Effect of salinity on shoot and root dry weight (g/10 plants) of different rice varieties [82].
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"9040",leadTitle:null,fullTitle:"Pedagogy in Basic and Higher Education - Current Developments and Challenges",title:"Pedagogy in Basic and Higher Education",subtitle:"Current Developments and Challenges",reviewType:"peer-reviewed",abstract:"This book takes a holistic approach to pedagogy and argues that the purpose of education is to educate the student's whole personality including cognitive, social, and moral domains. The four sections and twelve chapters address the current pedagogical challenges in basic and higher education in international contexts. The authors describe the principles and practices through which meaningful education is promoted and enhanced in a variety of ways. The challenges educators face in their profession as well as ways to overcome them are elaborated on both theoretically and empirically. The book allows both researchers, teachers, and educational policy makers to reflect on current developments, challenges, and areas of development in educational institutions when aiming to support student growth and learning.",isbn:"978-1-83880-268-4",printIsbn:"978-1-83880-267-7",pdfIsbn:"978-1-83880-120-5",doi:"10.5772/intechopen.83007",price:119,priceEur:129,priceUsd:155,slug:"pedagogy-in-basic-and-higher-education-current-developments-and-challenges",numberOfPages:234,isOpenForSubmission:!1,isInWos:null,hash:"3ef45143bf2a8d798f0e423e098afe6c",bookSignature:"Kirsi Tirri and Auli Toom",publishedDate:"February 19th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/9040.jpg",numberOfDownloads:4520,numberOfWosCitations:0,numberOfCrossrefCitations:2,numberOfDimensionsCitations:4,hasAltmetrics:1,numberOfTotalCitations:6,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 8th 2019",dateEndSecondStepPublish:"September 2nd 2019",dateEndThirdStepPublish:"November 1st 2019",dateEndFourthStepPublish:"January 20th 2020",dateEndFifthStepPublish:"March 20th 2020",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"234399",title:"Prof.",name:"Kirsi",middleName:null,surname:"Tirri",slug:"kirsi-tirri",fullName:"Kirsi Tirri",profilePictureURL:"https://mts.intechopen.com/storage/users/234399/images/system/234399.jpeg",biography:"Dr. Kirsi Tirri is a Professor of Education and Research Director at the Helsinki Collegium for Advanced Studies and Department of Education at the University of Helsinki, Finland. She is also a visiting Professor at St. John’s University, New York, USA and University of Tallinn in Estonia. She has published widely in international educational journals and books on teacher education, moral education and talent development. She also serves on the Editorial Boards of 13 educational journals. You can read more of her work at: http://www.helsinki.fi/~ktirri",institutionString:"University of Helsinki",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Helsinki",institutionURL:null,country:{name:"Finland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"298433",title:"Dr.",name:"Auli",middleName:null,surname:"Toom",slug:"auli-toom",fullName:"Auli Toom",profilePictureURL:"https://mts.intechopen.com/storage/users/298433/images/system/298433.jpeg",biography:"Dr Auli Toom is a Professor of Higher Education and the Director\nof the Centre for University Teaching and Learning at University\nof Helsinki, Finland. She is a Visiting Professor at the University\nof Tartu, Estonia. Professor Toom is also the director of the doctoral program PsyCo (Psychology, Learning and Communication). Professor Toom is the President of the Finnish Educational\nResearch Association (FERA). Her research interests include\nteacher knowing, competence, expertise, and agency among