",isbn:"978-1-83969-164-5",printIsbn:"978-1-83969-163-8",pdfIsbn:"978-1-83969-165-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"918540a77975243ee748770aea1f4af2",bookSignature:"Dr. Aakash Goyal",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9651.jpg",keywords:"GWAS, Cereals, Breeding, Disease Resistance, Wheat, Rice, Maize, Drought Tolerance, Genetics, Production, Quality, Yield",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 21st 2020",dateEndSecondStepPublish:"December 4th 2020",dateEndThirdStepPublish:"February 2nd 2021",dateEndFourthStepPublish:"April 23rd 2021",dateEndFifthStepPublish:"June 22nd 2021",remainingDaysToSecondStep:"a month",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Elected fellow member of the International College of Nutrition (FICN) and Society of Applied Biotechnology (FSAB) with research experience at Agriculture and Agri-Food Canada, Bayer Crop Science, ICARDA, InnoTech Alberta, and Palm Gardens Inc.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"97604",title:"Dr.",name:"Aakash",middleName:null,surname:"Goyal",slug:"aakash-goyal",fullName:"Aakash Goyal",profilePictureURL:"https://mts.intechopen.com/storage/users/97604/images/system/97604.jpg",biography:"Aakash Goyal was born in India, and graduated from MDU, Ajmer (Biology) in 1999, then obtained Master’s in Biotechnology in 2002 from GJU, Hissar specialization in Plant biotechnology & molecular breeding, and PhD. in Genetics and Plant Breeding in 2007 from CCSU, Meerut India, specialization in Wheat Breeding. After completion of PhD, he obtained NSREC Visiting Fellowship (in 2008) and thus, joined the wheat and triticale breeding program at Lethbridge Research Center, Agriculture and Agri Food Canada (AAFC), Lethbridge, AB., Canada. In 2012, he achieved a position as a Wheat Breeder for Bayer Crop Science, Saskatoon, Canada. In 2014 he had the honor to obtain Senior Research Scientist position with International Center of Agriculture Research in Dry Areas (ICARDA). In 2017, he moved back to Canada and joined as Native Plant Research Scientist with InnoTech Alberta. In November 2019 he joined as an Agriculture Specialist with Palm Gardens Inc. to help in breeding and cultivation of Cannabis. In this time (2002-2020), he has published nine Books and 50 research papers, reviewed articles, book chapters and book reviews. He is also an elected fellow member of International College of Nutrition (FICN) and Society of Applied Biotechnology (FSAB).",institutionString:"Palm Gardens Inc. Canada",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"3",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"259492",firstName:"Sara",lastName:"Gojević-Zrnić",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/259492/images/7469_n.png",email:"sara.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"596",title:"Crop Plant",subtitle:null,isOpenForSubmission:!1,hash:"8f6c77633a473d10f044598b3768e23f",slug:"crop-plant",bookSignature:"Aakash Goyal",coverURL:"https://cdn.intechopen.com/books/images_new/596.jpg",editedByType:"Edited by",editors:[{id:"97604",title:"Dr.",name:"Aakash",surname:"Goyal",slug:"aakash-goyal",fullName:"Aakash Goyal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5137",title:"Grain Legumes",subtitle:null,isOpenForSubmission:!1,hash:"9af17ac91fc66472889985bd48d3fdb3",slug:"grain-legumes",bookSignature:"Aakash Kumar Goyal",coverURL:"https://cdn.intechopen.com/books/images_new/5137.jpg",editedByType:"Edited by",editors:[{id:"97604",title:"Dr.",name:"Aakash",surname:"Goyal",slug:"aakash-goyal",fullName:"Aakash Goyal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3357",title:"Crop Production",subtitle:null,isOpenForSubmission:!1,hash:"6ed9774e3d9e1d7664640db03e659146",slug:"crop-production",bookSignature:"Aakash Goyal and Muhammad Asif",coverURL:"https://cdn.intechopen.com/books/images_new/3357.jpg",editedByType:"Edited by",editors:[{id:"97604",title:"Dr.",name:"Aakash",surname:"Goyal",slug:"aakash-goyal",fullName:"Aakash Goyal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"54316",title:"Fatty Acids from Microalgae: Targeting the Accumulation of Triacylglycerides",doi:"10.5772/67482",slug:"fatty-acids-from-microalgae-targeting-the-accumulation-of-triacylglycerides",body:'
1. Introduction
Despite the drop in crude oil prices over the last few years, global efforts to develop alternative renewable energy sources continue to be driven by increasing air pollution and growing energy consumption. Extensive research is therefore being conducted in the field of biofuels [1], which are derived from renewable biological sources. Biodiesel is the main substitute for diesel fuel and can be produced from both edible and non-edible oils. The use of edible oils has generated controversy because of the negative impact on food availability and the environment [2, 3]. As a consequence of these ethical considerations, non-food crops have emerged as a viable alternative for the production of biodiesel [4–6]. However, since non-food crops do not produce sufficient biomatter to feasibly cover the fuel requirements of the world’s transport sector, attention is turning to oleaginous microalgae which are able to produce and accumulate large amounts of fatty acids (FA) in the form of triacylglycerides (TAG) that can be converted into biodiesel through a transesterification reaction [2, 3, 7]. Furthermore, some species of oleaginous microalgae can also produce high-value products such as long-chain polyunsaturated fatty acids (docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids), carbohydrates (cellulose, starch), proteins, and other high-value compounds, such as pigments, antioxidants (i.e., β-carotene, astaxanthin), and vitamins, which may have commercial application in various industrial sectors [2, 3, 8, 9]. In addition to their potential as biological factories, the advantage of these photosynthetic microorganisms is that their simple growing requirements (light, CO2, and nutrients) offer several environmental benefits such as high solar energy conversion efficiency, utilization of saline water, CO2 sequestration from the air and self-purification if coupled with wastewater treatment [10].
Despite the wide range of metabolites able to be synthesized by microalgae, little is known about the regulation of FA and TAG biosynthetic pathways and their storage and turnover in microalgae. In this chapter, we therefore describe recent advances in these fields and possible high-value co-products that could render the production of biodiesel from microalgae more sustainably. Recent studies on the transcriptomics, proteomics, and metabolomics of the above-mentioned pathways are also outlined. Understanding these metabolic pathways will accelerate the availability of biodiesel and other valuable biomolecules obtained from microalgae.
2. FA and TAG biosynthetic pathways in microalgae
Fatty acids are organic acids containing a carboxylic functional group with an aliphatic chain that can be saturated (SFA), monounsaturated (MUFA), or polyunsaturated (PUFA). The number of carbon atoms can vary, generating short-chain, medium-chain, or long-chain FA.
In plants, the FA biosynthetic pathway occurs in the chloroplasts (Figure 1).
Figure 1.
Simplified overview of the pathways involved in FA synthesis in plants. Enzyme abbreviations: ACCase, acetyl-CoA carboxylase; MCAT, malonyl-CoA:Acyl Carrier Protein (ACP) transacylase; KAS, ketoacyl-ACP synthases.
As shown in Figure 1, the first step in the pathway involves the acetyl-CoA carboxylase (ACCase) which catalyzes the formation of malonyl-CoA from acetyl-CoA and bicarbonate [11]. There is evidence suggesting the presence of genes encoding this enzyme (accA and accD) in Chlorella pyrenoidosa. In fact, the transcription of these genes showed to be up-regulated under lipid accumulating conditions [12]. Moreover, a marked increase in the level of acetyl-CoA together with a moderate augmentation of malonyl-CoA and CoA was detected in the green microalgae Chlorella desiccata, Dunaliella tertiolecta, and Chlamydomonas reinhardtii under stress conditions, denoting increased activity of ACCase in these strains [13].
The next step in the FA synthesis is mediated by the malonyl-CoA:Acyl Carrier Protein (ACP) transacylase (MCAT) which transfers the malonyl group from malonyl-CoA to malonyl-ACP [11]. A putative MCAT was identified as a part of the FA biosynthetic pathway in Nannochloropsis oceanica [14]. In Haematococcus pluvialis, the genes encoding ACP were up-regulated under TAG accumulating conditions (high temperature, high salinity, and nitrogen deficiency) together with other genes involved in FA biosynthesis [15]. In addition, proteomic studies on Neochloris oleoabundans revealed an augmented expression of ACP, among other enzymes of the lipid synthesis, under nitrogen starvation [16].
Acyl-ACP is the carbon source or substrate for the elongation of FA. This reaction is catalyzed by enzymes known as ketoacyl-ACP synthases (KASIII, KASI, and KASII). After each condensation, a reduction, dehydration, and second reduction occur. These steps are catalyzed by enzymes known as the FAS complex: beta-ketoacyl-ACP reductase (KAR), hydroxyacyl-ACP dehydrase (HAD), and enoyl-ACP reductase (EAR), respectively [11]. Transcriptome analysis of the diatom Chaetoceros sp. GSL56 helped to identify putative enzymes of the FA synthesis pathway. In addition, replacement of ketoacyl-ACP synthase of Synechococcus 7002 with Chaetoceros ketoacyl-ACP synthase III induced FA synthesis [17]. In line with this, TAG accumulating conditions increased the levels of transcripts for KAS in H. pluvialis [15].
The de novo resulting FA often with 16 or 18 carbon atoms can undergo the action of elongases and desaturases that add carbon or double bonds, respectively [11]. Particularly, desaturases and elongases are being intensively studied to achieve transgenic long-chain PUFA production [18, 19].
Some reports suggest the presence of both enzyme types in microalgae. In the marine microalgae Pavlova sp. and Isochrysis sp., two genes encoding elongases that catalyze the elongation of eicosapentaenoic acid (EPA) to docosahexaenoic acid (DHA) have been reported [20]. In the diatom Thalassiosira pseudonana, the genes encoding elongases that mediate the formation of DHA from EPA were successfully overexpressed, thus inducing an increase in DHA content [19]. A delta 5 desaturase was also identified, characterized and overexpressed in the diatom Phaeodactylum tricornutum inducing a significant increase in the unsaturated fatty acids [21].
Upon completion of elongation, FAs are transported to the cytoplasm to act as substrates of the acyl transferases involved in the TAG synthesis. TAG are neutral lipids formed by the esterification of one molecule of glycerol with three FAs. Because of their energy-rich acyl chains, they are the dominant form of stored energy in microalgae. Cellular stresses, such as nutrient deprivation (carbon dioxide, nitrogen, silica, and phosphorous), temperature fluctuation, or high light exposure trigger their formation [22–28]. It has been demonstrated that lipid biosynthetic pathways are induced under these conditions to potentiate the lipid storage (30–60% of dry cell weight), and this mechanism is thought to play a role in microalgae adaptation and survival [24, 29–39]. It has further been reported that multiple stressors have no additive effect on lipid accumulation [24, 40].
Data relating to plant FA and TAG metabolism provided the key to identifying possible molecular targets involved in lipid synthesis and accumulation in microalgae [41]. As shown in Figure 2, in plants, the first step of the conventional Kennedy pathway involves the acylation of the glycerol-3-phosphate (G-3-P), catalyzed by the glycerol-3-phosphate acyltransferase (GPAT) to yield lysophosphatidic acid (LPA). GPAT is the rate-limiting step subject to many regulatory controls at the transcriptional and post-transcriptional level and to allosteric mechanisms [42, 43]. Recent studies have revealed the presence of this enzyme in microalgae. In the marine diatom T. pseudonana, a membrane-bound GPAT designated TpGPAT was cloned and characterized. The authors observed that G-3-P was the preferred substrate of TpGPAT [44]. A sequence for GPAT with high homology to that of plants was found in C. reinhardtii, Volvox carteri, Ostreococcus lucimarinus, Ostreococcus tauri, Cyanidioschyzon merolae, and P. tricornutum. As in T. pseudonana, G-3-P and fatty acyl molecules are likely to be the enzyme substrates, as suggested by the residues present in their active sites [45].
Figure 2.
Simplified overview of the pathways involved in TAG synthesis in plants. Enzymes of the conventional Kennedy pathway involved in TAG synthesis and their subcellular localization in plants. Enzyme abbreviations: glycerol-3-phosphate acyltransferase (GPAT); lysophosphatidic acid acyltransferase (LPAAT); phosphatidic acid phosphohydrolase (PAP); diacylglycerol acyltransferase (DAGAT or DGAT). The same enzymes are involved in TAG synthesis in microalgae, but their intracellular localization has not yet been determined.
As described in Figure 2, lysophosphatidic acid acyltransferase (LPAAT) participates in the second step of the Kennedy pathway. This enzyme catalyzes the acylation of the LPA to yield phosphatidic acid (PA) [46]. Candidate LPAATs have been found in some algal genomes including that of H. pluvialis [47, 48], where it has been shown that LPAAT mRNA is induced under high irradiance stress [47]. In addition, it was recently reported that the expression of C. reinhardtii LPAAT (CrLPAAT1) is associated with an increase in lipid synthesis and accumulation under nitrogen starvation [48].
Phosphatidic acid phosphohydrolase (PAP) uses PA as substrate to form diacylglycerol (DAG), a precursor of TAG (Figure 2) [49]. In eukaryotes, PAP enzymes are the members of the evolutionarily conserved lipin protein family whose activity is related to TAG storage [50]. In the green microalga C. reinhardtii, PAP transcripts (named CrPAP2) are induced under stress conditions. In addition, CrPAP2 silencing slightly lowers the lipid content. Thus, in C. reinhardtii, as in other eukaryotes, PAP expression is related to lipid synthesis and accumulation [49].
The last enzyme of the de novo TAG synthesis is acyl-CoA:diacylglycerol acyltransferase (DGAT), which catalyzes the acylation of DAG to yield TAG (Figure 2) [51]. This enzyme employs DAG and acyl-CoA as substrates, so the resulting TAG is formed through an acyl-CoA-dependent pathway [46] and is a key target to increase TAG synthesis and storage through genetic manipulation [52, 53]. In higher plants, three different types of DGATs participate in the formation of TAG: DGAT1, DGAT2, or DGAT3 [54]. Sequences for DGAT1 and DGAT2 isoforms were found in several algal strains [55]. Sequences for DGAT2, but not DAGT1, or DGAT3, were identified in the green microalga O. tauri [56]. DGAT2 was also found in T. pseudonana (TpDGAT2). In addition, the expression of DGAT in a TAG-null yeast mutant restored the synthesis of these neutral lipids [57]. In the oleaginous microalga C. pyrenoidosa grown under stress conditions, a high correlation was found between DGAT and TAG accumulation [58]. Also in N. oceanica IMET1, another oleaginous microalga, seven putative DGAT genes were up-regulated under nitrogen-deficient conditions, when the synthesis of TAG-neutral lipids was significantly increased [59]. In C. reinhardtii dgat1 and dgtt1 to dgtt5 genes encode for DGAT1 and DGAT2, respectively [60, 61]. Increased transcript expression of the genes dgat1 and dgtt1 was detected under stress conditions (less sulfur, phosphorous, iron, zinc, or nitrogen). Once more, the evidence suggests that both DGAT1 and DGAT2 could play a role in TAG synthesis as their expression is induced under TAG-accumulating conditions [62, 63]. In support of this hypothesis, overexpression of a DGAT2 isoform in the marine diatom P. tricornutum stimulated the synthesis of neutral lipids and their accumulation in lipid droplets [64].
As can be observed, much research has focused on the acyl-CoA-dependent reaction catalyzed by DGAT. However, the relative contribution of DGAT1 and DGAT2 isoenzymes to TAG accumulation appears to be species-dependent, so further studies should be performed to gain insight into this aspect.
TAG can be formed by the acyl-CoA-dependent pathway, detailed previously, or through acyl-CoA-independent reactions. Acyl-CoA-independent formation of TAG is mediated by the activities of two types of enzyme: the phospholipid:diacylglycerol acyltransferases (PDAT), which catalyze the formation of TAG using DAG and phosphatidylcholine (PC); and the DAG:DAG transacylases (DGTA) which utilize two molecules of DAG to form TAG and MAG [54, 65].
In fact, in N. oceanica IMET1, it was reported that membrane polar lipids were converted into TAG when the microalgae were grown under nitrogen deficiency [59]. In agreement with this, the gene encoding the acyltransferase PDAT1 was induced under nitrogen starvation in C. reinhardtii. Moreover, TAG content in the C. reinhardtii PDAT-null mutant was 25% lower than in the parent strain. It would thus appear that PDAT has a relevant role in TAG accumulation, stimulating the transacylation pathway in both strains [62]. Furthermore, in C. reinhardtii it was suggested that PDAT functions as a DGTA with acyl hydrolase activity. PDAT might, therefore, mediate membrane polar lipid turnover in a favorable environment whereas under stress conditions it may participate in phospholipid degradation contributing to TAG synthesis [66].
As already mentioned, many aspects of C. reinhartii lipid metabolism have already been characterized, making it the microalga of choice for current purposes [23, 67–73]. Nevertheless, Chlamydomonas is a non-oleaginous strain [23]. Other microalgal species with greater potential to yield biodiesel and other high-value products should therefore be more thoroughly investigated.
3. Transcriptomics, proteomics, and metabolomics
A better understanding of the mechanisms involved in TAG enrichment under stress conditions will help to maximize microalgae productivity. However, many biochemical approaches for elucidating molecular pathways depend on the availability of genomic sequence data [29]. Transcriptomics, proteomics, and metabolomics, however, are able to provide a detailed description of cell transcripts (RNA), proteins and metabolites, respectively while completely bypassing the requirement of genomic information [74, 75].
