obtained with an oscilloscope when measuring the thickness of a sample.
Basically, the Fourier transform was then applied to the detected signal, and the position of the interference peak allowed obtaining the desired distance or thickness. As was mentioned before, the interference signal is affected by uncertainties that arise from the nonlinear movement of the PZT used to sweep the laser. To overcome this problem, fiber Bragg gratings of known spectral positions were used, which allowed transforming the temporal axis into an axis in wave number (
where
To illustrate the procedure used, the graphs obtained by measuring a thickness of
Interference signal I(k).
The Fourier transform of this signal can be expressed as indicated in Eq. (14), where it can be seen that the spectral profile of the light source is convolved with the deltas coming from the DC term and the interfering term of Eq. (13):
Then, the signal was passed through a high-pass filter that eliminates the DC component, obtaining a signal as indicated in Figure 8, which can be expressed as
Interference signal after the high-pass filter.
It is evident that the amplitude depends on the spectral profile of the light source (
By making the square sum of both, Eq. (17) is obtained:
Then, just by calculating the square root of the sum of the squares of the real and imaginary parts, it is possible to eliminate the spectrum of the light source (Eq. (18)):
When using this simple method to obtain
Based on this improvement, it is possible to reduce the width at half height by ∼40%, improving the uncertainty in detecting the position of the maximum at the peak of the Fourier transform. This improvement is exemplified in Figure 9, where graph (a) shows the shape of the peak without performing the Hilbert transform and graph (b) after applying that transform.
Fourier transforms of (a) I′(k) and (b) I″(k).
Finally, and to improve the S/N ratio, the autocorrelation of
In this section, different experimental results that demonstrate the potential of the proposed scheme for quality control in industrial applications will be presented [32, 33].
To apply the proposed system to long-distance measurement, a Michelson-type interferometer was mounted as shown in Figure 10. The illumination beam was divided by a 50:50 single-mode fiber coupler, and its outputs were collimated to impinge both on the sample (moving mirror M1) and on the mirror of the reference arm (M2). In order to determine the measuring range of the system, the sample mirror was mounted on a rod with preset positions separated 5 cm, while the reference mirror was placed on a translation stage with a micrometric screw of 5 cm travel. Then, by combining the displacements of both mirrors, it was possible to obtain a continuous variation of the distance to be measured, reaching a possible measuring range of about 20 cm.
Experimental setup for long-distance measurement.
Several distances within the measuring range were determined, and it was verified that the system was able to measure up to 17.24 cm. When processing the interference signals using the Hilbert-Fourier transform, it was observed that the peaks lost intensity as the OPD increased. This was due to the divergence of the collimators used in the setup and the coherence length of the light source. The drop in the visibility of the processed signal can be observed in Figure 11 where, as the OPD grows, the amplitude of the interference peak decreases, which produces the degradation of the signal-to-noise ratio and limits the maximum measurable distance to the value previously mentioned.
Normalized amplitude of the Fourier peaks corresponding to different OPDs.
The measurement depth, that is, the theoretical maximum distance that the system can measure (Δ
where
The system described in this chapter was used to measure the thickness of the walls and distance between them for different transparent and semitransparent containers, of different sizes, colors, and shapes, as well as to dimensionally characterize multilayer transparent objects in order to expand the possible applications.
The setup used corresponds to a single-arm Michelson interferometer. In this type of configuration, the interference signal is obtained from the superposition of the reflections in each of the interfaces present in the sample, which makes it possible to eliminate errors due to reference vibrations and a better use of the light source. Initially, measurements were made on rectangular glass cuvettes and on round glass containers (e.g., ampoules and jars used in the pharmaceutical industry and glass bottles used in the beverage industry), seeking to determine the thicknesses of the walls, the internal and external dimensions or diameters, and the shape in each one. In order to measure cylindrical containers, the samples were mounted on a rotating platform that allows measurements to be taken in different sectors. This type of measurements can be used to perform quality control during the manufacturing process of such containers. In Figure 12, a glass jar or cuvette is shown schematically, as well as the dimensions to be measured and the beams reflected in the different interfaces.
Generic scheme of a container showing the beams reflected on each interface and the dimensions to be measured.
If we consider the beams reflected in each interface of the container, 6 interference signals will be generated that will give rise to the corresponding Fourier transform peaks, from which it will be possible to obtain the information of the dimensional parameters of the mentioned container (Figure 13). If we call
Fourier transform of the interference signal obtained when measuring a small glass bottle.
If we consider the glass container shown in Figure 12, the refractive indexes will be those of glass and air (
From these equations it is possible to obtain the dimensions of the container as
As an example of the different measurements made in this type of samples, Figure 13 shows results obtained when measuring a small glass bottle.
As can be seen,
Angular position | |||
---|---|---|---|
0° | 0.001178 | 0.021273 | 0.023598 |
45° | 0.001146 | 0.021313 | 0.023601 |
90° | 0.001178 | 0.021301 | 0.023644 |
135° | 0.001142 | 0.021352 | 0.023639 |
180° | 0.001179 | 0.021316 | 0.023642 |
225° | 0.001138 | 0.021358 | 0.023656 |
270° | 0.001168 | 0.021334 | 0.023675 |
315° | 0.001143 | 0.021271 | 0.023554 |
360° | 0.001143 | 0.021271 | 0.023554 |
Measurement of thicknesses (T1 and T2) and internal (T3) and external (T4) diameters of a small glass bottle when rotating on its axis of symmetry.
Other samples like glass ampoules, jars, and beakers like those used in laboratory up to 5 cm external diameter were measured.
Subsequently, in order to expand the possible applications of the developed system, different multilayer samples formed by glass plates separated by layers of air were measured. The objective was to determine the thickness of each of the different layers as well as the total dimensions of the sample. This type of measurement would allow, for example, the determination of the thickness of internal partitions in containers, helping to carry out quality control during the manufacturing processes. Two samples were measured, one consisting of three glass thicknesses and two air thicknesses, and another formed by four glass walls separated by three air spaces. The latter is schematized in Figure 14, where the thicknesses of the different layers (Gi and Ai) are indicated, as well as the intensities reflected in the different interfaces (Ii). In this configuration, eight reflections are produced and combined to generate the different peaks in the Fourier transform of the interference signal. Figure 15 shows the experimental result obtained when measuring this multilayer object. There, only those peaks that provide relevant information to directly determine the searched dimensions were labeled. The other peaks correspond to different combinations between the thicknesses analyzed. Besides, higher amplitude peaks indicate that for this sample there is more than one interface with the same thickness. Simulations performed with the values of the thicknesses mechanically measured showed the same number of interference peaks located in the same spatial positions, so it is evident that this system is capable of characterizing large multilayer samples.
Multilayer sample consisting of four glass walls separated by layers of air.
FFT of the interference signal obtained when measuring a sample of seven layers.
As discussed in Section 2.3.2, the interferometric system was slightly modified to measure opaque samples. The configuration used is shown schematically in Figure 16.
Experimental setup used to measure opaque samples.