students and teachers. She investigates these factors in basic education, teacher education, and higher\neducation contexts. She leads several research projects on higher education and\nteacher education. You can read about her work at https://researchportal.helsinki.fi/\nen/persons/auli-toom",institutionString:"University of Helsinki",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Helsinki",institutionURL:null,country:{name:"Finland"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1316",title:"Higher Education",slug:"higher-education"}],chapters:[{id:"70433",title:"The Moral Role of Pedagogy as the Science and Art of Teaching",doi:"10.5772/intechopen.90502",slug:"the-moral-role-of-pedagogy-as-the-science-and-art-of-teaching",totalDownloads:370,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Kirsi Tirri and Auli Toom",downloadPdfUrl:"/chapter/pdf-download/70433",previewPdfUrl:"/chapter/pdf-preview/70433",authors:[{id:"234399",title:"Prof.",name:"Kirsi",surname:"Tirri",slug:"kirsi-tirri",fullName:"Kirsi Tirri"},{id:"298433",title:"Dr.",name:"Auli",surname:"Toom",slug:"auli-toom",fullName:"Auli Toom"}],corrections:null},{id:"67600",title:"Values as the Pedagogy: Countering Instrumentalism",doi:"10.5772/intechopen.86823",slug:"values-as-the-pedagogy-countering-instrumentalism",totalDownloads:486,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Terence Lovat",downloadPdfUrl:"/chapter/pdf-download/67600",previewPdfUrl:"/chapter/pdf-preview/67600",authors:[null],corrections:null},{id:"67633",title:"A Philosophical Outlook on Africa’s Higher Education in the Twenty-First Century: Challenges and Prospects",doi:"10.5772/intechopen.86885",slug:"a-philosophical-outlook-on-africa-s-higher-education-in-the-twenty-first-century-challenges-and-pros",totalDownloads:472,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Dei Daniel, Osei-Bonsu Robert and Amponsah Samuel",downloadPdfUrl:"/chapter/pdf-download/67633",previewPdfUrl:"/chapter/pdf-preview/67633",authors:[null],corrections:null},{id:"69604",title:"Approach to Pedagogy and Scenarios Poor People Face in the Pursuit of Basic and Higher Education",doi:"10.5772/intechopen.88521",slug:"approach-to-pedagogy-and-scenarios-poor-people-face-in-the-pursuit-of-basic-and-higher-education",totalDownloads:241,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Charles Enock Mulimba Ruyembe",downloadPdfUrl:"/chapter/pdf-download/69604",previewPdfUrl:"/chapter/pdf-preview/69604",authors:[null],corrections:null},{id:"70195",title:"Using the Research Tutorial as a Training Strategy for Tutor Professional Development in an Undergraduate Course",doi:"10.5772/intechopen.90150",slug:"using-the-research-tutorial-as-a-training-strategy-for-tutor-professional-development-in-an-undergra",totalDownloads:217,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Duncan Mhakure",downloadPdfUrl:"/chapter/pdf-download/70195",previewPdfUrl:"/chapter/pdf-preview/70195",authors:[null],corrections:null},{id:"69290",title:"The Power of Appearance: Students’ Impression Management within Class",doi:"10.5772/intechopen.88850",slug:"the-power-of-appearance-students-impression-management-within-class",totalDownloads:300,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Sarah Forster-Heinzer, Arvid Nagel and Horst Biedermann",downloadPdfUrl:"/chapter/pdf-download/69290",previewPdfUrl:"/chapter/pdf-preview/69290",authors:[null],corrections:null},{id:"70718",title:"Students’ Productive Struggles in Mathematics Learning",doi:"10.5772/intechopen.90802",slug:"students-productive-struggles-in-mathematics-learning",totalDownloads:299,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Anthony Sayster and Duncan Mhakure",downloadPdfUrl:"/chapter/pdf-download/70718",previewPdfUrl:"/chapter/pdf-preview/70718",authors:[null],corrections:null},{id:"69330",title:"Perception