Transcriptome analysis helped to identify sequences of the enzymes involved in the biosynthesis and catabolism of FA, TAG, and starch in D. tertiolecta, revealing that this strain shares genetic information, at least in terms of the mentioned pathways, with closely related microalgae species such as V. carteri and C. reinhardtii [76]. The transcriptome of N. oleoabundans was also determined. In this case, the authors quantified the differences between nitrogen-replete and nitrogen-limiting culture conditions. Under nitrogen deficiency, N. oleoabundans showed higher levels of transcripts of FA and TAG synthesis pathways and inhibition of the FA β-oxidation pathway, compared to nitrogen-replete culture conditions [29]. In agreement with this finding, in C. vulgaris, transcriptomic [31] and proteomic [77] studies revealed an induction of the enzymes of the FA and TAG synthesis machinery under lipid enrichment conditions. Also, transcription factors associated with these metabolic pathways were augmented under the stress condition [77].
The transcriptome of C. reinhardtii showed that genes involved in FA and TAG metabolic pathways and in membrane remodeling were highly induced under neutral lipid accumulation conditions [78]. In this microalga, proteomic studies revealed an augmented rate of lipid synthesis machinery with a concomitant enhancement in FA and TAG; higher levels of starch than under non-stress conditions were also detected by metabolomic analyses. Metabolic pathways such as nitrogen assimilation, amino acid metabolism, oxidative phosphorylation, glycolysis, TCA cycle, and the Calvin cycle suffered adjustments during C. reinhardtii [79, 80].
As in C. vulgaris, nutrient-deprivation stress in C. reinhardtii, D. tertiolecta, and N. oleoabundans induced the expression of genes involved in FA and TAG synthesis pathways in P. tricornutum [81], Chlorella protothecoides [82], and Tisochrysis lutea [83].
In conclusion, these assembled transcriptomes, proteomes, and metabolomes offer valuable approaches for improving microalgal productivity, providing possible targets for molecular engineering that could enhance microalgae-derived products.
4. Molecular targets for enhancing lipid biosynthesis
Genetic strain modification to improve microalgal productivity and accelerate the industrialization of algal-derived products is a major challenge [84]. Reflecting the fact that enhancement of the FA synthesis pathway had little effect on total lipid content in some plants [85, 86], a growing body of research now focuses on overexpression of the enzymes or heterologous expression of genes involved in the TAG biosynthetic pathway. Table 1 provides an outline of some of the genetic manipulations performed on several microalgal strains, leading to an improvement in their TAG content.
Enzymes overexpressed or heterologously expressed
Organism
Effect on lipid production (changes over control condition)
Lipid droplets (LDs) are cell organelles that are currently the subject of in-depth study in various organisms. These lipid globules not only act as a reservoir of cell carbon and energy, they may also have a role in lipid homeostasis, signaling, trafficking, and interorganelle communications [96, 97]. As previously mentioned, under stress conditions microalgae synthesize TAG and store them as cytoplasmic LDs [22–28], which can vary in size, shape, and function depending on the cell type and the environmental conditions (Figure 3) [98]. In eukaryotic cells, LD structure consists of a TAG-rich hydrophobic core surrounded by surface polar glycerolipids into which proteins of the perilipin (Plin) (animal cells) or oleosin and caleosin (plants) families are embedded [99–102]. In microalgae, LD structure is conserved from eukaryotes but different LD proteins have been identified. The analysis of C. reinhardtii LDs recognized 16 proteins related to lipid metabolism and a major lipid droplet protein (named MLDP) was identified. MLDP silencing increased the size of the LD, without modifying LD TAG content [68]. In the green microalga, Nannochloropsis sp., a hydrophobic lipid droplet surface protein, named LDSP, was identified. The expression of LDSP increased concomitantly with TAG content under oil-accumulating conditions [99]. In H. pluvialis, seven proteins were found to be associated with LDs. The most abundant of these, Haematococcus Oil Globule Protein (HOGP), was homologous to the MLDP of C. reinhardtii and its expression was induced under TAG accumulating conditions [103]. LD-associated proteins may also help in the accumulation of TAG in the green microalga Myrmecia incisa [104]. Moreover, LDs from C. reinhardtii showed the presence of enzymes involved in TAG synthesis (GPAT, and PDAT) and in sterol synthesis, lipid signaling, and trafficking [69]. Further in-depth research should be able to determine the proteins associated with LDs and their role in TAG metabolism in microalgae.
Figure 3.
Schematic representation of a cytoplasmic lipid droplet (LD) from microalgae.
In the oleaginous diatom Fistulifera sp., two proteins located in the oil bodies were also detected in the endoplasmic reticulum (ER), suggesting that oil bodies might originate in the ER [105]. The same authors found a signal sequence typical of ER localization in an LD protein called diatom-oleosome-associated-protein 1 (DOAP1) in Fistulifera solaris JPCC DA0580 [106]. Related to these findings, the induction of ER stress leads to LD formation in C. reinhardtii and C. vulgaris [107]. In addition, LDs from C. reinhardtii were associated not only with the ER membrane but also with the outer membrane of the chloroplasts [108]. Available data therefore suggest that in microalgae, cytoplasmic LDs are produced in the ER. However, additional studies are required to arrive at a better understanding of the mechanism of LD formation in the ER, and to determine whether chloroplasts play a role in this process.
6. TAG degradation pathways in microalgae
As previously mentioned, the economic feasibility of using microalgae as a source of FA for biodiesel depends to a great extent on improvements in the production process, one of the most significant challenges being to increase lipid yields. The selection of oleaginous strains and the search for different culture strategies to increase lipid biosynthesis constitute viable approaches; blocking the competing pathways of carbohydrate formation may be another. However, both the approaches give rise to a decrease in strain growth [22]. Lipid catabolism has largely been ignored as a relevant pathway for engineering, despite being a competing pathway to lipid biogenesis [109]. However, lipases were identified in C. reinhardtii [66, 72, 73] and T. pseudonana [110]. In the case of C. reinhardtii, CrLIP1 could restore the lipase activity in a Saccharomyces cerevisiae lipase-null strain. In addition, C. reinhardtii TAG content decreased with increasing expression of CrLIP1 under stress conditions, hydrolyzing mainly DAG and polar lipids [72]. In agreement with this, a galactoglycerolipid lipase was found in C. reinhardtii. The main substrates of the enzyme are galactoglycerolipids and the main products are FAs employed for TAG synthesis [74]. In C. reinhardtii, phospholipid:diacylglycerol acyltransferase (PDAT) demonstrated both transacylation and acyl hydrolase activities, and could mediate membrane lipid turnover and TAG synthesis [66]. The activity of a multifunctional lipase/phospholipase/acyltransferase of T. pseudonana lowered lipid content under both normal and stress conditions [110]. A single gene for PDAT was identified in H. pluvialis, though no functional analysis was performed for the gene in this strain [47]. Further studies are required to gain insight into the molecular mechanisms involved in TAG degradation, which could be the key to increased lipid yields in microalgae.
7. Microalgae-based biorefineries
In the context of improving the economic feasibility of microalgae-based biodiesel, a closer look should be taken at the large amounts of TAG produced in some oleaginous microalgae alongside high-value products such as carbohydrates (cellulose and starch); proteins and other high-value compounds like pigments, antioxidants (i.e., β-carotene, astaxanthin), and vitamins [2, 3, 8, 9], all of which may have commercial application in different industrial sectors. Some potentially high-value products found in microalgae are described in Table 2.
Recent advances in microalgal-derived high-value products.
8. Conclusion
Oleaginous microalgae grown under stress conditions can synthesize and accumulate large quantities of FA, mainly in the form of TAG, which can then be converted into biodiesel. Although microalgae constitute a promising source of clean energy, knowledge gaps continue to abound in almost all aspects of FA and TAG metabolism for these microorganisms, including the precise identity of enzymatic machinery, the relative contributions of each enzyme and their precise regulation. Further studies are therefore required to establish the exact metabolic pathways involved in FA and TAG synthesis, accumulation, and degradation in order to develop genetic engineering strategies to obtain microalgal strains with improved capacity to convert their biomass into TAG and other valuable co-products.
Acknowledgments
The authors are grateful for research funds provided by the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET); Agencia Nacional de Promoción Científica y Tecnológica, PICTs 2014-0893, 2013-0987, and 2015-0800; and the Secretaría de Ciencia y Tecnología de la Universidad Nacional del Sur, PGIs 24/B226 and 24/B196. Paola Scodelaro Bilbao, Gabriela Salvador and Patricia Leonardi are Research Members of CONICET.
\n',keywords:"fatty acids, triacylglycerides, lipid metabolism, microalgae",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/54316.pdf",chapterXML:"https://mts.intechopen.com/source/xml/54316.xml",downloadPdfUrl:"/chapter/pdf-download/54316",previewPdfUrl:"/chapter/pdf-preview/54316",totalDownloads:2009,totalViews:789,totalCrossrefCites:4,totalDimensionsCites:5,hasAltmetrics:0,dateSubmitted:"September 27th 2016",dateReviewed:"January 16th 2017",datePrePublished:null,datePublished:"June 21st 2017",dateFinished:null,readingETA:"0",abstract:"Microalgae were originally considered as sources of long-chain polyunsaturated fatty acids (PUFAs), mainly for aquaculture purposes. However, based on the fact that their fatty acids (FA), stored as triacylglycerides (TAG), can be converted into biodiesel via a transesterification reaction, several microalgal species have emerged over the last decade as promising feedstocks for biofuel production. Elucidation of microalgae FA and TAG metabolic pathways is therefore becoming a cutting-edge field for developing transgenic algal strains with improved lipid accumulation ability. Furthermore, many of the biomolecules produced by microalgae can also be exploited. In this chapter, we describe recent advances in the field of FA and TAG pathways in microalgae, focusing in particular on the enzymes involved in FA and TAG synthesis, their accumulation in lipid droplets, and their degradation. Mention is made of potentially high-value products that can be obtained from microalgae, and possible molecular targets for enhancing FA and TAG production are outlined. A summary is provided of transcriptomics, proteomics, and metabolomics of the above-mentioned pathways in microalgae. Understanding the relation between anabolic and catabolic lipid enzyme pathways will provide new insights into biodiesel production and other valuable biomolecules obtained from microalgae.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/54316",risUrl:"/chapter/ris/54316",book:{slug:"fatty-acids"},signatures:"Paola Scodelaro Bilbao, Gabriela A. Salvador and Patricia I. Leonardi",authors:[{id:"50699",title:"Dr.",name:"Patricia",middleName:"Ines",surname:"Leonardi",fullName:"Patricia Leonardi",slug:"patricia-leonardi",email:"leonardi@uns.edu.ar",position:null,institution:{name:"Universidad Nacional del Sur",institutionURL:null,country:{name:"Argentina"}}},{id:"196637",title:"Dr.",name:"Paola",middleName:null,surname:"Scodelaro Bilbao",fullName:"Paola Scodelaro Bilbao",slug:"paola-scodelaro-bilbao",email:"pscodela@criba.edu.ar",position:null,institution:null},{id:"196638",title:"Dr.",name:"Gabriela",middleName:null,surname:"Salvador",fullName:"Gabriela Salvador",slug:"gabriela-salvador",email:"salvador@criba.edu.ar",position:null,institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. FA and TAG biosynthetic pathways in microalgae",level:"1"},{id:"sec_3",title:"3. Transcriptomics, proteomics, and metabolomics",level:"1"},{id:"sec_4",title:"4. Molecular targets for enhancing lipid biosynthesis",level:"1"},{id:"sec_5",title:"5. TAG-accumulation in lipid droplets",level:"1"},{id:"sec_6",title:"6. TAG degradation pathways in microalgae",level:"1"},{id:"sec_7",title:"7. Microalgae-based biorefineries",level:"1"},{id:"sec_8",title:"8. Conclusion",level:"1"},{id:"sec_9",title:"Acknowledgments",level:"1"}],chapterReferences:[{id:"B1",body:'Misra N, Kumar Panda P, Kumar Parida B, Kanta Mishra B. Phylogenomic study of lipid genes involved in microalgal biofuel production: candidate gene mining and metabolic pathway analyses. Evol Bioinform Online. 2012; 8: 545-564. doi: 10.4137/EBO.S10159.'},{id:"B2",body:'Brennan L, Owende P. Biofuels from microalgae: a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energy Rev. 2010; 14: 557-577. doi: 10.1016/j.rser.2009.10.009.'},{id:"B3",body:'Mata TM, Martinsa AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev. 2012; 14: 217-232. doi: 10.1016/j.rser.2009.07.020.'},{id:"B4",body:'Foild N, Foild G, Sánchez M, Mittelbach M, Hackel S. J. curcas L. as a source for the production of biofuel in Nicaragua. Bioresour Technol. 1996; 58: 77-82.'},{id:"B5",body:'Rashid U, Anwar F, Moser BR, Knothe G. Moringa oleifera oil: a possible source of biodiesel. Bioresour Technol. 2008; 99: 8175-8179. doi: 10.1016/j.biortech.2008.03.066.'},{id:"B6",body:'Ahmad M, Zafar M, Azam A, Sadia H, Khan MA, Sultana S. Techno-economic aspects of biodiesel production and characterization. Energy sources. 2011; 6: 166-177.'},{id:"B7",body:'Yu WL, Ansari W, Schoepp NG, Hannon MJ, Mayfield SP, Burkart MD. Modifications of the metabolic pathways of lipid and triacylglycerol production in microalgae. Microb Cell Fact. 2011; 10: 91. doi: 10.1186/1475-2859-10-91.'},{id:"B8",body:'Williams PJ le B, Laurens LML. Microalgae as biodiesel and biomass feedstocks: review and analysis of the biochemistry, energetics and economics. Energy Environ. Sci. 2010; 3: 554-590. doi: 10.1039/B924978H.'},{id:"B9",body:'Borowitzka MA. High-value products from microalgae—their development and commercialization. J Appl Phycol. 2013; 25: 743-756. doi:10.1007/s10811-013-9983-9.'},{id:"B10",body:'Lam MK, Lee KT. Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv. 2012; 30: 673-690. doi: 10.1016/j.biotechadv.2011.11.008.'},{id:"B11",body:'Brown AP, Slabas AR, Rafferty JB. Fatty acid biosynthesis in plants-metabolic pathways, structure and organization. Lipids in Photosynthesis. 2010; 30: 11-34. doi: 10.1007/978-90-481-2863-1_2.'},{id:"B12",body:'Fan J, Cui Y, Wan M, Wang W, Li Y. Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotech Biofuels. 2014; 7: 17. doi: 10.1186/1754-6834-7-17.'},{id:"B13",body:'Avidan O, Brandis A, Rogachev I, Pick U. Enhanced acetyl-CoA production is associated with increased triglyceride accumulation in the green alga Chlorella desiccate. J Exp Botany. 2015; 66: 1-11. doi:10.1093/jxb/erv166.'