Eight opaque samples (aluminum cylinders) of different thicknesses between 5 and 50 mm were measured. For each of the samples, the following were recorded: (1) the interferometric signal obtained with the reference and the Sagnac ring without the object and (2) the interferometric signal with the object placed inside the Sagnac ring and the reference. This allows to obtain the OPDs corresponding to the peaks
Fourier transform of the interference signal obtained when measuring an opaque sample of 30.44 mm thickness.
This chapter discusses the development of a simple, self-calibrated system, based on the SS-OCT technique, and its metrological applications in nonmedical areas where the determination of large dimensions (several centimeters) is required. This type of measurement is of great interest, for example, to carry out quality control in manufacturing processes. The developed system allows not only tomography of transparent or semitransparent multilayer samples but also the measurement of thicknesses of opaque mechanical parts. The implemented scheme allowed to measure distances somewhat greater than 17 cm with an axial resolution of 21 μm, which extends the measurement range obtainable with the usual OCT schemes while maintaining a good axial resolution. This is important for applications in areas of metrology and nondestructive testing in the industrial field. The system uses a laser source of ∼20 pm bandwidth tunable in the spectral region of 1550 nm, which has sufficiently long coherence length to enable long depth range imaging. The design includes an online, passive self-calibration stage implemented with a set of fiber Bragg gratings. The calibration system provides the correspondence between the wavelength and the temporary location of the laser emission within each sweep, which allows to correct, in a simple way and without additional electronic devices, possible indeterminations in the relation between both parameters. It was verified that the possible temperature changes do not affect the calibration of the system as long as all the fiber gratings experience the same thermal variation. Using schemes as the proposed one, progress can be made in little explored applications of reflectometry, such as in the determination of dimensional parameters of mechanical parts (including profilometry of surfaces or parts) and tomography for the study of transparent and semitransparent materials (glass, plastics, polymers, etc.) of large dimensions.
This work has been funded by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (PIP 112-201101-00397), Facultad de Ingeniería de la Universidad Nacional de la Plata (Proyecto I169), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires CIC (Resoluciones N° 1266/14, 602/16, 195/17), and Facultad Regional Delta, Universidad Tecnológica Nacional (PID 2221), Argentina.
Mycotoxins are secondary toxic metabolites with a wide variety of chemical structures synthesized by fungi (mold) [1]. Mycotoxins are thought to be a kind of “chemical defense system” to protect mold from insects, microorganisms, nematodes, grazing animals, and humans [2]. Molds reproduce by means of spores, and their small molecular weight spores are easily disseminated to environment by wind. They cannot be affected by the adverse environmental conditions and can be present in the latent state for long periods. Moreover, when the environmental conditions are appropriate, spores return to vegetative form and can form into new mold colonies. Agricultural products can be contaminated with mold in pre-harvest via insect and bird damage and harsh weather condition damage such as hail damage. In addition, selected harvesting method is one of the most important reasons in contamination of the mold to the products. Improper storage, transport, and marketing can also cause the mold growth and synthesis of mycotoxins [3].
Mycotoxin can occur in food and agricultural products via many contamination pathways, at any stage of production, processing, transport, and storage (Figure 1) [4]. Factors that affect mold growth and mycotoxin production are temperature, relative humidity, fungicides and/or fertilizers, interaction between the colonizing toxigenic fungal species, type of subtract and nutritional factors, geographical location, genetic requirements, and insect infestation [5, 6].
Factors affecting mycotoxin occurrence in the food and feed chain [
Approximately 400 fungal secondary metabolites are known to be toxic, and one quarter of agricultural products have been reported to be contaminated with mycotoxins in the world [5, 6, 7, 8, 9]. While a type of mold may form more than one mycotoxin, a mycotoxin can be synthesized by many molds. The most common types of mold which are known to produce mycotoxins are
According to the result of many studies in poultry and mammals, mycotoxins can be carcinogenic, mutagenic, teratogenic, hepatotoxic, nephrotoxic, immunosuppressive, and embryotoxic [11]. The phenomenon of toxicity is called mycotoxicosis occurring after consumption of mycotoxin-contaminated product by human and animal [12].
Especially cereals, grains, nuts, oilseeds, fruits, dried fruits, vegetables, cocoa and coffee beans, wine, beer, herbs, and spices are major mycotoxin vectors since they are consumed by a large mass of people and animals [4]. Mycotoxins cause different degrees of toxicity according to exposure time, mycotoxin amount, physiological state, and sensitivity of the organism in humans and animals.
In addition to risk of public health, mycotoxins generate high level of economical loses for food industry due to reduced crop yields, lost trade revenues (local and international), and livestock illnesses [13, 14]. Elimination of mycotoxin is quite though due to resistant to physical, chemical, and biological methods; however, some of the measures described in the following sections may help to prevent mycotoxin. The methods used for mycotoxin determination are chromatography such as high-performance liquid chromatography (HPLC), thin-layer chromatography (TLC), gas chromatography-mass spectrometry (GC-MS), and also enzyme-linked immunosorbent assay (ELISA) technique and biosensor-based screening methods [15]. Detection is complicated due to limitations in analytical methodology [16]. Therefore, prevention of mold contamination and mycotoxin synthesis is essential for food safety in food industry.
According to the Food and Agricultural Organization (FAO), 77 countries have established guidance and regulations on mycotoxin in food and feed to control the level of mycotoxin. On the other hand, 13 countries including African countries still do not have specific regulation for food safety [4].
Ergotism is one of the oldest determined mycotoxicoses (disease) in human and results from consumption of the ergot body in rye or other grains infected by a parasitic fungus of the genus
Mycotoxins can occur in the food in several ways (Figure 1), but technically divided into two groups; first is mold growth as a pathogen plant in field, another one is grow on stored. After plant materials are contaminated with mold spores from soil and air, they easily contaminate other food source, production area, laboratory, and even kitchen of our homes. Certain species of mold are capable of mycotoxin synthesis; therefore, each food contaminated with mold always may not contain mycotoxins. Nevertheless, moldy products are considered to be risky products in terms of mycotoxin.
Mycotoxins appear in almost all kinds of animal feed and products such as wheat bran, noug cake, pea hulls, maize grain, milk and meat, and also human food such as cereal, fruit and vegetables, spice, etc. [5]. Consuming these foods creates serious health risks in human and all animal species. Mycotoxin intake by feed or food causes chronic intoxication rather than acute symptoms. Acute toxicity is observed in high-dose mycotoxin exposure, and symptoms show a rapid effect such as borborygmy, abdominal pain, diarrhea, etc. On the other hand, low-level mycotoxin exposure in long period causes serious impairments in the liver, kidney, and immune system organs and tissues. Therefore, mycotoxin plays a significant role in cancer in these organs [2]. Some important mycotoxin health effects are shown in Figure 2. Toxic effects on humans and animals of important mycotoxins are shown in Table 1 [19].