of Student-Teachers Regarding Self-Regulated Learning",doi:"10.5772/intechopen.88728",slug:"perception-of-student-teachers-regarding-self-regulated-learning",totalDownloads:295,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Carolina Zambrano-Matamala, Darío Rojas-Diaz, Pedro Salcedo-Lagos, Felipe Albarran-Torres and Alejandro Diaz-Mujica",downloadPdfUrl:"/chapter/pdf-download/69330",previewPdfUrl:"/chapter/pdf-preview/69330",authors:[null],corrections:null},{id:"68565",title:"Teaching, Reflecting and Learning: Exploring Teacher Education Study Abroad Programs as Transformational Learning Opportunities",doi:"10.5772/intechopen.88578",slug:"teaching-reflecting-and-learning-exploring-teacher-education-study-abroad-programs-as-transformation",totalDownloads:322,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Allison Freed, Aerin Benavides and Lacey Huffling",downloadPdfUrl:"/chapter/pdf-download/68565",previewPdfUrl:"/chapter/pdf-preview/68565",authors:[null],corrections:null},{id:"68730",title:"Categorization of Educational Technologies as Related to Pedagogical Practices",doi:"10.5772/intechopen.88629",slug:"categorization-of-educational-technologies-as-related-to-pedagogical-practices",totalDownloads:450,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Perry P. Gao, Arvid Nagel and Horst Biedermann",downloadPdfUrl:"/chapter/pdf-download/68730",previewPdfUrl:"/chapter/pdf-preview/68730",authors:[null],corrections:null},{id:"69424",title:"School-University Partnership for Evidence-Driven School Improvement in Estonia",doi:"10.5772/intechopen.89513",slug:"school-university-partnership-for-evidence-driven-school-improvement-in-estonia",totalDownloads:501,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Kätlin Vanari, Kairit Tammets and Eve Eisenschmidt",downloadPdfUrl:"/chapter/pdf-download/69424",previewPdfUrl:"/chapter/pdf-preview/69424",authors:[null],corrections:null},{id:"69651",title:"Parental Engagement in Children’s Learning: A Holistic Approach to Teacher-Parents’ Partnerships",doi:"10.5772/intechopen.89841",slug:"parental-engagement-in-children-s-learning-a-holistic-approach-to-teacher-parents-partnerships",totalDownloads:570,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Cristiana Levinthal de Oliveira Lima and Elina Kuusisto",downloadPdfUrl:"/chapter/pdf-download/69651",previewPdfUrl:"/chapter/pdf-preview/69651",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"1990",title:"International Perspectives of Distance Learning in Higher Education",subtitle:null,isOpenForSubmission:!1,hash:"e9f445b89a42e6221004f529ac247127",slug:"international-perspectives-of-distance-learning-in-higher-education",bookSignature:"Joi L. Moore and Angela D. Benson",coverURL:"https://cdn.intechopen.com/books/images_new/1990.jpg",editedByType:"Edited by",editors:[{id:"102403",title:"Dr.",name:"Joi L.",surname:"Moore",slug:"joi-l.-moore",fullName:"Joi L. Moore"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5773",title:"Global Voices in Higher Education",subtitle:null,isOpenForSubmission:!1,hash:"98977ad0f9bc0a5224a23d6f67b343ca",slug:"global-voices-in-higher-education",bookSignature:"Susan L. Renes",coverURL:"https://cdn.intechopen.com/books/images_new/5773.jpg",editedByType:"Edited by",editors:[{id:"158868",title:"Dr.",name:"Susan",surname:"Renes",slug:"susan-renes",fullName:"Susan Renes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8283",title:"Innovations in Higher Education",subtitle:"Cases on Transforming and Advancing Practice",isOpenForSubmission:!1,hash:"9c8b8a6fe8578fbf2398932ce8c1b717",slug:"innovations-in-higher-education-cases-on-transforming-and-advancing-practice",bookSignature:"Dominique Parrish and Joanne