},{id:"B14",body:'Chen JW, Liu W-J, Hu D-X, Wang X, Balamurugan S, Alimujiang A, Yang W-D, Liu J-S, Li H-Y. Identification of a malonyl CoA-acyl carrier protein transacylase and its regulatory role in fatty acid biosynthesis in oleaginous microalga Nannochloropsis oceanica. Biotech Appl Biochem. 2016. doi: 10.1002/bab.1531.'},{id:"B15",body:'Lei A, Chen H, Shen G, Hu Z, Chen L, Wang J. Expression of fatty acid synthesis genes and fatty acid accumulation in Haematococcus pluvialis under different stressors. Biotechnol Biofuels. 2012; 5: 18. doi: 10.1186/1754-6834-5-18.'},{id:"B16",body:'Morales-Sánchez D, Kyndtb J, Ogdenc K, Martinez A. Toward an understanding of lipid and starch accumulation in microalgae: a proteomic study of Neochloris oleoabundans cultivated under N-limited heterotrophic conditions. Algal Res. 2016; 20: 22-34. doi: 10.1016/j.algal.2016.09.006.'},{id:"B17",body:'Gu H, Jinkerson RE, Davies FK, Sisson LA, Schneider PE, Posewitz MC. Modulation of medium-chain fatty acid synthesis in Synechococcus sp. PCC 7002 by replacing FabH with a Chaetoceros Ketoacyl-ACP synthase. Front Plant Sci. 2016; 7: 690. doi: 10.3389/fpls.2016.00690.'},{id:"B18",body:'Peng KT, Zheng CN, Xue J, Chen XY, Yang WD, Liu JS, Bai W, Li HY. Delta 5 fatty acid desaturase upregulates the synthesis of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum. J Agric Food Chem. 2014; 62: 8773-8776. doi: 10.1021/jf5031086.'},{id:"B19",body:'Petrie JR, Liu Q, Mackenzie AM, Shrestha P, Mansour MP, Robert SS, Frampton DF, Blackburn SI, Nichols PD, Singh SP. Isolation and characterisation of a high-efficiency desaturase and elongases from microalgae for transgenic LC-PUFA production. Mar Biotechnol. 2010; 12: 430-438. doi: 10.1007/s10126-009-9230-1.'},{id:"B20",body:'Pereira SL, Leonard AE, Huang YS, Chuang LT, Mukerji P. Identification of two novel microalgal enzymes involved in the conversion of the omega3-fatty acid, eicosapentaenoic acid, into docosahexaenoic acid. Biochem J. 2004; 384: 357-366.'},{id:"B21",body:'Cook O, Hildebrand M. Enhancing LC-PUFA production in Thalassiosira pseudonana by overexpressing the endogenous fatty acid elongase genes. J Appl Phycol. 2016; 28: 897-905.'},{id:"B22",body:'Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 2008; 54: 621-639. doi: 10.1111/j.1365-313X.2008.03492.x.'},{id:"B23",body:'Liu B, Benning C. Lipid metabolism in microalgae distinguishes itself. Curr Opin Biotechnol. 2013; 24: 300-309. doi: 10.1016/j.copbio.2012.08.008.'},{id:"B24",body:'Damiani MC, Popovich CA, Constenla D, Leonardi PI. Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock. Bioresour Technol. 2010; 101: 3801-3807. doi: 10.1016/j.biortech.2009.12.136.'},{id:"B25",body:'Popovich CA, Damiani C, Constenla D, Leonardi PI. Lipid quality of Skeletonema costatum and Navicula gregaria from South Atlantic Coast (Argentina): evaluation of its suitability as biodiesel feedstock. J Appl Phycol. 2012; 24: 1-10. doi:10.1007/s10811-010-9639-y.'},{id:"B26",body:'Popovich CA, Damiani MC, Constenla D, Martínez AM, Freije H, Giovanardi M, Pancaldi S, Leonardi PI. Neochloris oleoabundans grown in enriched natural seawater for biodiesel feedstock: evaluation of its growth and biochemical composition. Bioresour Technol. 2012; 114: 287-293. doi: 10.1016/j.biortech.2012.02.121.'},{id:"B27",body:'Bongiovani N, Popovich C, Martínez A, Freije H, Constenla D, Leonardi PI. In vivo measurements to estimate culture status and neutral lipid accumulation in Nannochloropsis oculata CCALA 978: implications for biodiesel oil studies. Algological Studies. 2013; 142: 3-16 doi: 10.1127/1864-1318/2013/0104.'},{id:"B28",body:'Martín L, Popovich C, Martinez A, Damiani C, Leonardi PI. Oil assessment of Halamphora coffeaeformis diatom growing in a hybrid two-stage system for biodiesel production. Renewable Energy. 2016; 92: 127-135. doi: 10.1016/j.renene.2016.01.078'},{id:"B29",body:'Rismani-Yazdi H, Haznedaroglu BZ, Hsin C, Peccia J. Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnol Biofuels. 2012; 5: 74. doi: 10.1186/1754-6834-5-74.'},{id:"B30",body:'Yu ET, Zendejas FJ, Lane PD, Gaucher S, Simmons BA, Lane TW. Triacylglycerol accumulation and profiling in the model diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum (Bacillariophyceae) during starvation. J Appl Phycol. 2009; 21: 669-681. doi: 10.1007/s10811-008-9400-y.'},{id:"B31",body:'Guarnieri MT, Nag A, Smolinski SL, Darzins A, Seibert M, et al. Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga. PLoS One. 2011; 6: e25851. doi: 10.1371/journal.pone.0025851.'},{id:"B32",body:'Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol. 2011; 90: 1429-1441. doi:10.1007/s00253-011-3170-1.'},{id:"B33",body:'Tang H, Chen M, Garcia ME, Abunasser N, Ng KY, Salley SO. Culture of microalgae Chlorella minutissima for biodiesel feedstock production. Biotechnol Bioeng. 2011; 108: 2280-2287. doi: 10.1002/bit.23160.'},{id:"B34",body:'Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH. Effect of light intensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus. Bioresour Technol. 2013; 143: 1-9. doi: 10.1016/j.biortech.2013.05.105.'},{id:"B35",body:'Gong Y, Guo X, Wan X, Liang Z, Jiang M. Triacylglycerol accumulation and change in fatty acid content of four marine oleaginous microalgae under nutrient limitation and at different culture ages. J Basic Microbiol. 2013; 53: 29-36. doi: 10.1002/jobm.201100487.'},{id:"B36",body:'Yu SY, Li H, Tong M, Ouyang LL, Zhou ZG. Identification of a Δ6 fatty acid elongase gene for arachidonic acid biosynthesis localized to the endoplasmic reticulum in the green microalga Myrmecia incisa Reisigl. Gene. 2012; 493: 219-227. doi: 10.1016/j.gene.2011.11.053.'},{id:"B37",body:'Aguirre AM, Bassi A. Investigation of biomass concentration, lipid production, and cellulose content in Chlorella vulgaris cultures using response surface methodology. Biotechnol Bioeng. 2013; 110: 2114-2122. doi: 10.1002/bit.24871.'},{id:"B38",body:'Simionato D, Block MA, La Rocca N, Jouhet J, Maréchal E, Finazzi G, Morosinotto T. The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus. Eukaryot Cell. 2013; 12: 665-676. doi: 10.1128/EC.00363-12.'},{id:"B39",body:'La Russa M, Bogen C, Uhmeyer A, Doebbe A, Filippone E, Kruse O, Mussgnug JH. Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii. J Biotechnol. 2012; 162: 13-20. doi: 10.1016/j.jbiotec.2012.04.006.'},{id:"B40",body:'Roleda MY, Slocombe SP, Leakey RJ, Day JG, Bell EM, Stanley MS. Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresour Technol. 2013; 129: 439-449. doi: 10.1016/j.biortech.2012.11.043.'},{id:"B41",body:'Adarme-Vega TC, Lim DKY, Timmins M, Vernen F, Li Y, Schenk PM. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb Cell Fact. 2012; 11: 96. doi: 10.1186/1475-2859-11-96.'},{id:"B42",body:'Coleman RA, Lee DP. Enzymes of triacylglycerol synthesis and their regulation. Prog Lipid Res. 2004; 43: 134-176. doi: 10.1016/S0163-7827(03)00051-1.'},{id:"B43",body:'Courchesne NMD, Parisien A, Wang B, Lan CQ. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol. 2009; 141: 31-41. doi: 10.1016/j.jbiotec.2009.02.018.'},{id:"B44",body:'Xu J, Zheng Z, Zou J. A membrane-bound glycerol-3-phosphate acyltransferase from Thalassiosira pseudonana regulates acyl composition of glycerolipids. Botany. 2009; 87: 544-551. doi: 10.1139/B08-145.'},{id:"B45",body:'Misra N, Panda PK, Parida BK. Agrigenomics for microalgal biofuel production: an overview of various bioinformatics resources and recent studies to link OMICS to bioenergy and bioeconomy. OMICS. 2013; 17: 537-549. doi: 10.1089/omi.2013.0025.'},{id:"B46",body:'Chapman KD, Ohlrogge JB. Compartmentation of triacylglycerol accumulation in plants. J Biol Chem. 2012; 287: 2288-2294. doi: 10.1074/jbc.R111.290072.'},{id:"B47",body:'Gwak Y, Hwang YS, Wang B, Kim M, Jeong J, Lee CG, Hu Q, Han D, Jin E. Comparative analyses of lipidomes and transcriptomes reveal a concerted action of multiple defensive systems against photooxidative stress in Haematococcus pluvialis. J Exp Bot. 2014; 65: 4317-4334. doi: 10.1093/jxb/eru206.'},{id:"B48",body:'Yamaoka Y, Achard D, Jang S, Legéret B, Kamisuki S, Ko D, Schulz-Raffelt M, Kim Y, Song WY, Nishida I, Li-Beisson Y, Lee Y. Identification of a Chlamydomonas plastidial 2-lysophosphatidic acid acyltransferase and its use to engineer microalgae with increased oil content. Plant Biotechnol J. 2016; 14: 2158-2167. doi: 10.1111/pbi.12572.'},{id:"B49",body:'Deng XD, Cai JJ, Fei XW. Involvement of phosphatidate phosphatase in the biosynthesis of triacylglycerols in Chlamydomonas reinhardtii. J Zhejiang Univ Sci B. 2013; 14: 1121-1131. doi: 10.1631/jzus.B1300180.'},{id:"B50",body:'Csaki LS, Dwyer JR, Fong LG, Tontonoz P, Young SG, Reue K. Lipins, lipinopathies, and the modulation of cellular lipid storage and signaling. Progr Lipid Res. 2013; 52: 305-316. doi: 10.1016/j.plipres.2013.04.001.'},{id:"B51",body:'Radakovits R, Jinkerson RE, Darzins A, Posewitz MC. Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell. 2010; 9: 486-501. doi: 10.1128/EC.00364-09.'},{id:"B52",body:'Taylor DC, Katavic V, Zou J, MacKenzie SL, Keller WA, An J, Friesen W, Barton DL, Pedersen KK, Giblin EM, et al. Field testing of transgenic rapeseed cv. Hero transformed with a yeast sn-2 acyltransferase results in increased oil content, erucic acid content and seed yield. Mol Breed. 2002; 8: 317-322. DOI: 10.1023/A:1015234401080.'},{id:"B53",body:'Lardizabal KD, Thompson GA, Hawkins D. Diacylglycerol acyl transferase proteins. In Official Gazette of the United States Patent and Trademark Office Patents Edited by: Office TUSPaT. USA, 2006.'},{id:"B54",body:'Lung SC, Weselake RJ. Diacylglycerol acyltransferase: a key mediator of plant triacylglycerol synthesis. Lipids. 2006; 41: 1073-1088.'},{id:"B55",body:'Chen JE, Smith AG. A look at diacylglycerol acyltransferases (DGATs) in algae. J Biotechnol. 2012; 162: 28-39. doi: 10.1016/j.jbiotec.2012.05.009.'},{id:"B56",body:'Wagner M, Hoppe K, Czabany T, Heilmann M, Daumb G, Feussner I, Fulda M. Identification and characterization of an acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) gene from the microalga O. tauri. Plant Physiol Biochem. 2010; 48: 407-416. doi: 10.1016/j.plaphy.2010.03.008.'},{id:"B57",body:'Xu J, Kazachkov M, Jia Y, Zheng Z, Zou J. Expression of a type 2 diacylglycerol acyltransferase from Thalassiosira pseudonana in yeast leads to incorporation of docosahexaenoic acid β-oxidation intermediates into triacylglycerol. FEBS J. 2013; 280: 6162-6172. doi: 10.1111/febs.12537.'},{id:"B58",body:'Fan J, Cui Y, Wan M, Wang W, Li Y. Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol Biofuels. 2014; 7: 17. doi: 10.1186/1754-6834-7-17.'},{id:"B59",body:'Xiao Y, Zhang J, Cui J, Feng Y, Cui Q. Metabolic profiles of Nannochloropsis oceanica IMET1 under nitrogen-deficiency stress. Bioresour Technol. 2013; 130: 731-738. doi: 10.1016/j.biortech.2012.11.116.'},{id:"B60",body:'Miller R, Wu G, Deshpande RR, Vieler A, Gärtner K, Li X, Moellering ER, Zäuner S, Cornish AJ, Liu B, Bullard B, Sears BB, Kuo M-H, Hegg EL, Shachar-Hill Y, Shiu S-H, Benning C. Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol. 2010; 154: 1737-1752. doi: 10.1104/pp.110.165159.'},{id:"B61",body:'Msanne J, Xu D, Konda AR, Casas-Mollano JA, Awada T, Cahoon EB, Cerutti H. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry. 2012; 75: 50-59. doi: 10.1016/j.phytochem.2011.12.007.'},{id:"B62",body:'Boyle NR, Page MD, Liu B, Blaby IK, Casero D, Kropat J, Cokus SJ, Hong-Hermesdorf A, Shaw J, Karpowicz SJ, Gallaher SD, Johnson S, Benning C, Pellegrini M, Grossman A, Merchant SS. Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J Biol Chem. 2012; 287: 15811-1525. doi: 10.1074/jbc.M111.334052.'},{id:"B63",body:'Guihéneuf F, Leu S, Zarka A, Khozin-Goldberg I, Khalilov I, Boussiba S. Cloning and molecular characterization of a novel acyl-CoA:diacylglycerol acyltransferase 1-like gene (PtDGAT1) from the diatom Phaeodactylum tricornutum. FEBS J. 2011: 278: 3651-3666. doi: 10.1111/j.1742-4658.2011.08284.x.'},{id:"B64",body:'Niu YF, Zhang MH, Li DW, Yang WD, Liu JS, Bai WB, Li HY. Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum. Mar Drugs. 2013; 11: 4558-4569. doi: 10.3390/md11114558.'},{id:"B65",body:'Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S. Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA. 2000; 97: 6487-6492. doi: 10.1073/pnas.120067297.'},{id:"B66",body:'Yoon K, Han D, Li Y, Sommerfeld M, Hu Q. Phospholipid:diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii. Plant Cell. 2012; 24: 3708-3724. doi: 10.1105/tpc.112.100701.'},{id:"B67",body:'La Russa M, Bogen C, Uhmeyer A, Doebbe A, Filippone E, Kruse O, Mussgnug JH. Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii. J Biotechnol. 2012; 162: 13-20. doi: 10.1016/j.jbiotec.2012.04.006.'},{id:"B68",body:'Moellering ER, Benning C. RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot Cell. 2010; 9: 97-106. doi: 10.1128/EC.00203-09.'},{id:"B69",body:'Nguyen HM, Baudet M, Cuiné S, Adriano JM, Barthe D, Billon E, Bruley C, Beisson F, Peltier G, Ferro M, Li-Beisson Y. Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism. Proteomics. 2011; 11: 4266-4273. doi: 10.1002/pmic.201100114.'},{id:"B70",body:'Kato N, Dong T, Bailey M, Lum T, Ingram D. Triacylglycerol mobilization is suppressed by brefeldin A in Chlamydomonas reinhardtii. Plant Cell Physiol. 2013; 54: 1585-1599. doi:10.1093/pcp/pct103.'},{id:"B71",body:'Merchant SS, Kropat J, Liu B, Shaw J, Warakanont J. TAG, you\'re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr Opin Biotechnol. 2012; 23: 352-363. doi: 10.1016/j.copbio.2011.12.001.'},{id:"B72",body:'Li X, Benning C, Kuoc M-H. Rapid Triacylglycerol Turnover in Chlamydomonas reinhardtii Requires a Lipase with Broad Substrate. Eukaryot Cell. 2012; 11: 1451-1462. doi: 10.1128/EC.00268-12.'},{id:"B73",body:'Li X, Moellering ER, Liu B, Johnny C, Fedewa M, Sears BB, Kuo MH, Benning C. A galactoglycerolipid lipase is required for triacylglycerol accumulation and survival following nitrogen deprivation in Chlamydomonas reinhardtii. Plant Cell. 2012; 24: 4670-4686. doi: 10.1105/tpc.112.105106.'},{id:"B74",body:'Guarnieri MT, Pienkos PT. Algal omics: unlocking bioproduct diversity in algae cell factories. Photosynth Res. 2014; 123: 255-263. doi: 10.1007/s11120-014-9989-4.'},{id:"B75",body:'Jamers A, Blust R, De Coen W. Omics in algae: paving the way for a systems biological understanding of algal stress phenomena? Aquat Toxicol. 2009; 92: 114-121. doi: 10.1016/j.aquatox.2009.02.012.'},{id:"B76",body:'Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, Peccia J. Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genomics. 2011; 12: 148. doi: 10.1186/1471-2164-12-148.'},{id:"B77",body:'Guarnieri MT, Nag A, Yang S, Pienkos PT. Proteomic analysis of Chlorella vulgaris: potential targets for enhanced lipid accumulation. J Proteomics. 2013; 93: 245-253. doi: 10.1016/j.jprot.2013.05.025.'},{id:"B78",body:'Lv H, Qu G, Qi X, Lu L, Tian C, Ma Y. Transcriptome analysis of Chlamydomonas reinhardtii during the process of lipid accumulation. Genomics. 2013; 101: 229-237. doi: 10.1016/j.ygeno.2013.01.004.'},{id:"B79",body:'Wase N, Black PN, Stanley BA, DiRusso CC. Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling. J Proteome Res. 2014; 13: 1373-1396. doi: 10.1021/pr400952z.'},{id:"B80",body:'Valledor L, Furuhashi T, Recuenco-Muñoz L, Wienkoop S, Weckwerth W. System-level network analysis of nitrogen starvation and recovery in Chlamydomonas reinhardtii reveals potential new targets for increased lipid accumulation. Biotechnol Biofuels. 2014; 7: 171. doi: 10.1186/s13068-014-0171-1.'},{id:"B81",body:'Yang ZK, Ma YH, Zheng JW, Yang WD, Liu JS, Li HY. Proteomics to reveal metabolic network shifts towards lipid accumulation following nitrogen deprivation in the diatom Phaeodactylum tricornutum. J Appl Phycol. 