Aflatoxin (AFL), ochratoxin A (OTA), patulin (PAT), fumonisin (FUM), trichothecenes (TCT), and zearalenone (ZEA) mycotoxin health effects [
Mycotoxins | Genus/species | Major food | Toxic effects and diseases |
---|---|---|---|
Aflatoxin | Cereals, feeds, oilseeds and pulp, coconut | Carcinogenic, hepatotoxicity, teratogenicity, decreasing immune systems, affecting the structure of DNA, hepatitis, bleeding, kidney lesions | |
Fumonisin | Cereals, corn | Encephalomalacia, pulmonary edema, carcinogenic, neurotoxicity, liver damage, heart failure, esophageal cancer in humans | |
Ochratoxin OTA | Cereals, herbs, oil seeds, figs, beef jerky, fruits, and wine | Kidney and liver damage, loss of appetite, nausea, vomiting, suppression of immune system, carcinogenic | |
Patulin | Silage, wheat, feeds, apples, grapes, peaches, pears, apricots, olives, cereals | Neural syndromes, brain hemorrhage, skin lesions, skin cancer, lung, mutagenicity, antibacterial effect | |
Trichothecenes (T2, DON, DAS, HT2) | Cereals, feeds, silage, legumes, fruits, and vegetables | Immune suppression, cytotoxic, skin necrosis, hemorrhage, anemia, granulocytopenia, oral epithelial lesions, GIS lesions, hematopoietic, alimentary toxic aleukia (ATA), hypotension, coagulopathy | |
Zearalenone | Cereals, corn, silage, timothy grass, fodder | Carcinogenic, hormonal imbalance estrogenic effect, reproductive problems, teratogenic |
Name of some important mycotoxin-producing fungi, susceptible foods, and mycotoxin effects on humans and animals [19].
Mycotoxins have caused many serious outbreaks worldwide. There was an outbreak that occurred in 1967, and 26 people were poisoned because of the consumption of moldy rice for up to 3 weeks in Taiwan [21]. An outbreak of aflatoxicosis affecting humans, reported in India, led to the death of 100 people in 1974 [22]. Another outbreak was reported in India in 1995, affecting 1424 people due to sorghum and maize contaminated with fumonisin [23]. During January–June 2004, an aflatoxicosis outbreak in eastern Kenya resulted in 317 cases and 125 deaths [24].
Mycotoxin contamination in foods and fodder has been becoming a global concern day by day. According to Food and Agricultural Organization (FAO) reports, it is estimated that mycotoxin affects nearly 25% of the world’s crop each year and is causing huge agricultural product and industrial losses in billions of dollars [25]. For example, estimated annual loss in the United States is approximately $ 0.5–1.5 billion [19]. The main effects of mycotoxins on national economies can be thought in five ways:
Product yield losses due to toxigenic mold diseases
Decrease in commercial value because of contaminated food and feed
Human and animal health losses due to harmful impacts associated with mycotoxin-contaminated food and fodder consumption
Cost of analysis of mycotoxin
Strategies to control mycotoxin contamination
Economic impacts are felt by agricultural chain such as manufacturer of plant and animal, especially cereal industry, consumers, and briefly all farm-to-fork steps.
Aflatoxins are a group of toxic secondary metabolites of filamentous fungi,
Ochratoxin A (OTA) is a natural mycotoxin produced mainly by fungal type of
Fumonisins are generated by various fungal species such as
The International Agency for Research on Cancer (IARC) identified FB1 as possibly carcinogenic to humans (group 2B). Recent studies reported that FB1 causes an increased prevalence of esophageal and liver cancer in humans [59]. Furthermore, this mycotoxin has been found to have toxic effects against several organs (nervous and cardiovascular systems, liver, lung, kidney) in animals [60]. Fumonisins are largely found in corn and corn-based foods and also FB1 in rice, beer, sorghum, cowpea seeds, triticale, beans, asparagus, and soybeans [61].
Zearalenone (ZEA), known as an estrogenic mycotoxin, is a secondary metabolite produced by
Several in vivo studies found that ZEA disrupts hormonal balance due to its similarity to naturally occurring estrogens [64]. The mycotoxin has high affinity for estrogen receptors, causing reproduction and fertility disorders in mammals [65]. In addition, it is known that progressive exposure to endocrine-modulatory compound has been linked with carcinogenesis in human [64]. According to the European Food Safety Authority (EFSA) report in 2014, the bioavailability of toxin is up to 80% in human and animals such as rats, rabbits, and pigs [66]. Moreover, recent works report ZEA is metabolized in the liver and has shown hepatotoxic, immunotoxic, carcinogenic, and nephrotoxic effect in animal tests [67, 68, 69]. As this mycotoxin possesses such consumer health risks, the European Union (EU) has prescribed the limits of ZEA (20–350 μg/kg) for various processed and unprocessed cereals [66].
Trichothecenes are a large group of mycotoxins produced predominantly by
The mechanism of action of trichothecenes is based on the inhibition of protein synthesis in eukaryotes. This mycotoxin affects peptidyl transferase enzyme binding the 60S ribosomal subunit, thus causing the inhibition of protein translation and ribotoxic stress [75]. Also, Pestka reported these groups of mycotoxins cause immunosuppression or immune stimulation by affecting the leucocytes [76].
The family of trichothecenes has a significant impact on cereal and grain production due to health risk for human consumption, livestock feed, or malting purposes [77, 78]. According to report from the FDA, economic losses associated with mycotoxin ranges from USD 0.5 million to over USD 1.5 billion from aflatoxin (corn and peanuts), fumonisin (corn), and deoxynivalenol (wheat) in the United States. [72]. Hence, control of these mycotoxins is essential for human and animal health and economic reasons.
Deoxynivalenol (DON), known as vomitoxin, is the most commonly detected trichothecenes in grains such as wheat, barley, oats, rye, and corn and less often in rice, sorghum, and triticale [79]. Even though NIV presence of cereals appears generally to be lower than DON [80], it has been reported that the occurrence of NIV in of wheat and barley is as prevalent as that of deoxynivalenol (DON) in Japan [81]. According to animal toxicity studies, NIV shows higher toxicity than DON. The LD50 values for DON and NIV in tests in mice were 78 and 39 mg/kg, respectively, and DON and NIV, similarly to other trichothecenes, show inhibitor effect on cell metabolism such as protein, DNA, and RNA synthesis [82]. In addition, these mycotoxins affect cell division and mitochondrial functions [83, 84, 70]. Both mycotoxins exhibit major symptoms such as abdominal discomfort, diarrhea, vomiting, and inflammation of the throat, weight loss, and anorexia [85].
The World Health Organization (WHO) reported that trichothecenes shows fatal and chronic intoxications on human and livestock and also DON shows teratogenic, neurotoxigenic, and immunosuppressant effects [86].
According to the conducted BIOMIN World Mycotoxin Survey, DON appeared in 81% of livestock feed from 81 countries worldwide followed by fumonisins that were detected in 71% of samples. Therefore, DON is reported as the most common mycotoxin worldwide (https://www.biomin.net/en/biomin-mycotoxin-survey/).