Joyce-McCoach",coverURL:"https://cdn.intechopen.com/books/images_new/8283.jpg",editedByType:"Edited by",editors:[{id:"197795",title:"Associate Prof.",name:"Dominique",surname:"Parrish",slug:"dominique-parrish",fullName:"Dominique Parrish"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8039",title:"Theorizing STEM Education in the 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"0c99d528dbcc6ed5e8a26f96b36c812d",slug:"theorizing-stem-education-in-the-21st-century",bookSignature:"Kehdinga George Fomunyam",coverURL:"https://cdn.intechopen.com/books/images_new/8039.jpg",editedByType:"Edited by",editors:[{id:"267912",title:"Dr.",name:"Kehdinga George",surname:"Fomunyam",slug:"kehdinga-george-fomunyam",fullName:"Kehdinga George Fomunyam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7804",title:"Teacher Education in the 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"1722e45e6ebd731426bc0e4ac5c6eee2",slug:"teacher-education-in-the-21st-century",bookSignature:"Reginald Botshabeng Monyai",coverURL:"https://cdn.intechopen.com/books/images_new/7804.jpg",editedByType:"Edited by",editors:[{id:"210249",title:"Dr.",name:"Reginald",surname:"Monyai",slug:"reginald-monyai",fullName:"Reginald Monyai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7576",title:"Reimagining New Approaches in Teacher Professional Development",subtitle:null,isOpenForSubmission:!1,hash:"7ebab0695715a9b2a759da32380ded9a",slug:"reimagining-new-approaches-in-teacher-professional-development",bookSignature:"Vimbi Petrus Mahlangu",coverURL:"https://cdn.intechopen.com/books/images_new/7576.jpg",editedByType:"Edited by",editors:[{id:"196797",title:"Prof.",name:"Vimbi",surname:"Mahlangu",slug:"vimbi-mahlangu",fullName:"Vimbi Mahlangu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74026",slug:"corrigendum-to-calf-sex-influence-in-bovine-milk-production",title:"Corrigendum to: Calf-Sex Influence in Bovine Milk Production",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74026.pdf",downloadPdfUrl:"/chapter/pdf-download/74026",previewPdfUrl:"/chapter/pdf-preview/74026",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74026",risUrl:"/chapter/ris/74026",chapter:{id:"73504",slug:"calf-sex-influence-in-bovine-milk-production",signatures:"Miguel Quaresma and R. Payan-Carreira",dateSubmitted:"April 21st 2020",dateReviewed:"September 10th 2020",datePrePublished:"October 8th 2020",datePublished:"January 20th 2021",book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",fullName:"Rita Payan-Carreira",slug:"rita-payan-carreira",email:"rtpayan@gmail.com",position:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",fullName:"Miguel Quaresma",slug:"miguel-quaresma",email:"miguelq@utad.pt",position:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}}]}},chapter:{id:"73504",slug:"calf-sex-influence-in-bovine-milk-production",signatures:"Miguel Quaresma and R. Payan-Carreira",dateSubmitted:"April 21st 2020",dateReviewed:"September 10th 2020",datePrePublished:"October 8th 2020",datePublished:"January 20th 2021",book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",fullName:"Rita Payan-Carreira",slug:"rita-payan-carreira",email:"rtpayan@gmail.com",position:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",fullName:"Miguel Quaresma",slug:"miguel-quaresma",email:"miguelq@utad.pt",position:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}}]},book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"1532",leadTitle:null,title:"Semiconductor Laser Diode",subtitle:"Technology and Applications",reviewType:"peer-reviewed",abstract:"This book represents a unique collection of the latest developments in the rapidly developing world of semiconductor laser diode technology and applications. An international group of distinguished contributors have covered particular aspects and the book includes