2014; 26: 73-82. doi: 10.1007/s10811-013-0050-3.'},{id:"B82",body:'Li Y, Han F, Xu H, Mu J, Chen D, Feng B, Zeng H. Potential lipid accumulation and growth characteristic of the green alga Chlorella with combination cultivation mode of nitrogen (N) and phosphorus (P). Bioresour Technol. 2014; 174: 24-32. doi: 10.1016/j.biortech.2014.09.142.'},{id:"B83",body:'Garnier M, Carrier G, Rogniaux H, Nicolau E, Bougaran G, Saint-Jean B, Cadoret JP. Comparative proteomics reveals proteins impacted by nitrogen deprivation in wild-type and high lipid-accumulating mutant strains of Tisochrysis lutea. J Proteomics. 2014; 105: 107-120. doi: 10.1016/j.jprot.2014.02.022.'},{id:"B84",body:'Guihéneuf F, Khan A, Tran L-S. Genetic Engineering: a promising tool to engender physiological, biochemical, and molecular stress resilience in green microalgae. Front Plant Sci. 2016; 7: 400 doi: 10.3389/fpls.2016.00400.'},{id:"B85",body:'Roesler K, Shintani D, Savage L, Boddupalli S, Ohlrogge J. Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol. 1997; 113:75-81.'},{id:"B86",body:'Dehesh K, Tai H, Edwards P, Byrne J, Jaworski JG. Overexpression of 3-ketoacyl-acyl-carrier protein synthase IIIs in plants reduces the rate of lipid synthesis. Plant Physiol. 2001; 125:1103-14.'},{id:"B87",body:'Xue J, Wang L, Zhang L, Balamurugan S, Li D-W, Zeng H, Yang W-D, Liu J-S, Li H-Y. The pivotal role of malic enzyme in enhancing oil accumulation in green microalga Chlorella pyrenoidosa. Microb Cell Fact. 2016; 15: 120. doi: 10.1186/s12934-016-0519-2.'},{id:"B88",body:'Iskandarov U, Sitnik S, Shtaida N, Cohen SD,Stefan, Khozin-Goldberg L, Cohen Z, Boussiba S. Cloning and characterization of a GPAT-like gene from the microalga Lobosphaera incisa (Trebouxiophyceae): overexpression in Chlamydomonas reinhardtii enhances TAG production. J Appl Phycol. 2016; 28: 907-919. doi:10.1007/s10811-015-0634-1.'},{id:"B89",body:'Niu Y-F, Wang X, Hu D-X, Balamurugan S, Li D-W, Yang W-D, Liu J-S, Li H-Y. Molecular characterization of a glycerol-3-phosphate acyltransferase reveals key features essential for triacylglycerol production in Phaeodactylum tricornutum. Biotechnol Biofuels. 2016; 9: 60. doi: 10.1186/s13068-016-0478-1.'},{id:"B90",body:'Hsieh H-J, Su C-H, Chien L-J. Accumulation of Lipid Production in Chlorella minutissima by triacylglycerol biosynthesis-related genes cloned from Saccharomyces cerevisiae and Yarrowia lipolytica. J Microbiol. 2012; 50: 526-534. doi: 10.1007/s12275-012-2041-5.'},{id:"B91",body:'Yamaoka Y, Achard D, Jang S, Legéret B, Kamisuki S, Ko D, Schulz‐Raffelt M, Kim Y, Song W-Y, Nishida I, Li‐Beisson Y, Lee Y. Identification of a Chlamydomonas plastidial 2‐lysophosphatidic acid acyltransferase and its use to engineer microalgae with increased oil content. Plant Biotechnol J. 2016; 14: 2158-2167. doi: 10.1111/pbi.12572'},{id:"B92",body:'Li DW, Cen SY, Liu YH, Balamurugan S, Zheng XY, Alimujiang A, Yang WD, Liu JS, Li HY. A type 2 diacylglycerol acyltransferase accelerates the triacylglycerol biosynthesis in heterokont oleaginous microalga Nannochloropsis oceanica. J Biotechnol. 2016; 229: 65-71. doi: 10.1016/j.jbiotec.2016.05.005.'},{id:"B93",body:'Chen C-X, Sun Z, Cao H-S, Fang F-L, Ouyang L-L, Zhou Z-G. Identification and characterization of three genes encoding acyl-CoA: diacylglycerol acyltransferase (DGAT) from the microalga Myrmecia incisa. Algal Res. 2015; 12: 280-288. doi: 10.1016/j.algal.2015.09.007.'},{id:"B94",body:'Chungjatupornchai W, Watcharawipas A. Diacylglycerol acyltransferase type 2 cDNA from the oleaginous microalga Neochloris oleoabundans: cloning and functional characterization. J Appl Phycol. 2015; 27: 1499. doi:10.1007/s10811-014-0448-6'},{id:"B95",body:'Deng X-D, Gu B, Li Y-J, Hu X-W, Guo J-C, Fei X-W. The roles of acyl-CoA:diacylglycerol acyltransferase 2 genes in the biosynthesis of triacylglycerols by the green algae Chlamydomonas reinhardtii. Mol Plant. 2012; 5: 945-947. doi: 10.1631/jzus.B1300180.'},{id:"B96",body:'Murphy D. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res. 2001; 40, 325-438.'},{id:"B97",body:'Farese RV Jr, Walther TC. Lipid droplets finally get a little R-E-S-P-E-C-T. Cell. 2009; 139: 855-860. doi: 10.1016/j.cell.2009.11.005.'},{id:"B98",body:'Fujimoto T, Parton RG. Not just fat: the structure and function of the lipid droplet. Cold Spring Harb Perspect Biol. 2011; 3: a004838. doi: 10.1101/cshperspect.a004838.'},{id:"B99",body:'Vieler A, Brubaker SB, Vick B, Benning C. A lipid droplet protein of Nannochloropsis with functions partially analogous to plant oleosins. Plant Physiol. 2012; 158: 1562-1569. doi: 10.1104/pp.111.193029'},{id:"B100",body:'Kimmel AR, Brasaemle DL, McAndrews-Hil M, Sztalryd C, Londos C. Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J Lipid Res. 2010; 51: 468-471. doi: 10.1194/jlr.R000034.'},{id:"B101",body:'Subramanian V, Rothenberg A, Gomez C, Cohen AW, Garcia A, Bhattacharyya S, Shapiro L, Dolios G, Wang R, Lisanti MP, et al. Perilipin A mediates the reversible binding of CGI-58 to lipid droplets in 3T3-L1 adipocytes. J Biol Chem. 2004; 279: 42062-42071. doi: 10.1074/jbc.M407462200.'},{id:"B102",body:'Jolivet P, Roux E, D\'Andrea S, Davanture M, Negroni L, Zivy M, Chardot T. Protein composition of oil bodies in Arabidopsis thaliana ecotype WS. Plant Physiol Biochem. 2004; 42: 501-509. doi: 10.1016/j.plaphy.2004.04.006.'},{id:"B103",body:'Peled E, Leu S, Zarka A, Weiss M, Pick U, Khozin-Goldberg I, Boussiba S. Isolation of a novel oil globule protein from the green alga Haematococcus pluvialis (Chlorophyceae). Lipids. 2011; 46: 851-861. doi: 10.1007/s11745-011-3579-4.'},{id:"B104",body:'Ouyang LL, Chen SH, Li Y, Zhou ZG. Transcriptome analysis reveals unique C4-like photosynthesis and oil body formation in an arachidonic acid-rich microalga Myrmecia incisa Reisigl H4301. BMC Genomics. 12013; 4: 396. DOI: 10.1186/1471-2164-14-396.'},{id:"B105",body:'Nojima D, Yoshino T, Maeda Y, Tanaka M, Nemoto M, Tanaka T. Proteomics analysis of oil body-associated proteins in the oleaginous diatom. J Proteome Res. 2013; 12: 5293-5301.'},{id:"B106",body:'Maeda Y, Sunaga Y, Yoshino T, Tanaka T. Oleosome-associated protein of the oleaginous diatom Fistulifera solaris contains an endoplasmic reticulum-targeting signal sequence. Mar Drugs. 2014; 12: 3892-3903. doi: 10.3390/md12073892.'},{id:"B107",body:'Kim S, Kim H, Ko D, Yamaoka Y, Otsuru M,Kawai-Yamada M, Toshiki Ishikawa T, Oh H-M, Nishida I, Li-Beisson Y, Lee Y. Rapid Induction of Lipid Droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A. PLoS One 2013; 8: e81978. doi: 10.1371/journal.pone.0081978.'},{id:"B108",body:'Goodson C, Roth R, Wang ZT, Goodenough U. Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost. Eukariot Cell. 2011; 10: 1592-1606. doi: 10.1128/EC.05242-11.'},{id:"B109",body:'Solovchenko AE. Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses. Russian J Plant Physiol. 2012; 59: 167-176. doi:10.1134/S1021443712020161.'},{id:"B110",body:'Trentacoste EM, Shrestha RP, Smith SR, Glé C, Hartmann AC, Hildebrand M, Gerwick WH. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci USA. 2013; 110: 19748-19753. doi: 10.1073/pnas.1309299110.'},{id:"B111",body:'Barnech Bielsa G, Popovich CA, Rodríguez MC, Martín LA, Matulewicz MC, Leonardi PI. Simultaneous production assessment of triacylglycerols for biodiesel and exopolysaccharides as valuable co-products in Navicula cincta. Algal Res. 2016; 15: 120-128. doi: 10.1016/j.algal.2016.01.013.'},{id:"B112",body:'Ho S-H, Huang S-W, Chen C-Y, Hasunuma T, Kondo A, Chang J-S. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol. 2013; 135: 191-198. Doi: 10.1016/j.biortech.2012.10.015.'},{id:"B113",body:'Kumar VB, Pulidindi IN, Kinel-Tahan Y, Yehoshua Y, Gedanken A. Evaluation of the potential of chlorella vulgaris for bioethanol production. Energy Fuels. 2016; 30: 3161-3166. doi: 10.1021/acs.energyfuels.6b00253.'},{id:"B114",body:'Trabelsi L, Chaieb O, Mnari A, Abid-Essafi S, Aleya L. Partial characterization and antioxidant and antiproliferative activities of the aqueous extracellular polysaccharides from the thermophilic microalgae Graesiella sp. BMC Complement Altern Med. 2016; 16: 210. doi: 10.1186/s12906-016-1198-6.'},{id:"B115",body:'Scodelaro Bilbao PG, Damiani C, Salvador GA, Leonardi PI. Haematococcus pluvialis as a source of fatty acids and phytosterols: potential nutritional and biological implications. J Appl Phycol. 2016; 28: 3283. doi:10.1007/s10811-016-0899-z.'},{id:"B116",body:'Francavilla M, Trotta P, Luque R. Phytosterols from Dunaliella tertiolecta and Dunaliella salina: a potentially novel industrial application. Bioresour Technol. 2010; 101: 4144-4150. doi: 10.1016/j.biortech.2009.12.139.'},{id:"B117",body:'Ryckebosch E, Bruneel C, Termote-Verhalle R, Goiris K, Muylaert K, Foubert I. Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem. 2014; 160: 393-400. doi: 10.1016/j.foodchem.2014.03.087.'},{id:"B118",body:'Waghmare AG, Manoj K. Salve MK, Jean Guy LeBlanc JG, Shalini S. Arya SS Concentration and characterization of microalgae proteins from Chlorella pyrenoidosa. Biores Bioproc. 2016; 3:16. doi: 10.1186/s40643-016-0094-8.'},{id:"B119",body:'Tibbetts SM, Whitney CG, MacPherson MJ, Bhatti S, Banskota AH, Stefanova R, McGinn PJ. Biochemical characterization of microalgal biomass from freshwater species isolated in Alberta, Canada for animal feed applications. Algal Res. 2015; 11: 435-447. doi: 10.1016/j.algal.2014.11.011.'},{id:"B120",body:'Bong SC, Loh SP. A study of fatty acid composition and tocopherol content of lipid extracted from marine microalgae, Nannochloropsis oculata and Tetraselmis suecica, using solvent extraction and supercritical fluid extraction. Int Food Res J. 2013; 20: 721-729.'},{id:"B121",body:'Safafar H, van Wagenen J, Møller P, Jacobsen C. Carotenoids, phenolic compounds and tocopherols contribute to the antioxidative properties of some microalgae species grown on industrial wastewater. Mar Drugs. 2015; 13: 7339-7356. doi: 10.3390/md13127069.'},{id:"B122",body:'Shah MR, Liang Y, Cheng JJ, Daroch M. Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Front Plant Sci. 2016; 7: 531. doi: 10.3389/fpls.2016.00531.'},{id:"B123",body:'Fu W, Paglia G, Magnúsdóttir M, Steinarsdóttir EA, Gudmundsson S, Palsson BO, Andrésson OS, Brynjólfsson S. Effects of abiotic stressors on lutein production in the green microalga Dunaliella salina. Microb Cell Fact. 2014; 13: 3. doi: 10.1186/1475-2859-13-3.'},{id:"B124",body:'Borodina A, Ladygina LV. The Effect of cultivation conditions on accumulation of carotenoids in Phaeodactylum tricornutum bohl. (Bacillariophyta). Int J Algae. 2013; 15: 274-284. doi: 10.1615/InterJAlgae.v15.i3.70'},{id:"B125",body:'Borowitzka MA. Carotenoid production using microorganisms. In Cohen Z, Ratledge C (eds). Single Cells Oils: Microbial and Algal Oils. AOCS Press, Urbana. 2010; 225-240.'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Paola Scodelaro Bilbao",address:"pscodela@criba.edu.ar",affiliation:'
Laboratorio de Estudios Básicos y Biotecnológicos en Algas (LEBBA), Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino de La Carrindanga, Bahía Blanca, Argentina
Universidad Nacional del Sur (UNS), Departamento de Biología, Bioquímica y Farmacia, San Juan, Bahía Blanca, Argentina
Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino de La Carrindanga, Bahía Blanca, Argentina
'},{corresp:null,contributorFullName:"Gabriela A. Salvador",address:null,affiliation:'
Universidad Nacional del Sur (UNS), Departamento de Biología, Bioquímica y Farmacia, San Juan, Bahía Blanca, Argentina
Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino de La Carrindanga, Bahía Blanca, Argentina
'},{corresp:null,contributorFullName:"Patricia I. Leonardi",address:null,affiliation:'
Laboratorio de Estudios Básicos y Biotecnológicos en Algas (LEBBA), Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino de La Carrindanga, Bahía Blanca, Argentina
Universidad Nacional del Sur (UNS), Departamento de Biología, Bioquímica y Farmacia, San Juan, Bahía Blanca, Argentina
'}],corrections:null},book:{id:"5769",title:"Fatty Acids",subtitle:null,fullTitle:"Fatty Acids",slug:"fatty-acids",publishedDate:"June 21st 2017",bookSignature:"Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/5769.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"54169",title:"Importance of Fatty Acids in Physiopathology of Human Body",slug:"importance-of-fatty-acids-in-physiopathology-of-human-body",totalDownloads:3439,totalCrossrefCites:9,signatures:"Katalin Nagy and Ioana-Daria Tiuca",authors:[{id:"178879",title:"Ph.D.",name:"Ioana",middleName:null,surname:"Gug",fullName:"Ioana Gug",slug:"ioana-gug"},{id:"204524",title:"Ms.",name:"Katalin",middleName:null,surname:"Nagy",fullName:"Katalin Nagy",slug:"katalin-nagy"}]},{id:"54883",title:"Correction of Fatty Acids Metabolism as Treatment Strategy of Autism",slug:"correction-of-fatty-acids-metabolism-as-treatment-strategy-of-autism",totalDownloads:1127,totalCrossrefCites:0,signatures:"Afaf El‐Ansary and Hanan Qasem",authors:[{id:"179201",title:"Prof.",name:"Afaf",middleName:null,surname:"El-Ansary",fullName:"Afaf El-Ansary",slug:"afaf-el-ansary"},{id:"204495",title:"MSc.",name:"Hanan",middleName:null,surname:"Qasem",fullName:"Hanan Qasem",slug:"hanan-qasem"}]},{id:"54931",title:"Fatty Acids on Osteoclastogenesis",slug:"fatty-acids-on-osteoclastogenesis",totalDownloads:982,totalCrossrefCites:0,signatures:"Sergio Montserrat‐de la Paz, Rocio Abia, Beatriz Bermudez, Sergio\nLopez and Francisco JG Muriana",authors:[{id:"48465",title:"Dr.",name:"Francisco J.G.",middleName:null,surname:"Muriana",fullName:"Francisco J.G. Muriana",slug:"francisco-j.g.