Food safety is a key component in public health issue, and a mycotoxin is a huge food safety risk in developing countries. Prevention is the most important and effective way in reducing fungal growth and mycotoxin production to ensure food safety. The following steps that explain prevention and control of mycotoxin occurrence include good agricultural practices (GAP) in field, control practices of harvesting and storage, physical methods (cleaning, milling, etc.), implementation of biotechnological application, biological control through the use of controlled atmosphere during storage, detoxification/degradation, and fermentation techniques.
Pre-harvesting is considered first and one of the most important stages to prevent mold growth and mycotoxin synthesis. Several strategies are available for the produce of healthy products and reduce the mold formation at pre-harvesting, including selection of plants according to the soil structure and production capacity, use of plant which is resistant to fungi and insects, irrigation time, make fertilization, use of insecticides to prevent insect damage [87].
Harvesting at the appropriate time periods (low moisture and full maturity) is essential for reducing the risk of a mycotoxin contamination since overmaturity creates sensitivity to mold growth. Additionally, suitable harvesting equipment and procedures should be used, and crops should be dried after maturity to both reduce grain moisture to safe levels [88].
The latest technological advances provided new paths in mycotoxin control strategies that include the use of a controlled atmosphere with inhibitory or a protective effect and use of naturally occurring compounds under different conditions and essential oils with antioxidant properties to decrease fungal growth and mycotoxin production in grains during storage [89]. Moreover, these strategies also include using regularly cleaned transport vehicles to prevent cross contamination of products; monitoring of temperature, humidity, aeration and pest infestation periodic during storage [90]; using mold inhibitors (propionic acid) to contaminated food and feed; and application of disinfectant such as sodium hypochlorite to storage area [91].
Some studies have shown that using physical methods (dehulling, washing, sorting, and cleaning of visible moldy seed) reduces different mycotoxin species in foods regardless of grain genre [70]. Scudamore and Pascale et al. [92] and Patel [93] observed a reduction of T-2 (62%) and HT-2 (53%) and DON (50%) in wheat seeds after cleaning. Scudamore and Patel also reported a 32% reduction in fumonisin levels in corn in an industrial enterprise [94]. Moreover, milling is an important effect in the reduction of
One of the best applicable strategies for the prevention of mycotoxin formation is the cultivation of fungal infestation-resistant plants and improvement of the genetic composition to suppress mycotoxin production [96]. The benefits of biotechnological applications were observed with Aflasafe. Aflasafe is a biocontrol product that includes a blend of four fungal species covered over grains which reduce aflatoxigenic fungi that produce AFs in maize and groundnuts (https://aflasafe.com/).
Mycotoxins are resistant to heat and cannot be completely destroyed under normal cooking process. On the other hand, mycotoxin reduction has been determined after heating, and this may be the result of reactions changing the chemical structure [70]. Ryu et al. reported heat treatment (at temperature 120–160°C) causes a reduction between 66 and 83% of ZEN [97]. Scott and Lawrence also reported a reduction of 60–100% of fumonisins with a heat treatment at 190°C (60 min) and 220°C (25 min).
Biological control of mycotoxins via detoxification/degradation offers a promising alternative method [98]. Recently the effectiveness of fermentation for the reduction and elimination of mycotoxins has also been proven. Studies documented in the literature generally show that mycotoxins are reduced by conversion, detoxification, binding, degradation, and decontamination after food fermentation [99]. Modification of the chemical structure of the mycotoxin molecule, removal or detoxification/inactivation, and adhesion to bacterial cell walls provide a reduced toxicity during fermentation [99]. Implementation of these preventive methods cannot solve the problem alone; also it must be an integral part of an integrated food safety management system based on the hazard analysis and critical control point (HACCP).
HACCP is a food management system where food safety is addressed through the analysis, control, and monitoring of physical, chemical, and biological hazards from raw material manufacturing, supply, and handling to production, distribution, and consumption of the finished product [100]. The National Advisory Committee on Microbiological Criteria for Foods (NACMCF) published a guideline about HACCP containing seven basic principles, decision tree, and all plans in 1992 [101]. Implementation of HACCP is an effective strategy for prevention, control, and periodic monitoring of mycotoxin in all stages from field to the consumer. There are 12 successive steps recommended to implementation of HACCP system. Previous HACCP studies can be researched to set up tasks from 1 to 5 that specify each food process, and tasks required for mycotoxin control begin at 6 (Principle 1).
Establish the HACCP team.
Describe the product.
Identify the product’s intended use.
Draw up the commodity flow diagram.
Confirm the flow diagram on-site.
Identify and analyze hazard(s) (Principle 1).
Determine the critical control points (CCPs) (Principle 2).
Establish critical limits for each (CCP) (Principle 3).
Establish a monitoring procedure (Principle 4).
Establish corrective action (Principle 5).
Verify the HACCP plan (Principle 6).
Keep record (Principle 7).
Crops and tolerated levels of mycotoxins (μgkg−1) | |||||
---|---|---|---|---|---|
Country | Mycotoxins | Rice | Maize | Spices | Fruit juices |
Brazil | AFB1/AFG1 | 30 | 30 | 30 | 30 |
China | AFB1 | 10 | 20 | — | — |
France | FB1 | 1000 | 1000 | — | — |
Hungary | Total AF OTA | 50 5 | 50 5 | - - | - - |
Japan | AFB1 Patulin | 10 | 10 | 10 | — |
The United States | Total AF Patulin | 20 - | 20 - | 20 - | - 50 |
Turkey | AFB1 Patulin | 2 - | 2 - | 5 - | - - |
Global regulation of mycotoxin contamination in agricultural products [103].
Microbiological and/or chemical tests can be used to confirm which product is meeting CCP.
Asking questions especially to CCP employees.
Internal or external audit by independent person to check whether HACCP system is being implemented.
Step/CCP | Hazard analysis | Monitoring | Corrective action | |||
---|---|---|---|---|---|---|
Hazard | Control | Critical limit | Monitoring | Frequency | ||
Pre-harvest/ growing | Low soil moisture leading to plant stress during kernel development | Irrigate | Lower limit of critical water activity (aw) (check with your agronomist/extension staff for an exact value) | Measure soil moisture and record | Weekly on Monday morning | Additional irrigation; record amounts |
Insufficient soil nutrients leading to plant stress during kernel development | Fertilize | N, P, and K applications as recommended for hybrid by local agronomists (insert the values) | Fertilizer applied (appropriate for soil type and hybrid); amounts and type recorded | As recommended for hybrid | Additional fertilizer; record amounts added | |
Insect attack leading to damaged kernels | Integrated pest management (IPM) plan | Insect population within acceptable limits as determined by control program | Visual inspection and sample, with results recorded | Weekly | Apply pesticide in accordance with IPM plan | |
Harvest | Damage to kernels from harvester | Harvest when kernels are dry | Moisture content ≤14% | Measure and record grain moisture | Prior to harvest | Delay harvest till kernels are dried enough |
Storage | Excessive moisture content of kernels | Do not store until kernels are dry | Moisture content ≤14% | Measure and record grain moisture | Immediately prior to storage | Dry mechanically |
Insect attack, allowing fungi to penetrate kernels | IPM plan | No evidence of insect or rodent infestation using inspection protocols specified in IPM plan | Visual inspection with results recorded | Weekly | Apply pest control methods in accordance with IPM plan | |
High ambient humidity and temperature | Aerate grain to control temperature and humidity | Temperature and humidity within limits recommended in industry literature | Measure and record humidity, ambient temperature, and airflow | Daily during storage | Adjust aeration time of day or airflow to achieve desired temperature and humidity |
HACCP plan of maize [102].