optimization of semiconductor laser diode parameters for fascinating applications. \nThis collection of chapters will be of considerable interest to engineers, scientists, technologists and physicists working in research and development in the field of semiconductor laser diode, as well as to young researchers who are at the beginning of their career.",isbn:null,printIsbn:"978-953-51-0549-7",pdfIsbn:"978-953-51-4996-5",doi:"10.5772/1999",price:139,priceEur:155,priceUsd:179,slug:"semiconductor-laser-diode-technology-and-applications",numberOfPages:390,isOpenForSubmission:!1,hash:"67c029e3a582411c5f9ab3a7dc28884f",bookSignature:"Dnyaneshwar Shaligram Patil",publishedDate:"April 25th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/1532.jpg",keywords:null,numberOfDownloads:58399,numberOfWosCitations:29,numberOfCrossrefCitations:5,numberOfDimensionsCitations:17,numberOfTotalCitations:51,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 2nd 2011",dateEndSecondStepPublish:"May 30th 2011",dateEndThirdStepPublish:"October 4th 2011",dateEndFourthStepPublish:"November 3rd 2011",dateEndFifthStepPublish:"March 2nd 2012",remainingDaysToSecondStep:"10 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"106345",title:"Prof.",name:"Dnyaneshwar",middleName:"Shaligram",surname:"Patil",slug:"dnyaneshwar-patil",fullName:"Dnyaneshwar Patil",profilePictureURL:"https://mts.intechopen.com/storage/users/106345/images/2754_n.jpg",biography:"Dr. D. S. Patil has been graduated from Poona University with a rank. He received the M.Sc. degree in Electronics Science with a first class in 1986 from the Poona university department of Electronics-Science. He secured M.C.M. degree with A+ grade from Poona University and the Ph.D. degree in Electronics from the North Maharashtra University, Jalgaon [Maharashtra], India. He qualified state eligibility test in Electronics in 1995. Since 1991, he has been working in the North Maharashtra University, Jalgaon and presently working as a Professor. He secured high school scholarship, national merit scholarship and received Rashtriya gaurav award sponsored by India International Friendship Society. He successfully completed a major Young scientist project from Department of Science and Technology, India. His name has been considered in the Steering committee as a member for the International Conference on Nanoscience and Technology 2008, Colarado, United States of America, International vacuum Congress, China 2010. He worked on the various committees of the universities. He has published about 157 papers in reputed journals and proceedings of the conferences. His research interests include the computer simulation of semiconductor, nano and optoelectronics devices, nano-electronics, Materials development and characterization for the nano-technological and optoelectronics applications, process automation using advanced microcontrollers and embedded systems, organic electronics and computer simulation of nanostructures including quantum dots and superlattice. He has developed with his research student a novel model of probability density spreading in GaN quantum wells. He has developed with research students, computer controlled dip coating system and microcontroller based spin coating system for the deposition of nano-materials. He has guided many students for their innovative research. He visited France and Germany to attend international conferences and present his papers. Moreover, he visited Technical University, Zurich, Switzerland to know the various activities and research carried out in Electronics Technology department. He worked as a reviewer for many reputed international journals. He has delivered many invited talks and popular lectures. He developed the Electronics Practical laboratory and curriculum as a first member of Electronics Department and framed syllabus of M.Phil. (Electronics) and M.Sc.