-muriana"},{id:"57720",title:"Dr.",name:"Sergio",middleName:null,surname:"Lopez",fullName:"Sergio Lopez",slug:"sergio-lopez"},{id:"196796",title:"Dr.",name:"Sergio",middleName:null,surname:"Montserrat-De La Paz",fullName:"Sergio Montserrat-De La Paz",slug:"sergio-montserrat-de-la-paz"},{id:"197426",title:"Dr.",name:"Beatriz",middleName:null,surname:"Bermudez",fullName:"Beatriz Bermudez",slug:"beatriz-bermudez"},{id:"197427",title:"Prof.",name:"Rocio",middleName:null,surname:"Abia",fullName:"Rocio Abia",slug:"rocio-abia"}]},{id:"55084",title:"Short-Chain Fatty Acids Are Antineoplastic Agents",slug:"short-chain-fatty-acids-are-antineoplastic-agents",totalDownloads:1007,totalCrossrefCites:0,signatures:"Mohammad Salah Abaza, Aneela Afzal and Mohammad Afzal",authors:[{id:"195929",title:"Prof.",name:"Mohammad",middleName:null,surname:"Afzal",fullName:"Mohammad Afzal",slug:"mohammad-afzal"},{id:"196155",title:"Mrs.",name:"Aneela",middleName:null,surname:"Afzal",fullName:"Aneela Afzal",slug:"aneela-afzal"},{id:"204547",title:"Dr.",name:"Mohammad",middleName:null,surname:"Salah Abaza",fullName:"Mohammad Salah Abaza",slug:"mohammad-salah-abaza"}]},{id:"55693",title:"Fatty Acids and Their Analogues as Anticancer Agents",slug:"fatty-acids-and-their-analogues-as-anticancer-agents",totalDownloads:1174,totalCrossrefCites:1,signatures:"Jubie Selvaraj",authors:[{id:"196822",title:"Dr.",name:"Jubie",middleName:null,surname:"Selvaraj",fullName:"Jubie Selvaraj",slug:"jubie-selvaraj"}]},{id:"54812",title:"Fatty Acids’ Profiles of Aquatic Organisms: Revealing the Impacts of Environmental and Anthropogenic Stressors",slug:"fatty-acids-profiles-of-aquatic-organisms-revealing-the-impacts-of-environmental-and-anthropogenic-s",totalDownloads:1165,totalCrossrefCites:1,signatures:"Ana M.M. Gonçalves, João C. Marques and Fernando Gonçalves",authors:[{id:"195882",title:"Dr.",name:"Ana Marta",middleName:null,surname:"Gonçalves",fullName:"Ana Marta Gonçalves",slug:"ana-marta-goncalves"},{id:"197482",title:"Prof.",name:"João Carlos",middleName:null,surname:"Marques",fullName:"João Carlos Marques",slug:"joao-carlos-marques"},{id:"197483",title:"Prof.",name:"Fernando",middleName:null,surname:"Gonçalves",fullName:"Fernando Gonçalves",slug:"fernando-goncalves"}]},{id:"54316",title:"Fatty Acids from Microalgae: Targeting the Accumulation of Triacylglycerides",slug:"fatty-acids-from-microalgae-targeting-the-accumulation-of-triacylglycerides",totalDownloads:2009,totalCrossrefCites:4,signatures:"Paola Scodelaro Bilbao, Gabriela A. Salvador and Patricia I. Leonardi",authors:[{id:"50699",title:"Dr.",name:"Patricia",middleName:"Ines",surname:"Leonardi",fullName:"Patricia Leonardi",slug:"patricia-leonardi"},{id:"196637",title:"Dr.",name:"Paola",middleName:null,surname:"Scodelaro Bilbao",fullName:"Paola Scodelaro Bilbao",slug:"paola-scodelaro-bilbao"},{id:"196638",title:"Dr.",name:"Gabriela",middleName:null,surname:"Salvador",fullName:"Gabriela Salvador",slug:"gabriela-salvador"}]},{id:"54572",title:"Fatty Acids in Fish",slug:"fatty-acids-in-fish",totalDownloads:2165,totalCrossrefCites:4,signatures:"Oğuz Taşbozan and Mahmut Ali Gökçe",authors:[{id:"198279",title:"Dr.",name:"Oğuz",middleName:null,surname:"Taşbozan",fullName:"Oğuz Taşbozan",slug:"oguz-tasbozan"},{id:"198310",title:"Prof.",name:"Mahmut Ali",middleName:null,surname:"Gökçe",fullName:"Mahmut Ali Gökçe",slug:"mahmut-ali-gokce"}]},{id:"54344",title:"Viable Alternatives Study for Reusing Lipids from Microalgae Biomass Present in the Generated Sludge in the Supply Water Treatment Processes",slug:"viable-alternatives-study-for-reusing-lipids-from-microalgae-biomass-present-in-the-generated-sludge",totalDownloads:878,totalCrossrefCites:1,signatures:"Livia de Oliveira Ruiz Moreti, Rosa Maria Ribeiro, Letícia Nishi and\nRosângela Bergamasco",authors:[{id:"135924",title:"Dr.",name:"Leticia",middleName:null,surname:"Nishi",fullName:"Leticia Nishi",slug:"leticia-nishi"},{id:"197206",title:"Dr.",name:"Rosangela",middleName:null,surname:"Bergamasco",fullName:"Rosangela Bergamasco",slug:"rosangela-bergamasco"},{id:"197416",title:"Dr.",name:"Rosa Maria",middleName:"Maria",surname:"Ribeiro",fullName:"Rosa Maria Ribeiro",slug:"rosa-maria-ribeiro"},{id:"197419",title:"MSc.",name:"Livia O.R.",middleName:null,surname:"Moreti",fullName:"Livia O.R. Moreti",slug:"livia-o.r.-moreti"}]},{id:"54881",title:"Fatty Acids in Veterinary Medicine and Research",slug:"fatty-acids-in-veterinary-medicine-and-research",totalDownloads:1121,totalCrossrefCites:0,signatures:"Siobhan Simpson, Alison Mostyn and Catrin S. Rutland",authors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",fullName:"Catrin Rutland",slug:"catrin-rutland"},{id:"206390",title:"Dr.",name:"Alison",middleName:null,surname:"Mostyn",fullName:"Alison Mostyn",slug:"alison-mostyn"},{id:"206391",title:"Dr.",name:"Siobhan",middleName:null,surname:"Simpson",fullName:"Siobhan Simpson",slug:"siobhan-simpson"}]},{id:"54464",title:"The Synthesis of Milk Medium-Chain Fatty Acids in Mammary Gland",slug:"the-synthesis-of-milk-medium-chain-fatty-acids-in-mammary-gland",totalDownloads:1119,totalCrossrefCites:0,signatures:"Jiangjiang Zhu and Jun Luo",authors:[{id:"195955",title:"Dr.",name:"Jiangjiang",middleName:null,surname:"Zhu",fullName:"Jiangjiang Zhu",slug:"jiangjiang-zhu"}]},{id:"55741",title:"Free Fatty Acids Quantification in Dairy Products",slug:"free-fatty-acids-quantification-in-dairy-products",totalDownloads:1954,totalCrossrefCites:0,signatures:"Kieran N. Kilcawley and David T. Mannion",authors:[{id:"169279",title:"Dr.",name:"Kieran",middleName:null,surname:"Kilcawley",fullName:"Kieran Kilcawley",slug:"kieran-kilcawley"},{id:"205660",title:"Mr.",name:"David",middleName:null,surname:"Mannion",fullName:"David Mannion",slug:"david-mannion"}]},{id:"54406",title:"Genetic Factors that Determine the Meat Fatty Acids Composition",slug:"genetic-factors-that-determine-the-meat-fatty-acids-composition",totalDownloads:1174,totalCrossrefCites:0,signatures:"Marcos Vinicius Antunes de Lemos, Angelica S.C. Pereira, Inaê\nCristina Regatieri, Fabieli Louise Braga Feitosa and Fernando Baldi",authors:[{id:"196743",title:"Dr.",name:"Marcos",middleName:null,surname:"Lemos",fullName:"Marcos Lemos",slug:"marcos-lemos"},{id:"204669",title:"Dr.",name:"Inaê Cristina",middleName:null,surname:"Regatieri",fullName:"Inaê Cristina Regatieri",slug:"inae-cristina-regatieri"},{id:"204670",title:"Dr.",name:"Angelica S. C.",middleName:null,surname:"Pereira",fullName:"Angelica S. C. Pereira",slug:"angelica-s.-c.-pereira"},{id:"204671",title:"Dr.",name:"Fabieli Louise",middleName:null,surname:"Braga Feitosa",fullName:"Fabieli Louise Braga Feitosa",slug:"fabieli-louise-braga-feitosa"},{id:"204672",title:"Dr.",name:"Fernando",middleName:null,surname:"Baldi",fullName:"Fernando Baldi",slug:"fernando-baldi"}]}]},relatedBooks:[{type:"book",id:"2553",title:"Lipid Peroxidation",subtitle:null,isOpenForSubmission:!1,hash:"b39734aa940b2d63ae5e8773d3dd5280",slug:"lipid-peroxidation",bookSignature:"Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/2553.jpg",editedByType:"Edited by",editors:[{id:"196544",title:"Prof.",name:"Angel",surname:"Catala",slug:"angel-catala",fullName:"Angel Catala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"38477",title:"Lipid Peroxidation: Chemical Mechanism, Biological Implications and Analytical Determination",slug:"lipid-peroxidation-chemical-mechanism-biological-implications-and-analytical-determination",signatures:"Marisa Repetto, Jimena Semprine and Alberto Boveris",authors:[{id:"36452",title:"Dr.",name:"Marisa",middleName:"Gabriela",surname:"Repetto",fullName:"Marisa Repetto",slug:"marisa-repetto"}]},{id:"38517",title:"Lipid Oxidation in Homogeneous and Micro-Heterogeneous Media in Presence of Prooxidants, Antioxidants and Surfactants",slug:"lipid-oxidation-in-homogeneous-and-micro-heterogeneous-media-in-presence-of-prooxidants-antioxidants",signatures:"Vessela D. Kancheva and Olga T. Kasaikina",authors:[{id:"139075",title:"Prof.",name:"Vessela",middleName:"Deneva",surname:"Kancheva",fullName:"Vessela Kancheva",slug:"vessela-kancheva"},{id:"142775",title:"Prof.",name:"Olga",middleName:null,surname:"Kasaikina",fullName:"Olga Kasaikina",slug:"olga-kasaikina"}]},{id:"38468",title:"Lipid Peroxidation End-Products as a Key of Oxidative Stress: Effect of Antioxidant on Their Production and Transfer of Free Radicals",slug:"lipid-peroxidation-end-products-as-a-key-of-oxidative-stress-effect-of-antioxidant-on-their-producti",signatures:"Hanaa Ali Hassan Mostafa Abd El-Aal",authors:[{id:"140134",title:"Prof.",name:"Hanaa",middleName:"Ali",surname:"Hassan",fullName:"Hanaa Hassan",slug:"hanaa-hassan"}]},{id:"38472",title:"Iron Overload and Lipid Peroxidation in Biological Systems",slug:"iron-overload-and-lipid-peroxidation-in-biological-systems",signatures:"Paula M. González, Natacha E. Piloni and Susana Puntarulo",authors:[{id:"36192",title:"Dr.",name:"Susana",middleName:null,surname:"Puntarulo",fullName:"Susana Puntarulo",slug:"susana-puntarulo"}]},{id:"38469",title:"Trends in the Evaluation of Lipid Peroxidation Processes",slug:"trends-in-the-evaluation-of-lipid-peroxidation-processes",signatures:"Mihaela Ilie and Denisa Margină",authors:[{id:"47029",title:"Dr.",name:"Denisa",middleName:null,surname:"Margina",fullName:"Denisa Margina",slug:"denisa-margina"},{id:"49035",title:"Dr.",name:"Mihaela",middleName:null,surname:"Ilie",fullName:"Mihaela Ilie",slug:"mihaela-ilie"}]},{id:"38473",title:"Automation of Methods for Determination of Lipid Peroxidation",slug:"automation-of-methods-for-determination-of-lipid-peroxidation",signatures:"Jiri Sochor, Branislav Ruttkay-Nedecky, Petr Babula, Vojtech Adam, Jaromir Hubalek and Rene Kizek",authors:[{id:"16205",title:"Dr.",name:"Rene",middleName:null,surname:"Kizek",fullName:"Rene Kizek",slug:"rene-kizek"},{id:"16208",title:"Dr.",name:"Petr",middleName:null,surname:"Babula",fullName:"Petr Babula",slug:"petr-babula"},{id:"30300",title:"Dr.",name:"Jaromír",middleName:null,surname:"Hubálek",fullName:"Jaromír Hubálek",slug:"jaromir-hubalek"},{id:"142669",title:"Dr.",name:"Jiri",middleName:null,surname:"Sochor",fullName:"Jiri Sochor",slug:"jiri-sochor"},{id:"142676",title:"Dr.",name:"Branislav",middleName:null,surname:"Ruttkay-Nedecky",fullName:"Branislav Ruttkay-Nedecky",slug:"branislav-ruttkay-nedecky"},{id:"142677",title:"Dr.",name:"Vojtech",middleName:null,surname:"Adam",fullName:"Vojtech Adam",slug:"vojtech-adam"}]},{id:"38478",title:"Liposomes as a Tool to Study Lipid Peroxidation",slug:"liposomes-as-a-tool-to-study-lipid-peroxidation",signatures:"Biljana Kaurinovic and Mira Popovic",authors:[{id:"139916",title:"Prof.",name:"Mira",middleName:null,surname:"Popovic",fullName:"Mira Popovic",slug:"mira-popovic"},{id:"142369",title:"Prof.",name:"Biljana",middleName:null,surname:"Kaurinovic",fullName:"Biljana Kaurinovic",slug:"biljana-kaurinovic"}]},{id:"38457",title:"Liposomes as a Tool to Study Lipid Peroxidation in Retina",slug:"liposomes-as-a-tool-to-study-lipid-peroxidation-in-retina",signatures:"Natalia Fagali and Angel Catalá",authors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",fullName:"Angel Catala",slug:"angel-catala"},{id:"139988",title:"Dr.",name:"Natalia",middleName:null,surname:"Fagali",fullName:"Natalia Fagali",slug:"natalia-fagali"}]},{id:"38461",title:"The Effect of Plant Secondary Metabolites on Lipid Peroxidation and Eicosanoid Pathway",slug:"the-effect-of-plant-secondary-metabolites-on-lipid-peroxidation-and-eicosanoid-pathway",signatures:"Neda Mimica-Dukić, Nataša Simin, Emilija Svirčev, Dejan Orčić, Ivana Beara, Marija Lesjak and Biljana Božin",authors:[{id:"78766",title:"Dr.",name:"Biljana",middleName:null,surname:"Bozin",fullName:"Biljana Bozin",slug:"biljana-bozin"},{id:"140273",title:"Prof.",name:"Neda",middleName:null,surname:"Mimica-Dukic",fullName:"Neda Mimica-Dukic",slug:"neda-mimica-dukic"},{id:"142754",title:"MSc.",name:"Natasa",middleName:null,surname:"Simin",fullName:"Natasa Simin",slug:"natasa-simin"},{id:"142756",title:"BSc.",name:"Emilija",middleName:null,surname:"Jovin",fullName:"Emilija Jovin",slug:"emilija-jovin"},{id:"142757",title:"Dr.",name:"Dejan",middleName:null,surname:"Orcic",fullName:"Dejan Orcic",slug:"dejan-orcic"},{id:"156386",title:"Dr.",name:"Ivana",middleName:null,surname:"Beara",fullName:"Ivana Beara",slug:"ivana-beara"},{id:"156387",title:"Dr.",name:"Marija",middleName:null,surname:"Lesjak",fullName:"Marija Lesjak",slug:"marija-lesjak"}]},{id:"38471",title:"Repeatedly Heated Vegetable Oils and Lipid Peroxidation",slug:"repeatedly-heated-vegetable-oils-and-lipid-peroxidation",signatures:"Kamsiah Jaarin and Yusof Kamisah",authors:[{id:"140497",title:"Dr.",name:"Kamsiah",middleName:null,surname:"Jaarin",fullName:"Kamsiah Jaarin",slug:"kamsiah-jaarin"},{id:"140500",title:"Associate Prof.",name:"Yusof",middleName:null,surname:"Kamisah",fullName:"Yusof Kamisah",slug:"yusof-kamisah"}]},{id:"38456",title:"Effects of Hydroperoxide in Lipid Peroxidation on Dough Fermentation",slug:"effects-of-hydroperoxide-in-lipid-peroxidation-on-dough-fermentation",signatures:"Toshiyuki Toyosaki",authors:[{id:"139920",title:"Prof.",name:"Toshiyuki",middleName:null,surname:"Toyosaki",fullName:"Toshiyuki Toyosaki",slug:"toshiyuki-toyosaki"}]},{id:"38460",title:"Modification of Fatty Acid Composition in Meat Through Diet: Effect on Lipid Peroxidation and Relationship to Nutritional Quality – A Review",slug:"modification-of-fatty-acid-composition-in-meat-through-diet-effect-on-lipid-peroxidation-and-relatio",signatures:"Gema Nieto and Gaspar Ros",authors:[{id:"141016",title:"Dr.",name:"Gema",middleName:null,surname:"Nieto",fullName:"Gema Nieto",slug:"gema-nieto"},{id:"141332",title:"Prof.",name:"Gaspar",middleName:null,surname:"Ros",fullName:"Gaspar Ros",slug:"gaspar-ros"}]},{id:"38458",title:"Lipid Peroxidation After Ionizing Irradiation Leads to Apoptosis and Autophagy",slug:"lipid-peroxidation-after-ionizing-irradiation-leads-to-apoptosis-and-autophagy",signatures:"Juliann G. Kiang, Risaku Fukumoto and Nikolai V. Gorbunov",authors:[{id:"157452",title:"Dr.",name:"Juliann",middleName:null,surname:"Kiang",fullName:"Juliann Kiang",slug:"juliann-kiang"},{id:"158709",title:"Dr.",name:"Risaku",middleName:null,surname:"Fukumoto",fullName:"Risaku Fukumoto",slug:"risaku-fukumoto"},{id:"158710",title:"Dr.",name:"Nikolai",middleName:null,surname:"Gorbunov",fullName:"Nikolai Gorbunov",slug:"nikolai-gorbunov"}]},{id:"38467",title:"Tissue Occurrence of Carbonyl Products of Lipid Peroxidation and Their Role in Inflammatory Disease",slug:"tissue-occurrence-of-carbonyl-products-of-lipid-peroxidation-and-their-role-in-inflammatory-disease",signatures:"Maria Armida Rossi",authors:[{id:"148504",title:"Prof.",name:"Maria",middleName:null,surname:"Rossi",fullName:"Maria Rossi",slug:"maria-rossi"}]},{id:"38465",title:"The Role of Physical Exercise on Lipid Peroxidation in Diabetic Complications",slug:"the-role-of-physical-exercise-on-lipid-peroxidation-in-diabetic-complications",signatures:"Yaşar Gül Özkaya",authors:[{id:"142843",title:"Dr.",name:"Y. Gul",middleName:null,surname:"Ozkaya",fullName:"Y. Gul Ozkaya",slug:"y.-gul-ozkaya"}]},{id:"38466",title:"Reactive Oxygen Species Act as Signaling Molecules in Liver Carcinogenesis",slug:"reactive-oxygen-species-act-as-signaling-molecules-in-liver-carcinogenesis",signatures:"María Cristina Carrillo, María de Luján Alvarez, Juan Pablo Parody, Ariel Darío Quiroga and María Paula Ceballos",authors:[{id:"142215",title:"PhD.",name:"Maria Cristina",middleName:null,surname:"Carrillo",fullName:"Maria Cristina Carrillo",slug:"maria-cristina-carrillo"},{id:"142855",title:"Dr.",name:"Maria De Luján",middleName:null,surname:"Alvarez",fullName:"Maria De Luján Alvarez",slug:"maria-de-lujan-alvarez"},{id:"142858",title:"BSc.",name:"Juan Pablo",middleName:null,surname:"Parody",fullName:"Juan Pablo Parody",slug:"juan-pablo-parody"},{id:"142859",title:"Dr.",name:"Ariel Darío",middleName:null,surname:"Quiroga",fullName:"Ariel Darío Quiroga",slug:"ariel-dario-quiroga"},{id:"142861",title:"BSc.",name:"Maria Paula",middleName:null,surname:"Ceballos",fullName:"Maria Paula Ceballos",slug:"maria-paula-ceballos"}]},{id:"38459",title:"Lipid Peroxidation and Antioxidants in Arterial Hypertension",slug:"lipid-peroxidation-and-antioxidants-in-arterial-hypertension",signatures:"Teresa Sousa, Joana Afonso, António Albino-Teixeira and Félix Carvalho",authors:[{id:"131252",title:"Prof.",name:"Félix",middleName:null,surname:"Carvalho",fullName:"Félix Carvalho",slug:"felix-carvalho"},{id:"140800",title:"Prof.",name:"António",middleName:null,surname:"Albino-Teixeira",fullName:"António Albino-Teixeira",slug:"antonio-albino-teixeira"},{id:"142410",title:"Prof.",name:"Teresa",middleName:null,surname:"Sousa",fullName:"Teresa Sousa",slug:"teresa-sousa"},{id:"142411",title:"MSc.",name:"Joana",middleName:null,surname:"Afonso",fullName:"Joana Afonso",slug:"joana-afonso"}]},{id:"38476",title:"Lipid Peroxidation and Reperfusion Injury in Hypertrophied Hearts",slug:"lipid-peroxidation-and-reperfusion-injury-in-hypertrophied-hearts",signatures:"Juliana C. Fantinelli, Ignacio A. Pérez Núñez, Luisa F. González Arbeláez and Susana M. Mosca",authors:[{id:"98613",title:"Dr.",name:"Susana",middleName:null,surname:"Mosca",fullName:"Susana Mosca",slug:"susana-mosca"}]},{id:"38455",title:"Lipid Peroxidation by-Products and the Metabolic Syndrome",slug:"lipid-peroxidation-by-products-and-the-metabolic-syndrome",signatures:"Nicolas J. Pillon and Christophe O. Soulage",authors:[{id:"139163",title:"Dr.",name:"Nicolas",middleName:"Jean",surname:"Pillon",fullName:"Nicolas Pillon",slug:"nicolas-pillon"},{id:"139829",title:"Dr.",name:"Christophe",middleName:null,surname:"Soulage",fullName:"Christophe Soulage",slug:"christophe-soulage"}]},{id:"38475",title:"Region