Mycotoxin is a well-known food safety risk, which is a threat to human and livestock health, and has high economic significance in food industry. Recently, the food industry has become aware of the new term modified mycotoxins introduced by Rychlik et al. (masked mycotoxin) [104]. Food safety risk has risen since masked mycotoxins which pose many difficulties including the unknown occurrence/co-occurrence of these compounds and their toxicological properties. In addition, Lorenz et al. reported that the European Food Safety Authority (EFSA) has taken into account efforts to address this emerging issue in food safety by developing strategies on how to evaluate potential added health risk due to the occurrence of modified mycotoxins [104].
Mycotoxigenic molds are difficult to prevent and control due to their widespread presence in nature. Prevention of mycotoxin synthesis in all stages of food processing is an essential point for public health and economic reasons. Many practices used for prevention of mycotoxin include good agricultural practices (GAP) in field, control practices of harvesting and storage, physical methods (cleaning, milling, etc.), implementation of biotechnological application, biological control through the use of controlled atmosphere during storage, detoxification/degradation, and fermentation techniques.
Meanwhile a number of techniques for mycotoxin control and management prove to be quite costly and/or unenforceable in some cases. On the other hand, using fermentation process for appropriate process has been recommended for mycotoxin reduction by Adebiyi et al. [99]. In the future, more emphasis should be given to nanotechnology and genetic engineering practices in the development of durable product types to ensure food safety.
In addition to these applications, food safety management systems such as HACCP, GAP, and good manufacturing practices (GMP) should be integrated at all stages of production, transport, and storage, in order to minimize contamination in food industry. Also fairly new food safety system including threat assessment critical control points (TACCP), vulnerability critical control points (VACCP), and hazard analysis and risk-based preventive controls (HARPC) should be investigated and implemented to ensure an effective control system.
Ove Odredbe i uvjeti ističu pravila i regulacije u svezi korištenja IntechOpenove stranice www.intechopen.com i svih poddomena u vlasništvu IntechOpena, tvrtke sa sjedištem u 5 Princes Gate Court, London, SW7 2QJ, Ujedinjeno Kraljevstvo.
',metaTitle:"Odredbe i uvjeti",metaDescription:"Ove Odredbe i uvjeti ističu pravila i regulacije u svezi korištenja IntechOpenove stranice www.intechopen.com i svih poddomena u vlasništvu IntechOpena, tvrtke sa sjedištem u 5 Princes Gate Court, London, SW7 2QJ, Ujedinjeno Kraljevstvo.",metaKeywords:null,canonicalURL:"/page/cro-terms-and-conditions",contentRaw:'[{"type":"htmlEditorComponent","content":"Pristupom na stranicu www.intechopen.com slažete se s ovim odredbama, sa svim primjenjivim zakonskim odredbama, te se slažete s poštovanjem svih lokalnih zakona. Korištenje i/ili pristup ovoj stranici temelji se na potpunom prihvaćanju ovih odredbi. Svi materijali na ovoj stranici zaštićeni su primjenjivim zakonima o autorskim pravima i žigu.
\\n\\nSljedeća terminologija odnosi se na Odredbe i uvjete, te na sve naše ugovore:
\\n\\nKlijent, stranka, vi, vaš odnosi se na vas, osobu koja pristupa ovoj stranici i prihvaća IntechOpenove Odredbe i uvjete;
\\n\\nKompanija, tvrtka, mi, naše odnosi se na tvrtku IntechOpen;
\\n\\nStranke, strane odnosi se na klijenta i na nas, ili samo na klijenta ili nas.
\\n\\nSve odredbe koje se odnose na ponudu, prihvat ili razmatranje plaćanja, a za koja mi pružamo asistenciju klijentu, bilo na ugovoreni ili fiksni način, a s ciljem da se ostvare potrebe i želje klijenta u svezi s našim uslugama, su podložne zakonskim odredbama Ujedinjenog Kraljevstva.
\\n\\nOsim ako nije suprotno navedeno, IntechOpen i/ili svi davatelji licence vlasnici su intelektualnog vlasništva nad svim materijalima na www.intechopen.com. Sva prava intelektualnog vlasništva su pridržana. Stranice sa www.intechopen.com možete gledati, preuzimati, dijeliti, dijeliti poveznice i printati za osobnu uporabu, a temeljem pravila sadržanih u ovim Odredbama i uvjetima.
\\n\\nMi koristimo kolačiće. Korištenjem IntechOpenove stranice slažete se s korištenjem kolačića u skladu s IntechOpenovom Politikom privatnosti. Većina modernih, interaktivnih stranica koristi kolačiće kako bi omogućila ponovno pronalaženje korisničkih detalja kod svakog posjeta. Na našoj stranici kolačići se uglavnom koriste kako bi omogućili funkcionalnost i olakšali posjetiteljima korištenje stranice.
\\n\\nIntechOpen ili njegovi suradnici niti u jednom slučaju neće biti odgovorni za štete (štete uključuju gubitak podataka ili profita, druge poslovne prekide, te sve ostale štete) koje nastanu zbog korištenja materijala na IntechOpenovoj stranici ili nemogućnosti da se iste koriste, čak i ako je IntechOpen ili njegov predstavnik o takvoj šteti obaviješten pismenim ili usmenim putem. Neke jurisdikcije ne dozvoljavaju ograničenja garancija ili ograničenja obveza za posljedične ili slučajne štete pa se u tom slučaju ova ograničenja možda ne odnose na vas.
\\n\\nMaterijali koji se pojavljuju na IntechOpenovoj stranici mogu sadržavati manje greške, tipfelere ili fotografske greške. IntechOpen može napraviti promjene na bilo kojem materijalu koji se nalazi na stranici u bilo koje vrijeme.
\\n\\nIntechOpen nije formalno povezan niti s jednom vanjskom stranicom čije poveznice vode na www.intechopen.com, osim ako to nije izravno navedeno. Iz tog razloga IntechOpen nije odgovoran za sadržaj koji se pojavljuje na takvim stranicama. Poveznica na IntechOpenovu stranicu ne implicira povezanost sa IntechOpenom. Korištenje takvih poveznica isključiva je odgovornost korisnika.
\\n\\nZadržavamo pravo vlasništva nad cjelokupnom stranicom www.intechopen.com i nad svim materijalom na toj stranici. Koristeći se našim uslugama, slažete se da maknete sve poveznice na našu stranicu odmah nakon što to od vas zatražimo. Također, zadržavamo pravo da ove Odredbe i uvjete, i politiku o poveznicama izmjenimo u bilo koje vrijeme. Koristeći se poveznicama na naše stranice slažete se s ovim Odredbama i uvjetima.