(Electronics). Despite of this, he taught various courses to M.Tech. (VLSI Technology), M.C.A and B.Tech.(Chemical Technology). Recently, his name has been considered in Marscue Who’s who in the world.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"North Maharashtra University",institutionURL:null,country:{name:"India"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1226",title:"Optoelectronics",slug:"optics-and-lasers-optoelectronics"}],chapters:[{id:"35899",title:"Effect of Cavity Length and Operating Parameters on the Optical Performance of Al0.08In0.08Ga0.84N/ Al0.1In0.01Ga0.89N MQW Laser Diodes",slug:"effect-of-cavity-length-and-operating-parameters-on-the-optical-performance-of-al0-08in0-08ga0-84n-a",totalDownloads:3587,totalCrossrefCites:0,authors:[{id:"104427",title:"Dr.",name:"Alaa J.",surname:"Ghazai",slug:"alaa-j.-ghazai",fullName:"Alaa J. Ghazai"}]},{id:"35900",title:"Electrical Transport in Ternary Alloys: AlGaN and InGaN and Their Role in Optoelectronic",slug:"electrical-transport-in-ternary-alloys-algan-and-ingan-and-their-role-in-optoelectronic",totalDownloads:4838,totalCrossrefCites:0,authors:[{id:"100925",title:"Dr.",name:"Nadia",surname:"Bachir",slug:"nadia-bachir",fullName:"Nadia Bachir"},{id:"109209",title:"Prof.",name:"Chabane Sari",surname:"Nasr Eddine",slug:"chabane-sari-nasr-eddine",fullName:"Chabane Sari Nasr Eddine"},{id:"109215",title:"Dr.",name:"Hamdoune",surname:"Abdelkader",slug:"hamdoune-abdelkader",fullName:"Hamdoune Abdelkader"}]},{id:"35901",title:"Carrier Transport Phenomena in Metal Contacts to AlInGaN-Based Laser Diodes",slug:"carrier-transport-phenomena-in-metal-contacts-to-alingan-based-laser-diodes",totalDownloads:2121,totalCrossrefCites:0,authors:[{id:"103499",title:"Prof.",name:"Joon Seop",surname:"Kwak",slug:"joon-seop-kwak",fullName:"Joon Seop Kwak"}]},{id:"35902",title:"Characterization Parameters of (InGaN/InGaN) and (InGaN/GaN) Quantum Well Laser Diode",slug:"characterization-parameters-of-ingan-ingan-and-ingan-gan-quantum-well-laser-diode",totalDownloads:3442,totalCrossrefCites:0,authors:[{id:"106453",title:"Dr.",name:"Sabah",surname:"Thahab",slug:"sabah-thahab",fullName:"Sabah Thahab"}]},{id:"35903",title:"Analysis of Coherence-Collapse Regime of Semiconductor Lasers Under External Optical Feedback by Perturbation Method",slug:"analysis-of-coherence-collapse-regime-of-semiconductor-lasers-under-external-optical-feedback-by-per",totalDownloads:2447,totalCrossrefCites:0,authors:[{id:"111141",title:"Dr.",name:"Qin",surname:"Zou",slug:"qin-zou",fullName:"Qin Zou"}]},{id:"35904",title:"DFB Laser Diode Dynamics with Optoelectronic Feedback",slug:"dfb-laser-diode-dynamics-with-optoelectronic-feedback",totalDownloads:3677,totalCrossrefCites:0,authors:[{id:"102474",title:"Dr.",name:"M. H.",surname:"Shahine",slug:"m.-h.-shahine",fullName:"M. H. Shahine"}]},{id:"35905",title:"Ultra-Wideband Multiwavelength Light Source Utilizing Rare Earth Doped Femtosecond Fiber Oscillator",slug:"ultra-wideband-multiwavelength-light-source-utilizing-rare-earth-doped-femtosecond-fiber-oscillator",totalDownloads:2204,totalCrossrefCites:0,authors:[{id:"14201",title:"Dr.",name:"Sulaiman Wadi",surname:"Harun",slug:"sulaiman-wadi-harun",fullName:"Sulaiman Wadi Harun"},{id:"102667",title:"MSc.",name:"Nurul Shahrizan",surname:"Shahabuddin",slug:"nurul-shahrizan-shahabuddin",fullName:"Nurul Shahrizan Shahabuddin"},{id:"110438",title:"Dr.",name:"Marinah",surname:"Othman",slug:"marinah-othman",fullName:"Marinah Othman"}]},{id:"35906",title:"Low Frequency Noise Characteristics of Multimode and Singlemode Laser