Specific Vulnerability to Lipid Peroxidation in the Human Central Nervous System",slug:"region-specific-vulnerability-to-lipid-peroxidation-in-the-human-central-nervous-system",signatures:"Alba Naudí, Mariona Jové, Victòria Ayala, Omar Ramírez, Rosanna Cabré, Joan Prat, Manuel Portero-Otin, Isidre Ferrer and Reinald Pamplona",authors:[{id:"139955",title:"Prof.",name:"Reinald",middleName:null,surname:"Pamplona",fullName:"Reinald Pamplona",slug:"reinald-pamplona"}]},{id:"38474",title:"Role of Lipid Peroxidation in the Pathogenesis of Age-Related Cataract",slug:"role-of-lipid-peroxidation-in-the-pathogenesis-of-age-related-cataract",signatures:"Bojana Kisic, Dijana Miric, Lepsa Zoric and Aleksandra Ilic",authors:[{id:"139383",title:"Prof.",name:"Bojana",middleName:null,surname:"Kisic",fullName:"Bojana Kisic",slug:"bojana-kisic"},{id:"150937",title:"Prof.",name:"Dijana",middleName:null,surname:"Miric",fullName:"Dijana Miric",slug:"dijana-miric"},{id:"150938",title:"Prof.",name:"Lepsa",middleName:null,surname:"Zoric",fullName:"Lepsa Zoric",slug:"lepsa-zoric"},{id:"150939",title:"Dr.",name:"Aleksandra",middleName:null,surname:"Ilic",fullName:"Aleksandra Ilic",slug:"aleksandra-ilic"}]},{id:"38462",title:"Lipid Peroxidation in Hepatic Fibrosis",slug:"lipid-peroxidation-in-hepatic-fibrosis",signatures:"Ichiro Shimizu, Noriko Shimamoto, Katsumi Saiki, Mai Furujo and Keiko Osawa",authors:[{id:"142420",title:"Dr.",name:"Ichiro",middleName:null,surname:"Shimizu",fullName:"Ichiro Shimizu",slug:"ichiro-shimizu"}]},{id:"38463",title:"Use of CoA Biosynthesis Modulators and Selenoprotein Model Substance in Correction of Brain Ischemic and Reperfusion Injuries",slug:"use-of-coa-biosynthesis-modulators-and-selenoprotein-model-substance-in-correction-of-brain-ischemic",signatures:"Nina P. Kanunnikova, Natalya Z. Bashun and Andrey G. Moiseenok",authors:[{id:"142487",title:"Prof.",name:"Nina",middleName:null,surname:"Kanunnikova",fullName:"Nina Kanunnikova",slug:"nina-kanunnikova"},{id:"142491",title:"Dr.",name:"Natalya",middleName:null,surname:"Bashun",fullName:"Natalya Bashun",slug:"natalya-bashun"},{id:"142503",title:"Prof.",name:"Andrey",middleName:null,surname:"Moiseenok",fullName:"Andrey Moiseenok",slug:"andrey-moiseenok"}]},{id:"38464",title:"Lipid Peroxidation and Polybrominated Diphenyl Ethers – A Toxicological Perspective",slug:"lipid-peroxidation-and-polybrominated-diphenyl-ethers-a-toxicological-perspective",signatures:"Mary C. Vagula and Elisa M. Konieczko",authors:[{id:"141806",title:"Dr.",name:"Mary",middleName:null,surname:"Vagula",fullName:"Mary Vagula",slug:"mary-vagula"},{id:"150947",title:"Prof.",name:"Elisa",middleName:null,surname:"Konieczko",fullName:"Elisa Konieczko",slug:"elisa-konieczko"}]}]}]},onlineFirst:{chapter:{type:"chapter",id:"72270",title:"Public Health Effects of Wood Fuel in Africa: Bioenergy from Tree Commodities as a Sustainable Remedy",doi:"10.5772/intechopen.90603",slug:"public-health-effects-of-wood-fuel-in-africa-bioenergy-from-tree-commodities-as-a-sustainable-remedy",body:'
1. Introduction
Renewable energy remains the most dominant energy source in Africa with wood sources accounting for a large share of biomass energy. Although wood energy accounts for only 10% of global primary energy, about 2.8 million people depend on wood fuel for cooking and heating [1, 2]. The extraction and use of wood for energy is prominent in developing countries with more than 70% of households in Sub-Saharan Africa depending on wood energy. Access to modern energy remains a major problem in developing countries; however, poorer countries suffer more from energy access problems [3]. Poor access to modern energy rates in less developed countries (LDCs) and Sub-Saharan (SSA) countries remain high at 91 and 83%, respectively. In SSA, the access to electricity and modern energy remains a major constraint with 560 and 625 peopled deprived, respectively. Poor access to modern energy equally varies between urban and rural areas in Africa; in SSA, 66% of the population use solid fuels for heating and cooking, 13% use charcoal while kerosene, electricity and LPG follow with 7, 6, and 5%, respectively [4].
The global use of wood fuel for cooking and heating has devastating negative health effects with 2 million deaths annually from pneumonia, cancer and chronic lung diseases due to exposure to pollution from biomass combustion. Women and children are most affected by these diseases with about 44% of these deaths being children and 60% of adult death being women [3]. More than 50% of deaths from pneumonia, cancer and chronic lung diseases in LDCs and SSA is due to combustion of solid fuels, while only 38% for developing countries in general [3]. Household air pollution (HAP) is a major driver of global health emergencies with about 4.3 million premature deaths; non-communicable diseases (NCDs) account for 3.8 million deaths (WHO, 2016). HAP accounts for more than 33% deaths related to chronic obstructive pulmonary in both low- and middle-income countries, 17% of deaths related to cancer, 15% of ischaemic heart disease and 25% stroke-related deaths (WHO, 2016). This chapter seeks to review the different diseases caused by incomplete combustion of biomass for energy and how bioenergy from tree commodities can be a sustainable remedy.
2. Solid fuelwood combustion and health effects in rural Africa
Several scientific publications have reported significant health effects of wood fuel combustion for cooking especially through open fire in rural areas [5, 6]. Childhood respiratory infections such as pneumonia and otitis media have been highly associated with fuel wood combustion [5]. Among women, there is a high association between fuelwood combustion and high risk of chronic bronchitis and chronic obstructive pulmonary disease, especially asthma and cataract. Indoor combustion of fuelwood has been called the ‘kitchen killer’ because about 1.6 million deaths have been registered as a result, accounting for 2.7% of global disease burden (WHO, 2007).
The combustion process generates smoke; this smoke contains a complex mixture of numerous particles and substances composed of varied organic and inorganic compounds [7, 8]. These compounds are toxic and dangerous to the health system of human beings; they contain carbon monoxide (CO), nitrogen and sulphur oxide (NO2, CO2), aldehydes, particulate matter PM (PM10), volatile organic compounds, chlorinated dioxins, free radicals and polycyclic aromatic hydrocarbons [8]. The health effects on children less than 5 years and women are not homogenous. Respiratory infections such as pneumonia are common in young children less than 5 years, while chronic obstructive pulmonary disease (CORP) and lung cancer are common in women. Other health effects such as adverse pregnancy and eye diseases are equally common [9, 10].
To better appreciate the health effects of fuelwood combustion, a review of literature for over 17 papers was done. The objective was to capture the most prevalent health outcomes as a result of indoor and outdoor fuelwood combustion. The table below (Table 1) shows the results of the reviewed papers in a summary form [11].
The impact of cooking with firewood on respiratory health
Indonesia
A unique Indonesian household survey
Individuals living in households that cook with firewood have lower lung capacity than those that cook with cleaner fuels; impact being larger on women and children
Effect of indoor air pollution from biomass and solid fuel combustion on symptoms of preeclampsia/eclampsia in Indian women
India
Logistic regression
Women living in households using biomass and solid fuels have two times higher likelihood of reporting preeclampsia/eclampsia symptoms than those living in households using cleaner fuels
PM10 emissions from cooking fuels in Nigerian households and their impact on women and children
Ibadan, Nigeria
Qualitative analysis
Majority of the respondents complained of health-related issues during and after cooking with cough, breathing problems, skin and eyes irritation being the most common
Cough, breathing problems, skin and eyes irritation
Health impact on women using solid cooking fuels in rural area of Cuttack District, Odisha
Cuttack District, Odisha
Cross-sectional study with the use of Chi-square test
Exposure to smoke from cooking fuel is significantly associated with the prevalence symptoms of headache, dry cough and hypertension
Headache, dry cough and hypertension
Table 1.
Review of health effects of fuelwood combustion on users.
The exposure to smoke due to cooking fuel accelerates respiratory-related illnesses such as dry cough and nose irritation; further analysis equally underscores high association with headache, dry cough and hypertension [25]. The review above shows significant health effects related to respiratory-related diseases, of the 17 studies, 13 underscore respiratory tract infections as major outcome of fuelwood combustion. The most common forms of the respiratory tract infections are dry cough, breathing problems, neurologic problems, cardiopulmonary, cardiovascular diseases, asthma and lung cancer [20, 23, 25].
Lower life expectancy has equally been reported by Badamassi et al. [24]; they underscore that combustion of particulate matter (PM2.5) has adverse effect on life expectancy in the long run, with a greater negative effect on female life expectancy. Their study equally shows higher life expectancy for exposed households in urban areas and countries with higher GDP per capita; this can be explained by the fact that these groups can have better access to health care. Cardiovascular diseases have equally been reported to be associated with fuelwood combustion [19]. Other diseases such as asthma, stroke and immune system impairment have equally been attributed to indoor and outdoor pollution as a result of fuelwood combustion [19].
3. Bioenergy as a sustainable and health energy source
The precedent section underscores that about 700 million (82%) of Africans are at high risk of household air pollution due to the use of solid-fuel for cooking with an average 581,000 deaths annually [26]. Globally, the demand for solid-fuel for cooking has reduced considerably, average 50–40%; however, Africa stagnates at 80% over the decades. Escalating fuel cost, population growth and supply interruptions have accounted for reduced demand in modern fuel demand. Even when households use modern fuel for cooking, they often combine with solid-fuel cooking stoves [27, 28]. The production of energy from biological waste using modern production techniques has been promoted as a way out of this public health crisis. Significant efforts have been made through different cross-country projects aimed at producing clean and modern bioenergy such as liquid and gel biofuels. Efforts to promote more clean energy sources such as ethanol stoves and clean cooking stoves have not met required objectives due to poor market penetration and high subsidisation cost [26]. However, in West Africa, ethanol businesses have registered steady growth with over 200,000 stoves reported in different countries over 3 years.
Biogas projects in East Africa played an important role in changing mindsets and providing a cleaner alternative for households. In Kenya, three biogas operating units have been constructed by the Taita Taveta Wildlife Forum (TTWF) as part of a pilot project aimed at improving access to clean energy. This is promoted because biogas produces clean energy, with less indoor and outdoor pollution, thus reduced chances of respiratory tract infections and heart infections. The biogas production process equally generates nitrogen and liquids rich in nutrients that can serve as fertilizers.
The use of bioenergy as an alternative to solid-fuels is encouraged because through the different conversion techniques, energy is generated which enhances good combustion with limited emission of air pollutants. This form of energy is good both for indoor and outdoor use at urban and rural areas. The promotion of this form of energy is equally backed by the constant availability of biomass for bioenergy conversion, with by-products that are equally good for crop cultivation.
4. Bioenergy from tree commodities as a sustainable remedy
Tree commodities commonly referred to as ‘money trees’ are trees grown principally for cash by many African countries. These trees are often the principal source of income for most farmers in Sub-Saharan Africa. In Africa, cocoa, coffee, oil palm, industrial round wood, cashew, almonds and walnuts are the principal tree commodities. These tree commodities are a source of income to millions of Africans and accounts for tons of agricultural biomass produced annually. Agricultural biomass after extraction of the fruit of these products is often left to rot in the farms while farmers suffer from energy shortages. Residue from tree commodities such as husk of cocoa and coffee, empty fruit bunch of oil palm, forest thinning from timber exploitation and shell of almonds are potential sustainable feedstock for bioenergy generation.
With the appropriate technology and adoption by community members, tree commodities can serve as a pathway for sustainable bioenergy generation without changing land use and without extra efforts from the farmer to find feedstock. The potential of using bioenergy for reducing health effects of traditional biomass for combustion is backed by the fact that tree commodities are often found in rural areas, with serious energy deficiencies, high prevalence of respiratory tract infections as a result of solid wood fuel combustion.
The potential of using bioenergy from tree commodities as a clean energy source is evaporated in this chapter by looking at two aspects: (1) by evaluating the potential in terms of quantity of bioenergy that can be generated by tree commodities and (2) operational framework for bioenergy from tree commodities to effectively serve rural population as a renewable and healthy energy source.
4.1 Evaluating the potential quantity of bioenergy from tree commodities in Africa
To evaluate the potential of bioenergy from tree commodities, seven tree commodities were chosen for analysis based on the number of farmers or population affected by the different tree commodities. The chosen tree commodities are coffee (Coffea arabica and Coffea canephora), cocoa (Theobroma cacao), oil palm (Arecaceae), walnuts (Juglans), cashew (Anacardium occidentale), almonds (Prunus dulcis) and industrial round wood. When evaluating bionenergy potential from tree commodities, provisions are taken for the use of residue for other uses, such as soil nutrient. The extraction equally considers other aspects such as weather, soil types, crop yields, harvesting technique and wind patterns [29, 30]. Researchers have evaluated different soil systems and uses of residue from biomass and conclude that 44–64% of biomass residue can sustainably be used for biomass generation [29, 30, 31]. Using a more conservative approach, this chapter uses a 20% extraction rate to estimate bioenergy production from tree commodities. Data from the FAO (2018) database serve as a basis for estimation in this chapter. Sustainable extraction rates were gotten from literature review from a variety of sources; residue to product ratio and moisture content was extracted from OECD/IEA [32]. Moisture content for coffee and cocoa was obtained from NREL [33], oil palm from Husain et al. [34], walnuts from Uzan and Yaman [35], cashew from Mohod et al. [36], industrial round wood from FAO [37] and almonds from [38]. Table 2 below shows the results of bioenergy potential from tree commodities for bioelectricity, biochemical ethanol and diesel.