\\n\\nAko smatrate da je bilo koja poveznica na našoj stranici sumnjiva iz bilo kojeg razloga, molimo vas da nas kontaktirate. U tom slučaju razmotrit ćemo micanje poveznice s naše stranice, iako nismo obvezni to napraviti.
\\n\\nBez prethodne privole i izričite pisane dozvole, ne možete stvarati okvire oko naših stranica ili koristiti druge tehnike koje na bilo koji način mogu promijeniti prezentaciju ili izgled naše stranice.
\\n\\nIntechOpen može ove Odredbe izmijeniti u bilo koje vrijeme i bez prethodne obavijesti. Koristeći ovu stranicu vi se slažete s trenutnim Odredbama i uvjetima koje su na snazi.
\\n\\nOve Odredbe i uvjeti su sastavljeni u skladu s odredbama prava Ujedinjenog Kraljevstva, a za sve sporove nadležan je sud u Londonu, Ujedinjeno Kraljevstvo.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Pristupom na stranicu www.intechopen.com slažete se s ovim odredbama, sa svim primjenjivim zakonskim odredbama, te se slažete s poštovanjem svih lokalnih zakona. Korištenje i/ili pristup ovoj stranici temelji se na potpunom prihvaćanju ovih odredbi. Svi materijali na ovoj stranici zaštićeni su primjenjivim zakonima o autorskim pravima i žigu.
\n\nSljedeća terminologija odnosi se na Odredbe i uvjete, te na sve naše ugovore:
\n\nKlijent, stranka, vi, vaš odnosi se na vas, osobu koja pristupa ovoj stranici i prihvaća IntechOpenove Odredbe i uvjete;
\n\nKompanija, tvrtka, mi, naše odnosi se na tvrtku IntechOpen;
\n\nStranke, strane odnosi se na klijenta i na nas, ili samo na klijenta ili nas.
\n\nSve odredbe koje se odnose na ponudu, prihvat ili razmatranje plaćanja, a za koja mi pružamo asistenciju klijentu, bilo na ugovoreni ili fiksni način, a s ciljem da se ostvare potrebe i želje klijenta u svezi s našim uslugama, su podložne zakonskim odredbama Ujedinjenog Kraljevstva.
\n\nOsim ako nije suprotno navedeno, IntechOpen i/ili svi davatelji licence vlasnici su intelektualnog vlasništva nad svim materijalima na www.intechopen.com. Sva prava intelektualnog vlasništva su pridržana. Stranice sa www.intechopen.com možete gledati, preuzimati, dijeliti, dijeliti poveznice i printati za osobnu uporabu, a temeljem pravila sadržanih u ovim Odredbama i uvjetima.
\n\nMi koristimo kolačiće. Korištenjem IntechOpenove stranice slažete se s korištenjem kolačića u skladu s IntechOpenovom Politikom privatnosti. Većina modernih, interaktivnih stranica koristi kolačiće kako bi omogućila ponovno pronalaženje korisničkih detalja kod svakog posjeta. Na našoj stranici kolačići se uglavnom koriste kako bi omogućili funkcionalnost i olakšali posjetiteljima korištenje stranice.
\n\nIntechOpen ili njegovi suradnici niti u jednom slučaju neće biti odgovorni za štete (štete uključuju gubitak podataka ili profita, druge poslovne prekide, te sve ostale štete) koje nastanu zbog korištenja materijala na IntechOpenovoj stranici ili nemogućnosti da se iste koriste, čak i ako je IntechOpen ili njegov predstavnik o takvoj šteti obaviješten pismenim ili usmenim putem. Neke jurisdikcije ne dozvoljavaju ograničenja garancija ili ograničenja obveza za posljedične ili slučajne štete pa se u tom slučaju ova ograničenja možda ne odnose na vas.
\n\nMaterijali koji se pojavljuju na IntechOpenovoj stranici mogu sadržavati manje greške, tipfelere ili fotografske greške. IntechOpen može napraviti promjene na bilo kojem materijalu koji se nalazi na stranici u bilo koje vrijeme.
\n\nIntechOpen nije formalno povezan niti s jednom vanjskom stranicom čije poveznice vode na www.intechopen.com, osim ako to nije izravno navedeno. Iz tog razloga IntechOpen nije odgovoran za sadržaj koji se pojavljuje na takvim stranicama. Poveznica na IntechOpenovu stranicu ne implicira povezanost sa IntechOpenom. Korištenje takvih poveznica isključiva je odgovornost korisnika.
\n\nZadržavamo pravo vlasništva nad cjelokupnom stranicom www.intechopen.com i nad svim materijalom na toj stranici. Koristeći se našim uslugama, slažete se da maknete sve poveznice na našu stranicu odmah nakon što to od vas zatražimo. Također, zadržavamo pravo da ove Odredbe i uvjete, i politiku o poveznicama izmjenimo u bilo koje vrijeme. Koristeći se poveznicama na naše stranice slažete se s ovim Odredbama i uvjetima.
\n\nAko smatrate da je bilo koja poveznica na našoj stranici sumnjiva iz bilo kojeg razloga, molimo vas da nas kontaktirate. U tom slučaju razmotrit ćemo micanje poveznice s naše stranice, iako nismo obvezni to napraviti.
\n\nBez prethodne privole i izričite pisane dozvole, ne možete stvarati okvire oko naših stranica ili koristiti druge tehnike koje na bilo koji način mogu promijeniti prezentaciju ili izgled naše stranice.
\n\nIntechOpen može ove Odredbe izmijeniti u bilo koje vrijeme i bez prethodne obavijesti. Koristeći ovu stranicu vi se slažete s trenutnim Odredbama i uvjetima koje su na snazi.