Diodes",slug:"low-frequency-noise-characteristics-of-multimode-and-singlemode-laser-diodes",totalDownloads:2032,totalCrossrefCites:2,authors:[{id:"104384",title:"Dr.",name:"Sandra",surname:"Pralgauskaite",slug:"sandra-pralgauskaite",fullName:"Sandra Pralgauskaite"},{id:"104388",title:"Prof.",name:"Jonas",surname:"Matukas",slug:"jonas-matukas",fullName:"Jonas Matukas"},{id:"104390",title:"Prof.",name:"Vilius",surname:"Palenskis",slug:"vilius-palenskis",fullName:"Vilius Palenskis"}]},{id:"35907",title:"Investigation of High-Speed Transient Processes and Parameter Extraction of InGaAsP Laser Diodes",slug:"investigation-of-high-speed-transient-processes-and-parameter-extraction-of-ingaasp-laser-diodes",totalDownloads:1961,totalCrossrefCites:0,authors:[{id:"104388",title:"Prof.",name:"Jonas",surname:"Matukas",slug:"jonas-matukas",fullName:"Jonas Matukas"},{id:"104390",title:"Prof.",name:"Vilius",surname:"Palenskis",slug:"vilius-palenskis",fullName:"Vilius Palenskis"},{id:"105381",title:"Prof.",name:"Juozas",surname:"Vysniauskas",slug:"juozas-vysniauskas",fullName:"Juozas Vysniauskas"},{id:"105392",title:"MSc.",name:"Tomas",surname:"Vasiliauskas",slug:"tomas-vasiliauskas",fullName:"Tomas Vasiliauskas"},{id:"105396",title:"Dr.",name:"Emilis",surname:"Sermuksnis",slug:"emilis-sermuksnis",fullName:"Emilis Sermuksnis"}]},{id:"35908",title:"Spectral Narrowing and Brightness Increase in High Power Laser Diode Arrays",slug:"spectral-narrowing-and-brightness-increase-in-high-power-laser-diode-arrays",totalDownloads:3256,totalCrossrefCites:0,authors:[{id:"105997",title:"Dr.",name:"Niklaus",surname:"Wetter",slug:"niklaus-wetter",fullName:"Niklaus Wetter"}]},{id:"35909",title:"Tunable Dual-Wavelength Laser Scheme by Optical-Injection Fabry-Perot Laser Diode",slug:"tunable-dual-wavelength-laser-scheme-by-optical-injection-fabry-perot-laser-diode",totalDownloads:2217,totalCrossrefCites:0,authors:[{id:"106255",title:"Prof.",name:"Chien-Hung",surname:"Yeh",slug:"chien-hung-yeh",fullName:"Chien-Hung Yeh"}]},{id:"35910",title:"The Coherent Coupled Output of a Laser Diode Array Using a Volume Bragg Grating",slug:"the-coherent-coupled-output-of-a-laser-diode-array-using-a-volume-bragg-grating",totalDownloads:2334,totalCrossrefCites:0,authors:[{id:"111287",title:"Dr.",name:"Bo",surname:"Liu",slug:"bo-liu",fullName:"Bo Liu"}]},{id:"35933",title:"Laser Diode Pump Technology for Space Applications",slug:"laser-diode-pump-technology-for-space-applications",totalDownloads:3793,totalCrossrefCites:1,authors:[{id:"109008",title:"Dr.",name:"Anthony W.",surname:"Yu",slug:"anthony-w.-yu",fullName:"Anthony W. Yu"},{id:"110631",title:"Ms.",name:"Elisavet",surname:"Troupaki",slug:"elisavet-troupaki",fullName:"Elisavet Troupaki"},{id:"110632",title:"Dr.",name:"Mark A.",surname:"Stephen",slug:"mark-a.-stephen",fullName:"Mark A. Stephen"},{id:"110633",title:"Dr.",name:"Aleksey A.",surname:"Vasilyev",slug:"aleksey-a.-vasilyev",fullName:"Aleksey A. Vasilyev"}]},{id:"35934",title:"Monitoring of Welding Using Laser Diodes",slug:"monitoring-of-welding-using-laser-diodes",totalDownloads:2404,totalCrossrefCites:1,authors:[{id:"107571",title:"Dr.",name:"Badr",surname:"Abdullah",slug:"badr-abdullah",fullName:"Badr Abdullah"}]},{id:"35935",title:"The Development of Laser Diode Arrays for Printing Applications",slug:"the-development-of-laser-diode-arrays-for-printing-applications",totalDownloads:3033,totalCrossrefCites:0,authors:[{id:"106897",title:"Dr.",name:"Olek",surname:"Kowalski",slug:"olek-kowalski",fullName:"Olek Kowalski"}]},{id:"35936",title:"High-Power Pulsed 2-μm Tm3+-Doped Fiber Laser",slug:"high-power-pulsed-2-m-tm3-doped-fiber-laser",totalDownloads:2883,totalCrossrefCites:0,authors:[{id:"5449",title:"Prof.",name:"Jianqiu",surname:"Xu",slug:"jianqiu-xu",fullName:"Jianqiu Xu"},{id:"110808",title:"Dr.",name:"Yulong",surname:"Tang",slug:"yulong-tang",fullName:"Yulong