Tree commodities as a source of bioenergy, bioelectricity, biochemical ethanol and diesel.
Bioenergy generation from tree commodities in Africa can potentially generate between 4.26E+06 and 1.14E+07 MW of bioelectricity from the seven-tree commodities while 6.26E+08 and 1.71E+09 L of bioethanol can potentially be generated from tree commodities. Tree commodities equally can equally serve as an important potential source for diesel, estimates from tree commodities show that 4.27E+08–1.14E+09 L can be generated from tree commodities.
The figure above (Figure 1) shows that bioenergy generation from industrial round wood is the highest averaging 46% for the bioelectricity (47%), bioethanol (46%) and Fischer-Tropsch diesel (46%). Cashew shell can equally contribute significantly bioenergy production accounting for 15% of diesel and bioethanol and 21% of electricity. Cocoa comes third as the highest contributor, accounting for 13% of bioelectricity and 15% of bioethanol and diesel. Coffee follows representing 7% of bioelectricity production and 11% of bioethanol and diesel. Oil palm equally contributes significantly to this potential, with 9% of total potential of bioelectricity and 10% of bioethanol and diesel potential production. These percentages underscore the significant potential contribution of tree commodities in generation clean, modern bioenergy than can potentially reduce public health diseases associated with the combustion of solid-fuel biomass. However, for this to be a reality, a lot of policy and operational tools must be put in place and readily available at local level.
Figure 1.
Percentage of bioenergy generated from different tree commodities.
4.2 Operational framework for bioenergy from tree commodities to effectively serve rural population as a renewable and healthy energy source
For modern bioenergy to serve as a potential clean energy source for rural African communities and millions of Africans at risk of respiratory tract infections and cardio-vascular diseases, several important pre-requisites are required.
Government support: For modern bioenergy to be a mainstay in rural Africa and reduce incidences of deaths through solid-fuel combustion, government authorities must support the development of modern bioenergy infrastructure. This requires significant shift in policy and investment from the government and different multi-lateral partners. The understanding of policy makers of the health advantages of developing modern bioenergy systems coupled with sustainable management practices is key to pushing a policy reform agenda for modern bioenergy generation in Africa.
Significant financial investment: Developing modern bioenergy generation systems for tree commodities requires significant financial investment. Multi-lateral development agencies aimed at reducing carbon emissions and promoting healthy living of populations can shift their funding streams to bioenergy generation. For this to happen, they must understand that modern bioenergy does not only reduce carbon emission, deforestation but can equally save the lives of millions of people potentially at high risk of respiratory tract infections as a result of solid-fuel combustion. This financing should go along way in investing not only in infrastructure for bioenergy development but equally in community adapted distribution mechanisms that will enhance adoption of new form of energy. These new energy sources should be cheaper and more efficient for adoption to be faster.
4.3 Sensitization and training on modern bioenergy generation from tree commodities
The acceptance and adoption of new bioenergy as an improved energy source required that users understand the key advantages. Thus, sensitisation at different levels with a clear distinction of advantages over traditional solid-fuel combustion should be made. Adoption can equally be facilitated by developing simple modern bioenergy generation systems that are adapted to rural context with minimal investment. This will enhance adoption especially when the cost of generation is relatively low and accrued advantages and multi-scaled.
Public-private partnerships and cooperation: The developments of sustainable modern bioenergy systems stakeholder buy-in a different levels and scales. Thus, a public-private partnership scheme is very important. The private sector with similar objectives can collaborate with government agencies in developing the bioenergy agenda as financial partners, technical support agents, or for policy advocacy. International cooperation is equally important for broad-based decision-making with local impacts coupled with strategic deployment frameworks adapted to different contexts. Understanding different stakeholders from different countries is paramount to advancing bioenergy generation.
Technical Training Research Centre for Development (TTRECED), Cameroon
'}],corrections:null},book:{id:"9138",title:"Public Health in Developing Countries",subtitle:"Challenges and Opportunities",fullTitle:"Public Health in Developing Countries - Challenges and Opportunities",slug:"public-health-in-developing-countries-challenges-and-opportunities",publishedDate:"September 9th 2020",bookSignature:"Edlyne Eze Anugwom and Niyi Awofeso",coverURL:"https://cdn.intechopen.com/books/images_new/9138.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"293469",title:null,name:"Edlyne Eze",middleName:null,surname:"Anugwom",slug:"edlyne-eze-anugwom",fullName:"Edlyne Eze Anugwom"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"206258",title:"Prof.",name:"Ying",middleName:null,surname:"Zhang",email:"yingzhang@shmtu.edu.cn",fullName:"Ying Zhang",slug:"ying-zhang",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{title:"Routing Protocols for Underwater Acoustic Sensor Networks: A Survey from an Application Perspective",slug:"routing-protocols-for-underwater-acoustic-sensor-networks-a-survey-from-an-application-perspective",abstract:"Underwater acoustic communications are different from terrestrial radio communications; acoustic channel is asymmetric and has large and variable end‐to‐end propagation delays, distance‐dependent limited bandwidth, high bit error rates, and multi‐path fading. Besides, nodes’ mobility and limited battery power also cause problems for networking protocol design. Among them, routing in underwater acoustic networks is a challenging task, and many protocols have been proposed. In this chapter, we first classify the routing protocols according to application scenarios, which are classified according to the number of sinks that an underwater acoustic sensor network (UASN) may use, namely single‐sink, multi‐sink, and no‐sink. We review some typical routing strategies proposed for these application scenarios, such as cross‐layer and reinforcement learning as well as opportunistic routing. Finally, some remaining key issues are highlighted.",signatures:"Qian Lu, Feng Liu, Ying Zhang and Shengming Jiang",authors:[{id:"203770",title:"Prof.",name:"S.M.",surname:"Jiang",fullName:"S.M. Jiang",slug:"s.m.-jiang",email:"smjiang@shmtu.edu.cn"},{id:"203772",title:"MSc.",name:"Qian",surname:"Lu",fullName:"Qian Lu",slug:"qian-lu",email:"luqian4500@hotmail.com"},{id:"205583",title:"Dr.",name:"Liu",surname:"Feng",fullName:"Liu Feng",slug:"liu-feng",email:"liufeng@shmtu.edu.cn"},{id:"206258",title:"Prof.",name:"Ying",surname:"Zhang",fullName:"Ying Zhang",slug:"ying-zhang",email:"yingzhang@shmtu.edu.cn"}],book:{title:"Underwater Acoustics",slug:"advances-in-underwater-acoustics",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"28515",title:"Prof.",name:"Henry",surname:"Manik",slug:"henry-manik",fullName:"Henry Manik",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Bogor Agricultural University",institutionURL:null,country:{name:"Indonesia"}}},{id:"94217",title:"Prof.",name:"Salah",surname:"Bourennane",slug:"salah-bourennane",fullName:"Salah Bourennane",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94217/images/3743_n.jpg",biography:"Dr Salah Bourennane received his PhD degree from Institut National Polytechnique de Grenoble, France. Currently, he is full Professor at the Ecole Centrale Marseille, France, where he is the Dean of Research. He is a head of team Multidimensional Signal Processing Group of Fresnel Institute. His research interests are in statistical signal processing, remote sensing, telecommunications, array processing, image processing, multidimensional signal processing and performances analysis. He has published several papers in high level journals.",institutionString:null,institution:null},{id:"129913",title:"Dr.",name:"Robert N.K.",surname:"Loh",slug:"robert-n.k.-loh",fullName:"Robert N.K. Loh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Oakland University",institutionURL:null,country:{name:"United States of America"}}},{id:"197383",title:"Ph.D.",name:"Sara",surname:"Pensieri",slug:"sara-pensieri",fullName:"Sara Pensieri",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Research Council",institutionURL:null,country:{name:"Italy"}}},{id:"197839",title:"Dr.",name:"Roberto",surname:"Bozzano",slug:"roberto-bozzano",fullName:"Roberto Bozzano",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"201966",title:"Dr.",name:"Vijaya Baskar",surname:"V",slug:"vijaya-baskar-v",fullName:"Vijaya Baskar V",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sathyabama Institute of Science and Technology",institutionURL:null,country:{name:"India"}}},{id:"203770",title:"Prof.",name:"S.M.",surname:"Jiang",slug:"s.m.-jiang",fullName:"S.M. Jiang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"203772",title:"MSc.",name:"Qian",surname:"Lu",slug:"qian-lu",fullName:"Qian Lu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"205583",title:"Dr.",name:"Liu",surname:"Feng",slug:"liu-feng",fullName:"Liu Feng",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"218724",title:"Dr.",name:"Caroline",surname:"Fossati",slug:"caroline-fossati",fullName:"Caroline Fossati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"OA-publishing-fees",title:"Open Access Publishing Fees",intro:"
The Open Access model is applied to all of our publications and is designed to eliminate subscriptions and pay-per-view fees. This approach ensures free, immediate access to full text versions of your research.
As a gold Open Access publisher, an Open Access Publishing Fee is payable on acceptance following peer review of the manuscript. In return, we provide high quality publishing services and exclusive benefits for all contributors. IntechOpen is the trusted publishing partner of over 118,000 international scientists and researchers.
\\n\\n
The Open Access Publishing Fee (OAPF) is payable only after your full chapter, monograph or Compacts monograph is accepted for publication.
\\n\\n
OAPF Publishing Options
\\n\\n
\\n\\t
1,400 GBP Chapter - Edited Volume
\\n\\t
10,000 GBP Monograph - Long Form
\\n\\t
4,000 GBP Compacts Monograph - Short Form
\\n
\\n\\n
*These prices do not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT as long as provision of the VAT registration number is made during the application process. This is made possible by the EU reverse charge method.
\\n\\n
Services included are:
\\n\\n
\\n\\t
An online manuscript tracking system to facilitate your work
\\n\\t
Personal contact and support throughout the publishing process from your dedicated Author Service Manager
\\n\\t
Assurance that your manuscript meets the highest publishing standards
\\n\\t
English language copyediting and proofreading, including the correction of grammatical, spelling, and other common errors
\\n\\t
XML Typesetting and pagination - web (PDF, HTML) and print files preparation
\\n\\t
Discoverability - electronic citation and linking via DOI
\\n\\t
Permanent and unrestricted online access to your work
What isn't covered by the Open Access Publishing Fee?
\\n\\n
If your manuscript:
\\n\\n
\\n\\t
Exceeds 20 pages (for chapters in Edited Volumes), an additional fee of 40 GBP per page will be required
\\n\\t
If a manuscript requires Heavy Editing or Language Polishing, this will incur additional fees.
\\n
\\n\\n
Your Author Service Manager will inform you of any items not covered by the OAPF and provide exact information regarding those additional costs before proceeding.
\\n\\n
Open Access Funding
\\n\\n
To explore funding opportunities and learn more about how you can finance your IntechOpen publication, go to our Open Access Funding page. IntechOpen offers expert assistance to all of its Authors. We can support you in approaching funding bodies and institutions in relation to publishing fees by providing information about compliance with the Open Access policies of your funder or institution. We can also assist with communicating the benefits of Open Access in order to support and strengthen your funding request and provide personal guidance through your application process. You can contact us at oapf@intechopen.com for further details or assistance.
\\n\\n
For Authors who are still unable to obtain funding from their institutions or research funding bodies for individual projects, IntechOpen does offer the possibility of applying for a Waiver to offset some or all processing feed. Details regarding our Waiver Policy can be found here.
\\n\\n
Added Value of Publishing with IntechOpen
\\n\\n
Choosing to publish with IntechOpen ensures the following benefits:
\\n\\n
\\n\\t
Indexing and listing across major repositories, see details ...
\\n\\t
Long-term archiving
\\n\\t
Visibility on the world's strongest OA platform
\\n\\t
Live Performance Metrics to track readership and the impact of your chapter
\\n\\t
Dissemination and Promotion
\\n
\\n\\n
Benefits of Publishing with IntechOpen
\\n\\n
\\n\\t
Proven world leader in Open Access book publishing with over 10 years experience
\\n\\t
+4,800 OA books published
\\n\\t
Most competitive prices in the market
\\n\\t
Fully compliant with OA funding requirements
\\n\\t
Optimized processes, enabling publication between 8 and 12 months
\\n\\t
Personal support during every step of the publication process
\\n\\t
+108,170 citations in Web of Science databases
\\n\\t
Currently strongest OA platform with over 130 million downloads
As a gold Open Access publisher, an Open Access Publishing Fee is payable on acceptance following peer review of the manuscript. In return, we provide high quality publishing services and exclusive benefits for all contributors. IntechOpen is the trusted publishing partner of over 118,000 international scientists and researchers.
\n\n
The Open Access Publishing Fee (OAPF) is payable only after your full chapter, monograph or Compacts monograph is accepted for publication.
\n\n
OAPF Publishing Options
\n\n
\n\t
1,400 GBP Chapter - Edited Volume
\n\t
10,000 GBP Monograph - Long Form
\n\t
4,000 GBP Compacts Monograph - Short Form
\n
\n\n
*These prices do not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT as long as provision of the VAT registration number is made during the application process. This is made possible by the EU reverse charge method.
\n\n
Services included are:
\n\n
\n\t
An online manuscript tracking system to facilitate your work
\n\t
Personal contact and support throughout the publishing process from your dedicated Author Service Manager
\n\t
Assurance that your manuscript meets the highest publishing standards
\n\t
English language copyediting and proofreading, including the correction of grammatical, spelling, and other common errors
\n\t
XML Typesetting and pagination - web (PDF, HTML) and print files preparation
\n\t
Discoverability - electronic citation and linking via DOI
\n\t
Permanent and unrestricted online access to your work
What isn't covered by the Open Access Publishing Fee?
\n\n
If your manuscript:
\n\n
\n\t
Exceeds 20 pages (for chapters in Edited Volumes), an additional fee of 40 GBP per page will be required
\n\t
If a manuscript requires Heavy Editing or Language Polishing, this will incur additional fees.
\n
\n\n
Your Author Service Manager will inform you of any items not covered by the OAPF and provide exact information regarding those additional costs before proceeding.
\n\n
Open Access Funding
\n\n
To explore funding opportunities and learn more about how you can finance your IntechOpen publication, go to our Open Access Funding page. IntechOpen offers expert assistance to all of its Authors. We can support you in approaching funding bodies and institutions in relation to publishing fees by providing information about compliance with the Open Access policies of your funder or institution. We can also assist with communicating the benefits of Open Access in order to support and strengthen your funding request and provide personal guidance through your application process. You can contact us at oapf@intechopen.com for further details or assistance.
\n\n
For Authors who are still unable to obtain funding from their institutions or research funding bodies for individual projects, IntechOpen does offer the possibility of applying for a Waiver to offset some or all processing feed. Details regarding our Waiver Policy can be found here.
\n\n
Added Value of Publishing with IntechOpen
\n\n
Choosing to publish with IntechOpen ensures the following benefits:
\n\n
\n\t
Indexing and listing across major repositories, see details ...