\n\nOve Odredbe i uvjeti su sastavljeni u skladu s odredbama prava Ujedinjenog Kraljevstva, a za sve sporove nadležan je sud u Londonu, Ujedinjeno Kraljevstvo.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"20"},books:[{type:"book",id:"10672",title:"Nonlinear Optics",subtitle:null,isOpenForSubmission:!0,hash:"cfe87b713a8bee22c19361b86b03d506",slug:null,bookSignature:"Dr. Boris I. Lembrikov",coverURL:"https://cdn.intechopen.com/books/images_new/10672.jpg",editedByType:null,editors:[{id:"2359",title:"Dr.",name:"Boris",surname:"Lembrikov",slug:"boris-lembrikov",fullName:"Boris Lembrikov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10674",title:"Topics on Quantum Information Science",subtitle:null,isOpenForSubmission:!0,hash:"d7481712cff0157cd8f849cba865727d",slug:null,bookSignature:"Prof. Sergio Curilef and Dr. Angel Ricardo Plastino",coverURL:"https://cdn.intechopen.com/books/images_new/10674.jpg",editedByType:null,editors:[{id:"125424",title:"Prof.",name:"Sergio",surname:"Curilef",slug:"sergio-curilef",fullName:"Sergio Curilef"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10852",title:"Electromagnetic Compatibility",subtitle:null,isOpenForSubmission:!0,hash:"f5d2cce3a2adbd5d108d3301ee97025b",slug:null,bookSignature:"Dr. Ahmed Kishk",coverURL:"https://cdn.intechopen.com/books/images_new/10852.jpg",editedByType:null,editors:[{id:"150146",title:"Dr.",name:"Ahmed",surname:"Kishk",slug:"ahmed-kishk",fullName:"Ahmed Kishk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10921",title:"Plasma Science and Technology",subtitle:null,isOpenForSubmission:!0,hash:"c45670ef4b081fd9eebaf911b2b4627b",slug:null,bookSignature:"Dr. Aamir Shahzad",coverURL:"https://cdn.intechopen.com/books/images_new/10921.jpg",editedByType:null,editors:[{id:"288354",title:"Dr.",name:"Aamir",surname:"Shahzad",slug:"aamir-shahzad",fullName:"Aamir Shahzad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10956",title:"Pulsed Lasers",subtitle:null,isOpenForSubmission:!0,hash:"88bd906b149fc3d1c5d6fdbd9916826c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10956.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:9},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:48},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:5},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1209",title:"Mycotoxicology",slug:"mycotoxicology",parent:{title:"Toxicology",slug:"pharmacology-toxicology-and-pharmaceutical-science-toxicology"},numberOfBooks:3,numberOfAuthorsAndEditors:51,numberOfWosCitations:94,numberOfCrossrefCitations:70,numberOfDimensionsCitations:161,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"mycotoxicology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8094",title:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",subtitle:null,isOpenForSubmission:!1,hash:"44f4ad52d8a8cbb22ef3d505d6b18027",slug:"aflatoxin-b1-occurrence-detection-and-toxicological-effects",bookSignature:"Xi-Dai Long",coverURL:"https://cdn.intechopen.com/books/images_new/8094.jpg",editedByType:"Edited by",editors:[{id:"202142",title:"Prof.",name:"Xi-Dai",middleName:null,surname:"Long",slug:"xi-dai-long",fullName:"Xi-Dai Long"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6733",title:"Mycotoxins",subtitle:"Impact and Management Strategies",isOpenForSubmission:!1,hash:"93e4e18e9fbe30a389b07568cc28c02c",slug:"mycotoxins-impact-and-management-strategies",bookSignature:"Patrick Berka Njobeh and Francois Stepman",coverURL:"https://cdn.intechopen.com/books/images_new/6733.jpg",editedByType:"Edited by",editors:[{id:"60387",title:"Prof.",name:"Patrick Berka",middleName:null,surname:"Njobeh",slug:"patrick-berka-njobeh",fullName:"Patrick Berka Njobeh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3115",title:"Mycotoxin and Food Safety in Developing Countries",subtitle:null,isOpenForSubmission:!1,hash:"b68e48027a6b243f0947e61e5eeebbae",slug:"mycotoxin-and-food-safety-in-developing-countries",bookSignature:"Hussaini Anthony Makun",coverURL:"https://cdn.intechopen.com/books/images_new/3115.jpg",editedByType:"Edited by",editors:[{id:"59728",title:"Dr.",name:"Hussaini",middleName:"Anthony",surname:"Makun",slug:"hussaini-makun",fullName:"Hussaini Makun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,mostCitedChapters:[{id:"44078",doi:"10.5772/55664",title:"Fungal and Mycotoxin Contamination of Nigerian Foods and Feeds",slug:"fungal-and-mycotoxin-contamination-of-nigerian-foods-and-feeds",totalDownloads:7280,totalCrossrefCites:11,totalDimensionsCites:18,book:{slug:"mycotoxin-and-food-safety-in-developing-countries",title:"Mycotoxin and Food Safety in Developing Countries",fullTitle:"Mycotoxin and Food Safety in Developing Countries"},signatures:"Olusegun Atanda, Hussaini Anthony Makun, Isaac M. Ogara, Mojisola Edema, Kingsley O. Idahor, Margaret E. Eshiett and Bosede F. Oluwabamiwo",authors:[{id:"59728",title:"Dr.",name:"Hussaini",middleName:"Anthony",surname:"Makun",slug:"hussaini-makun",fullName:"Hussaini Makun"},{id:"62810",title:"Dr.",name:"Shamsideen",middleName:null,surname:"Aroyeun",slug:"shamsideen-aroyeun",fullName:"Shamsideen Aroyeun"},{id:"75619",title:"Dr.",name:"Mojisola",middleName:null,surname:"Edema",slug:"mojisola-edema",fullName:"Mojisola Edema"},{id:"152005",title:"Dr.",name:"Chibundu",middleName:"N",surname:"Ezekiel",slug:"chibundu-ezekiel",fullName:"Chibundu Ezekiel"},{id:"152110",title:"MSc.",name:"Bosede Folasade",middleName:null,surname:"Oluwabamiwo",slug:"bosede-folasade-oluwabamiwo",fullName:"Bosede Folasade Oluwabamiwo"},{id:"153376",title:"Dr.",name:"Olusegun",middleName:null,surname:"Atanda",slug:"olusegun-atanda",fullName:"Olusegun Atanda"},{id:"153378",title:"Mr.",name:"Kingsley O.",middleName:null,surname:"Idahor",slug:"kingsley-o.