\n\t
Long-term archiving
\n\t
Visibility on the world's strongest OA platform
\n\t
Live Performance Metrics to track readership and the impact of your chapter
\n\t
Dissemination and Promotion
\n
\n\n
Benefits of Publishing with IntechOpen
\n\n
\n\t
Proven world leader in Open Access book publishing with over 10 years experience
\n\t
+4,800 OA books published
\n\t
Most competitive prices in the market
\n\t
Fully compliant with OA funding requirements
\n\t
Optimized processes, enabling publication between 8 and 12 months
\n\t
Personal support during every step of the publication process
\n\t
+108,170 citations in Web of Science databases
\n\t
Currently strongest OA platform with over 130 million downloads
\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:117095},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10645",title:"TEST Luka EV",subtitle:null,isOpenForSubmission:!0,hash:"34c7613d332b05758ea87b460199db54",slug:null,bookSignature:"",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10646",title:"Rozmari - Test Book - Luka 13102020",subtitle:null,isOpenForSubmission:!0,hash:"b96ff714b24bc695b8dceba914430b85",slug:null,bookSignature:"",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10651",title:"Machine Learning",subtitle:null,isOpenForSubmission:!0,hash:"5806b4efae3bd91c3f56e64e0442df35",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10653",title:"Optimization Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"753812dbb9a6f6b57645431063114f6c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10653.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10660",title:"Heritage",subtitle:null,isOpenForSubmission:!0,hash:"14096773aa1e3635ec6ceec6dd5b47a4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10660.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:17},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:314},popularBooks:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9534",title:"Banking and Finance",subtitle:null,isOpenForSubmission:!1,hash:"af14229738af402c3b595d7e124dce82",slug:"banking-and-finance",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",editors:[{id:"206517",title:"Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"485",title:"Spectrometry",slug:"spectrometry",parent:{title:"Analytical Chemistry",slug:"chemistry-analytical-chemistry"},numberOfBooks:8,numberOfAuthorsAndEditors:259,numberOfWosCitations:267,numberOfCrossrefCitations:121,numberOfDimensionsCitations:379,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"spectrometry",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8380",title:"Mass Spectrometry",subtitle:"Future Perceptions and Applications",isOpenForSubmission:!1,hash:"662bbebeab1942b6710f413e2b217004",slug:"mass-spectrometry-future-perceptions-and-applications",bookSignature:"Ganesh Shamrao Kamble",coverURL:"https://cdn.intechopen.com/books/images_new/8380.jpg",editedByType:"Edited by",editors:[{id:"236420",title:"Dr.",name:"Ganesh Shamrao",middleName:"Shamrao",surname:"Kamble",slug:"ganesh-shamrao-kamble",fullName:"Ganesh Shamrao Kamble"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5735",title:"Mass Spectrometry",subtitle:null,isOpenForSubmission:!1,hash:"a629a09af1099f332e8a498e318b9ffa",slug:"mass-spectrometry",bookSignature:"Mahmood Aliofkhazraei",coverURL:"https://cdn.intechopen.com/books/images_new/5735.jpg",editedByType:"Edited by",editors:[{id:"155413",title:"Dr.",name:"Mahmood",middleName:null,surname:"Aliofkhazraei",slug:"mahmood-aliofkhazraei",fullName:"Mahmood Aliofkhazraei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5437",title:"Developments in Near-Infrared Spectroscopy",subtitle:null,isOpenForSubmission:!1,hash:"e5fa0d1b934788c283a786bc6892f047",slug:"developments-in-near-infrared-spectroscopy",bookSignature:"Konstantinos G. Kyprianidis and Jan Skvaril",coverURL:"https://cdn.intechopen.com/books/images_new/5437.jpg",editedByType:"Edited by",editors:[{id:"35868",title:"Prof.",name:"Konstantinos",middleName:"G.",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2717",title:"Analytical Chemistry",subtitle:null,isOpenForSubmission:!1,hash:"5e6daf70765c3c05822db19db500a38d",slug:"analytical-chemistry",bookSignature:"Ira S. Krull",coverURL:"https://cdn.intechopen.com/books/images_new/2717.jpg",editedByType:"Edited by",editors:[{id:"147574",title:"Dr.",name:"Ira S.",middleName:"Stanley",surname:"Krull",slug:"ira-s.-krull",fullName:"Ira S. Krull"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2113",title:"Gas Chromatography in Plant Science, Wine Technology, Toxicology and Some Specific Applications",subtitle:null,isOpenForSubmission:!1,hash:"b8adf1d63babbb03b64be0346685b5ad",slug:"gas-chromatography-in-plant-science-wine-technology-toxicology-and-some-specific-applications",bookSignature:"Bekir Salih and Ömür Çelikbıçak",coverURL:"https://cdn.intechopen.com/books/images_new/2113.jpg",editedByType:"Edited by",editors:[{id:"99580",title:"Dr.",name:"Bekir",middleName:null,surname:"Salih",slug:"bekir-salih",fullName:"Bekir Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"818",title:"Tandem Mass Spectrometry",subtitle:"Applications and Principles",isOpenForSubmission:!1,hash:"be4591159fcd2c760d795950f92af48a",slug:"tandem-mass-spectrometry-applications-and-principles",bookSignature:"Jeevan K. Prasain",coverURL:"https://cdn.intechopen.com/books/images_new/818.jpg",editedByType:"Edited by",editors:[{id:"83648",title:"Dr",name:"Jeevan",middleName:"K.",surname:"Prasain",slug:"jeevan-prasain",fullName:"Jeevan Prasain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"834",title:"Vibrational Spectroscopy",subtitle:null,isOpenForSubmission:!1,hash:"e70189f166f51455d3c5dda574e937d2",slug:"vibrational-spectroscopy",bookSignature:"Dominique de Caro",coverURL:"https://cdn.intechopen.com/books/images_new/834.jpg",editedByType:"Edited by",editors:[{id:"89169",title:"Prof.",name:"Dominique",middleName:null,surname:"De Caro",slug:"dominique-de-caro",fullName:"Dominique De Caro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"578",title:"Atomic Absorption Spectroscopy",subtitle:null,isOpenForSubmission:!1,hash:"f2f4fde8403184b0e6779ba7c53dd096",slug:"atomic-absorption-spectroscopy",bookSignature:"Muhammad Akhyar Farrukh",coverURL:"https://cdn.intechopen.com/books/images_new/578.jpg",editedByType:"Edited by",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",middleName:null,surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:8,mostCitedChapters:[{id:"29012",doi:"10.5772/32108",title:"Identifying and Overcoming Matrix Effects in Drug Discovery and Development",slug:"identifying-and-overcoming-matrix-effects-in-drug-discovery-and-development",totalDownloads:17865,totalCrossrefCites:6,totalDimensionsCites:39,book:{slug:"tandem-mass-spectrometry-applications-and-principles",title:"Tandem Mass Spectrometry",fullTitle:"Tandem Mass Spectrometry - Applications and Principles"},signatures:"Terence G. Hall, Inese Smukste, Karen R. Bresciano, Yunxia Wang, David McKearn and Ronald E. Savage",authors:[{id:"90202",title:"Dr",name:"Ronald",middleName:null,surname:"Savage",slug:"ronald-savage",fullName:"Ronald Savage"},{id:"90209",title:"Dr.",name:"Terence",middleName:null,surname:"Hall",slug:"terence-hall",fullName:"Terence Hall"},{id:"136599",title:"BSc.",name:"Karen",middleName:null,surname:"Bresciano",slug:"karen-bresciano",fullName:"Karen Bresciano"}]},{id:"26275",doi:"10.5772/25925",title:"Atomic Absorption Spectrometry (AAS)",slug:"atomic-absorption-spectrometry-aas-",totalDownloads:77160,totalCrossrefCites:11,totalDimensionsCites:27,book:{slug:"atomic-absorption-spectroscopy",title:"Atomic Absorption Spectroscopy",fullTitle:"Atomic Absorption Spectroscopy"},signatures:"R. García and A. P. Báez",authors:[{id:"64998",title:"Dr.",name:"Armando",middleName:null,surname:"Baez Pedrajo",slug:"armando-baez-pedrajo",fullName:"Armando Baez Pedrajo"},{id:"128261",title:"Dr.",name:"Rocio",middleName:null,surname:"Garcia",slug:"rocio-garcia",fullName:"Rocio Garcia"}]},{id:"40715",doi:"10.5772/51429",title:"PCA: The Basic Building Block of Chemometrics",slug:"pca-the-basic-building-block-of-chemometrics",totalDownloads:9079,totalCrossrefCites:9,totalDimensionsCites:24,book:{slug:"analytical-chemistry",title:"Analytical Chemistry",fullTitle:"Analytical Chemistry"},signatures:"Christophe B.Y. Cordella",authors:[{id:"120266",title:"Dr.",name:"Christophe",middleName:"B.Y.",surname:"Cordella",slug:"christophe-cordella",fullName:"Christophe Cordella"}]}],mostDownloadedChaptersLast30Days:[{id:"55500",title:"Interpretation of Mass Spectra",slug:"interpretation-of-mass-spectra",totalDownloads:8426,totalCrossrefCites:3,totalDimensionsCites:8,book:{slug:"mass-spectrometry",title:"Mass Spectrometry",fullTitle:"Mass Spectrometry"},signatures:"Teodor Octavian Nicolescu",authors:[{id:"196775",title:"Dr.",name:"Teodor Octavian",middleName:"Octavian",surname:"Nicolescu",slug:"teodor-octavian-nicolescu",fullName:"Teodor Octavian Nicolescu"}]},{id:"54174",title:"Using Near-Infrared Spectroscopy in Agricultural Systems",slug:"using-near-infrared-spectroscopy-in-agricultural-systems",totalDownloads:3328,totalCrossrefCites:2,totalDimensionsCites:10,book:{slug:"developments-in-near-infrared-spectroscopy",title:"Developments in Near-Infrared Spectroscopy",fullTitle:"Developments in Near-Infrared Spectroscopy"},signatures:"Francisco García-Sánchez, Luis Galvez-Sola, Juan J. Martínez-\nNicolás, Raquel Muelas-Domingo and Manuel Nieves",authors:[{id:"190160",title:"Dr.",name:"Francisco",middleName:null,surname:"Garcia-Sanchez",slug:"francisco-garcia-sanchez",fullName:"Francisco Garcia-Sanchez"},{id:"196391",title:"Dr.",name:"Luis",middleName:null,surname:"Galvez -Sola",slug:"luis-galvez-sola",fullName:"Luis Galvez -Sola"},{id:"196392",title:"Dr.",name:"Juan J.",middleName:null,surname:"Martinez-Nicolas",slug:"juan-j.-martinez-nicolas",fullName:"Juan J. Martinez-Nicolas"},{id:"196393",title:"Dr.",name:"Raquel",middleName:null,surname:"Muelas-Domingo",slug:"raquel-muelas-domingo",fullName:"Raquel Muelas-Domingo"},{id:"196394",title:"Dr.",name:"Manuel",middleName:null,surname:"Nieves",slug:"manuel-nieves",fullName:"Manuel Nieves"}]},{id:"40712",title:"Analytical Chemistry Today and Tomorrow",slug:"analytical-chemistry-today-and-tomorrow",totalDownloads:7931,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"analytical-chemistry",title:"Analytical Chemistry",fullTitle:"Analytical Chemistry"},signatures:"Miguel Valcárcel",authors:[{id:"149298",title:"Dr",name:null,middleName:null,surname:"Valcarcel",slug:"valcarcel",fullName:"Valcarcel"}]},{id:"40715",title:"PCA: The Basic Building Block of Chemometrics",slug:"pca-the-basic-building-block-of-chemometrics",totalDownloads:9079,totalCrossrefCites:9,totalDimensionsCites:24,book:{slug:"analytical-chemistry",title:"Analytical Chemistry",fullTitle:"Analytical Chemistry"},signatures:"Christophe B.Y. Cordella",authors:[{id:"120266",title:"Dr.",name:"Christophe",middleName:"B.Y.",surname:"Cordella",slug:"christophe-cordella",fullName:"Christophe Cordella"}]},{id:"54826",title:"LC‐HRMS for the Identification of β‐Carboline and Canthinone Alkaloids Isolated from Natural Sources",slug:"lc-hrms-for-the-identification-of-carboline-and-canthinone-alkaloids-isolated-from-natural-sources",totalDownloads:1230,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"mass-spectrometry",title:"Mass Spectrometry",fullTitle:"Mass Spectrometry"},signatures:"Ana Claudia F. Amaral, Aline de S. Ramos, José Luiz P. Ferreira, Arith\nR. dos Santos, Jefferson D. da Cruz, Adélia Viviane M. De Luna,\nVinicius Vaz C. Nery, Iasmim C. de Lima, Marcelo Henrique da C.\nChaves and Jefferson Rocha de A. Silva",authors:[{id:"197035",title:"Dr.",name:"Ana Claudia",middleName:"Fernandes",surname:"Amaral",slug:"ana-claudia-amaral",fullName:"Ana Claudia Amaral"},{id:"197039",title:"Dr.",name:"Aline",middleName:null,surname:"De Souza Ramos",slug:"aline-de-souza-ramos",fullName:"Aline De Souza Ramos"},{id:"197040",title:"Dr.",name:"Jefferson",middleName:null,surname:"Rocha De Andrade Silva",slug:"jefferson-rocha-de-andrade-silva",fullName:"Jefferson Rocha De Andrade Silva"},{id:"197041",title:"Dr.",name:"José Luiz",middleName:null,surname:"Pinto Ferreira",slug:"jose-luiz-pinto-ferreira",fullName:"José Luiz Pinto Ferreira"},{id:"197045",title:"MSc.",name:"Marcelo Henrique",middleName:null,surname:"Cunha Chaves",slug:"marcelo-henrique-cunha-chaves",fullName:"Marcelo Henrique Cunha Chaves"},{id:"197046",title:"BSc.",name:"Vinicius",middleName:null,surname:"Vaz Cabral Nery",slug:"vinicius-vaz-cabral-nery",fullName:"Vinicius Vaz Cabral Nery"},{id:"197048",title:"Mr.",name:"Jefferson",middleName:null,surname:"Diocesano Da Cruz",slug:"jefferson-diocesano-da-cruz",fullName:"Jefferson Diocesano Da Cruz"},{id:"197049",title:"BSc.",name:"Iasmim",middleName:null,surname:"Castro De Lima",slug:"iasmim-castro-de-lima",fullName:"Iasmim Castro De Lima"},{id:"197051",title:"MSc.",name:"Arith",middleName:null,surname:"Ramos Dos Santos",slug:"arith-ramos-dos-santos",fullName:"Arith Ramos Dos Santos"},{id:"204706",title:"MSc.",name:"Adélia Viviane",middleName:null,surname:"Mello De Luna",slug:"adelia-viviane-mello-de-luna",fullName:"Adélia Viviane Mello De Luna"}]},{id:"40716",title:"Peptide and Amino Acids Separation and Identification from Natural Products",slug:"peptide-and-amino-acids-separation-and-identification-from-natural-products",totalDownloads:7508,totalCrossrefCites:5,totalDimensionsCites:10,book:{slug:"analytical-chemistry",title:"Analytical Chemistry",fullTitle:"Analytical Chemistry"},signatures:"on Neda, Paulina Vlazan, Raluca Oana Pop, Paula Sfarloaga, Ioan Grozescu and Adina-Elena Segneanu",authors:[{id:"25269",title:"Dr.",name:"Adina-Elena",middleName:null,surname:"Segneanu",slug:"adina-elena-segneanu",fullName:"Adina-Elena Segneanu"},{id:"33889",title:"Dr.",name:"Raluca Oana",middleName:null,surname:"Pop",slug:"raluca-oana-pop",fullName:"Raluca Oana Pop"},{id:"156334",title:"Prof.",name:"Ioan",middleName:null,surname:"Grozescu",slug:"ioan-grozescu",fullName:"Ioan Grozescu"},{id:"156363",title:"Dr.",name:"Paula",middleName:null,surname:"Sfirloaga",slug:"paula-sfirloaga",fullName:"Paula Sfirloaga"},{id:"157775",title:"Dr.",name:"Paulina",middleName:null,surname:"Vlazan",slug:"paulina-vlazan",fullName:"Paulina Vlazan"},{id:"165408",title:"Prof.",name:"Ion",middleName:null,surname:"Neda",slug:"ion-neda",fullName:"Ion Neda"}]},{id:"40714",title:"Mineralogy and Geochemistry of Sub-Bituminous Coal and Its Combustion Products from Mpumalanga Province, South Africa",slug:"mineralogy-and-geochemistry-of-sub-bituminous-coal-and-its-combustion-products-from-mpumalanga-provi",totalDownloads:4360,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"analytical-chemistry",title:"Analytical Chemistry",fullTitle:"Analytical Chemistry"},signatures:"S. A. Akinyemi, W. M. Gitari, A. Akinlua and L. F. Petrik",authors:[{id:"147114",title:"Dr.",name:"Segun",middleName:null,surname:"Akinyemi",slug:"segun-akinyemi",fullName:"Segun Akinyemi"}]},{id:"54852",title:"Mass Spectrometry for the Sensitive Analysis of Intracellular Nucleotides and Analogues",slug:"mass-spectrometry-for-the-sensitive-analysis-of-intracellular-nucleotides-and-analogues",totalDownloads:1695,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"mass-spectrometry",title:"Mass Spectrometry",fullTitle:"Mass Spectrometry"},signatures:"Kateřina Mičová, David Friedecký and Tomáš Adam",authors:[{id:"195639",title:"Dr.",name:"David",middleName:null,surname:"Friedecký",slug:"david-friedecky",fullName:"David Friedecký"}]},{id:"28994",title:"Applications of Tandem Mass Spectrometry: From Structural Analysis to Fundamental Studies",slug:"applications-of-tandem-mass-spectrometry-from-structural-analysis-to-fundamental-studies",totalDownloads:5729,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"tandem-mass-spectrometry-applications-and-principles",title:"Tandem Mass Spectrometry",fullTitle:"Tandem Mass Spectrometry - Applications and Principles"},signatures:"Paulo J. Amorim Madeira and M. Helena Florêncio",authors:[{id:"88453",title:"Dr.",name:"M. Helena",middleName:null,surname:"Florencio",slug:"m.-helena-florencio",fullName:"M. Helena Florencio"},{id:"90296",title:"Dr.",name:"Paulo J.",middleName:"Amorim",surname:"Madeira",slug:"paulo-j.-madeira",fullName:"Paulo J. Madeira"}]},{id:"26278",title:"Microextraction Techniques as a Sample Preparation Step for Metal Analysis",slug:"microextraction-techniques-as-a-sample-preparation-step-for-metal-analysis",totalDownloads:6391,totalCrossrefCites:2,totalDimensionsCites:9,book:{slug:"atomic-absorption-spectroscopy",title:"Atomic Absorption Spectroscopy",fullTitle:"Atomic Absorption Spectroscopy"},signatures:"Pourya Biparva and Amir Abbas Matin",authors:[{id:"82833",title:"Dr.",name:"Pourya",middleName:null,surname:"Biparva",slug:"pourya-biparva",fullName:"Pourya Biparva"},{id:"88520",title:"Dr.",name:"Amir Abbas",middleName:null,surname:"Matin",slug:"amir-abbas-matin",fullName:"Amir Abbas Matin"}]}],onlineFirstChaptersFilter:{topicSlug:"spectrometry",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/206258/ying-zhang",hash:"",query:{},params:{id:"206258",slug:"ying-zhang"},fullPath:"/profiles/206258/ying-zhang",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()