-idahor",fullName:"Kingsley O. Idahor"},{id:"153379",title:"Mrs.",name:"Margaret",middleName:null,surname:"Eshiet",slug:"margaret-eshiet",fullName:"Margaret Eshiet"},{id:"153380",title:"Mr.",name:"Isaac",middleName:null,surname:"Ogara",slug:"isaac-ogara",fullName:"Isaac Ogara"}]},{id:"44089",doi:"10.5772/52542",title:"Strategies for the Prevention and Reduction of Mycotoxins in Developing Countries",slug:"strategies-for-the-prevention-and-reduction-of-mycotoxins-in-developing-countries",totalDownloads:3751,totalCrossrefCites:0,totalDimensionsCites:18,book:{slug:"mycotoxin-and-food-safety-in-developing-countries",title:"Mycotoxin and Food Safety in Developing Countries",fullTitle:"Mycotoxin and Food Safety in Developing Countries"},signatures:"Gabriel O. Adegoke and Puleng Letuma",authors:[{id:"153810",title:"Prof.",name:"Gabriel",middleName:null,surname:"Adegoke",slug:"gabriel-adegoke",fullName:"Gabriel Adegoke"}]},{id:"61887",doi:"10.5772/intechopen.76342",title:"Biological Control of Mycotoxigenic Fungi and Their Toxins: An Update for the Pre-Harvest Approach",slug:"biological-control-of-mycotoxigenic-fungi-and-their-toxins-an-update-for-the-pre-harvest-approach",totalDownloads:1311,totalCrossrefCites:5,totalDimensionsCites:16,book:{slug:"mycotoxins-impact-and-management-strategies",title:"Mycotoxins",fullTitle:"Mycotoxins - Impact and Management Strategies"},signatures:"Mohamed F. Abdallah, Maarten Ameye, Sarah De Saeger, Kris Audenaert and Geert Haesaert",authors:null}],mostDownloadedChaptersLast30Days:[{id:"44083",title:"Regulation and Enforcement of Legislation on Food Safety in Nigeria",slug:"regulation-and-enforcement-of-legislation-on-food-safety-in-nigeria",totalDownloads:15482,totalCrossrefCites:9,totalDimensionsCites:11,book:{slug:"mycotoxin-and-food-safety-in-developing-countries",title:"Mycotoxin and Food Safety in Developing Countries",fullTitle:"Mycotoxin and Food Safety in Developing Countries"},signatures:"Jane Omojokun",authors:[{id:"152076",title:"Mrs.",name:"Jane",middleName:null,surname:"Omojokun",slug:"jane-omojokun",fullName:"Jane Omojokun"}]},{id:"44101",title:"Nigerian Indigenous Fermented Foods: Processes and Prospects",slug:"nigerian-indigenous-fermented-foods-processes-and-prospects",totalDownloads:14632,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"mycotoxin-and-food-safety-in-developing-countries",title:"Mycotoxin and Food Safety in Developing Countries",fullTitle:"Mycotoxin and Food Safety in Developing Countries"},signatures:"Egwim Evans, Amanabo Musa, Yahaya Abubakar and Bello Mainuna",authors:[{id:"156271",title:"Dr.",name:"Evans",middleName:null,surname:"Egwim",slug:"evans-egwim",fullName:"Evans Egwim"}]},{id:"62483",title:"The Socio-Economic Impact of Mycotoxin Contamination in Africa",slug:"the-socio-economic-impact-of-mycotoxin-contamination-in-africa",totalDownloads:1345,totalCrossrefCites:9,totalDimensionsCites:16,book:{slug:"mycotoxins-impact-and-management-strategies",title:"Mycotoxins",fullTitle:"Mycotoxins - Impact and Management Strategies"},signatures:"Sefater Gbashi, Ntakadzeni Edwin Madala, Sarah De Saeger, Marthe De Boevre, Ifeoluwa Adekoya, Oluwafemi Ayodeji Adebo and Patrick Berka Njobeh",authors:null},{id:"61887",title:"Biological Control of Mycotoxigenic Fungi and Their Toxins: An Update for the Pre-Harvest Approach",slug:"biological-control-of-mycotoxigenic-fungi-and-their-toxins-an-update-for-the-pre-harvest-approach",totalDownloads:1310,totalCrossrefCites:5,totalDimensionsCites:15,book:{slug:"mycotoxins-impact-and-management-strategies",title:"Mycotoxins",fullTitle:"Mycotoxins - Impact and Management Strategies"},signatures:"Mohamed F. Abdallah, Maarten Ameye, Sarah De Saeger, Kris Audenaert and Geert Haesaert",authors:null},{id:"69028",title:"Aflatoxin B1: Chemistry, Environmental and Diet Sources and Potential Exposure in Human in Kenya",slug:"aflatoxin-b1-chemistry-environmental-and-diet-sources-and-potential-exposure-in-human-in-kenya",totalDownloads:579,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"aflatoxin-b1-occurrence-detection-and-toxicological-effects",title:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",fullTitle:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects"},signatures:"Joseph Owuor Lalah, Solomon Omwoma and Dora A.O. Orony",authors:[{id:"301744",title:"Dr.",name:"Joseph",middleName:null,surname:"Lalah",slug:"joseph-lalah",fullName:"Joseph Lalah"}]},{id:"44084",title:"Control of Toxigenic Fungi and Mycotoxins with Phytochemicals: Potentials and Challenges",slug:"control-of-toxigenic-fungi-and-mycotoxins-with-phytochemicals-potentials-and-challenges",totalDownloads:6640,totalCrossrefCites:1,totalDimensionsCites:9,book:{slug:"mycotoxin-and-food-safety-in-developing-countries",title:"Mycotoxin and Food Safety in Developing Countries",fullTitle:"Mycotoxin and Food Safety in Developing Countries"},signatures:"Toba Samuel Anjorin, Ezekiel Adebayo Salako and Hussaini Anthony Makun",authors:[{id:"59728",title:"Dr.",name:"Hussaini",middleName:"Anthony",surname:"Makun",slug:"hussaini-makun",fullName:"Hussaini Makun"},{id:"66256",title:"Dr.",name:"Toba",middleName:"Samuel",surname:"Anjorin",slug:"toba-anjorin",fullName:"Toba Anjorin"},{id:"167039",title:"Prof.",name:"Ezekiel",middleName:null,surname:"Salako",slug:"ezekiel-salako",fullName:"Ezekiel Salako"}]},{id:"61941",title:"Preharvest Management Strategies and Their Impact on Mycotoxigenic Fungi and Associated Mycotoxins",slug:"preharvest-management-strategies-and-their-impact-on-mycotoxigenic-fungi-and-associated-mycotoxins",totalDownloads:835,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"mycotoxins-impact-and-management-strategies",title:"Mycotoxins",fullTitle:"Mycotoxins - Impact and Management Strategies"},signatures:"Lindy J. Rose, Sheila Okoth, Bradley C. Flett, Belinda Janse van Rensburg and Altus Viljoen",authors:null},{id:"62134",title:"Aflatoxin Management Strategies in Sub-Saharan Africa",slug:"aflatoxin-management-strategies-in-sub-saharan-africa",totalDownloads:886,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"mycotoxins-impact-and-management-strategies",title:"Mycotoxins",fullTitle:"Mycotoxins - Impact and Management Strategies"},signatures:"Titilayo Falade",authors:null},{id:"69100",title:"The Toxification and Detoxification Mechanisms of Aflatoxin B1 in Human: An Update",slug:"the-toxification-and-detoxification-mechanisms-of-aflatoxin-b1-in-human-an-update",totalDownloads:663,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"aflatoxin-b1-occurrence-detection-and-toxicological-effects",title:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",fullTitle:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects"},signatures:"Qun-Ying Su",authors:[{id:"221960",title:"Dr.",name:"Qun-Ying",middleName:null,surname:"Su",slug:"qun-ying-su",fullName:"Qun-Ying Su"}]},{id:"63672",title:"Aflatoxins: Their Toxic Effect on Poultry and Recent Advances in Their Treatment",slug:"aflatoxins-their-toxic-effect-on-poultry-and-recent-advances-in-their-treatment",totalDownloads:866,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"mycotoxins-impact-and-management-strategies",title:"Mycotoxins",fullTitle:"Mycotoxins - Impact and Management Strategies"},signatures:"Yasir Allah Ditta, Saima Mahad and Umar Bacha",authors:null}],onlineFirstChaptersFilter:{topicSlug:"mycotoxicology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},route:{name:"profile.detail",path:"/profiles/207987/doo-gyung-moon",hash:"",query:{},params:{id:"207987",slug:"doo-gyung-moon"},fullPath:"/profiles/207987/doo-gyung-moon",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()