Tang"}]},{id:"35937",title:"Advances in High-Power Laser Diode Packaging",slug:"advances-in-high-power-laser-diode-packaging",totalDownloads:7249,totalCrossrefCites:1,authors:[{id:"113389",title:"Dr.",name:"Ronnie",surname:"Teo",slug:"ronnie-teo",fullName:"Ronnie Teo"}]},{id:"35938",title:"Laser Diode Gas Spectroscopy",slug:"laser-diode-gas-spectroscopy",totalDownloads:2025,totalCrossrefCites:0,authors:[{id:"103920",title:"Dr.",name:"Pablo",surname:"Pineda-Vadillo",slug:"pablo-pineda-vadillo",fullName:"Pablo Pineda-Vadillo"}]},{id:"35939",title:"CW THz Wave Generation System with Diode Laser Pumping",slug:"cw-thz-wave-generation-system-with-diode-laser-pumping",totalDownloads:2907,totalCrossrefCites:0,authors:[{id:"106244",title:"Dr.",name:"Srinivasa",surname:"Ragam",slug:"srinivasa-ragam",fullName:"Srinivasa Ragam"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"1505",title:"Scanning Electron Microscopy",subtitle:null,isOpenForSubmission:!1,hash:"3305b759b0efc22e8ed16e9048818817",slug:"scanning-electron-microscopy",bookSignature:"Viacheslav Kazmiruk",coverURL:"https://cdn.intechopen.com/books/images_new/1505.jpg",editedByType:"Edited by",editors:[{id:"100815",title:"Dr.",name:"Viacheslav",surname:"Kazmiruk",slug:"viacheslav-kazmiruk",fullName:"Viacheslav Kazmiruk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2397",title:"Advanced Aspects of Spectroscopy",subtitle:null,isOpenForSubmission:!1,hash:"bcc83fcd6b4bbfdaa677b37d94bdbdb6",slug:"advanced-aspects-of-spectroscopy",bookSignature:"Muhammad Akhyar Farrukh",coverURL:"https://cdn.intechopen.com/books/images_new/2397.jpg",editedByType:"Edited by",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10",title:"Coherence and Ultrashort Pulse Laser Emission",subtitle:null,isOpenForSubmission:!1,hash:"e1bd25a76712d1cb8792820acf2ff001",slug:"coherence-and-ultrashort-pulse-laser-emission",bookSignature:"F. J. Duarte",coverURL:"https://cdn.intechopen.com/books/images_new/10.jpg",editedByType:"Edited by",editors:[{id:"13752",title:"Dr.",name:"F. J.",surname:"Duarte",slug:"f.-j.-duarte",fullName:"F. J. Duarte"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2018",title:"Recent Progress in Optical Fiber Research",subtitle:null,isOpenForSubmission:!1,hash:"c9f4716122beee57c42cff13c357a2cb",slug:"recent-progress-in-optical-fiber-research",bookSignature:"Moh. Yasin, Sulaiman W. Harun and Hamzah Arof",coverURL:"https://cdn.intechopen.com/books/images_new/2018.jpg",editedByType:"Edited by",editors:[{id:"294347",title:"Dr.",name:"Moh",surname:"Yasin",slug:"moh-yasin",fullName:"Moh Yasin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3166",title:"Optoelectronics",subtitle:"Advanced Materials and Devices",isOpenForSubmission:!1,hash:"b7263978cf34e637a4b9592eb4975f3e",slug:"optoelectronics-advanced-materials-and-devices",bookSignature:"Sergei L. Pyshkin and John M. Ballato",coverURL:"https://cdn.intechopen.com/books/images_new/3166.jpg",editedByType:"Edited by",editors:[{id:"43016",title:"Prof.",name:"Sergei",surname:"Pyshkin",slug:"sergei-pyshkin",fullName:"Sergei Pyshkin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2245",title:"Plasmonics",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"e74f79681a8c87bb027f48ad33a3e068",slug:"plasmonics-principles-and-applications",bookSignature:"Ki Young Kim",coverURL:"https://cdn.intechopen.com/books/images_new/2245.jpg",editedByType:"Edited by",editors:[{id:"12009",title:"Dr.",name:"Ki Young",surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3710",title:"Advances in Solid State Lasers",subtitle:"Development and Applications",isOpenForSubmission:!1,hash:null,slug:"advances-in-solid-state-lasers-development-and-applications",bookSignature:"Mikhail Grishin",coverURL:"https://cdn.intechopen.com/books/images_new/3710.jpg",editedByType:"Edited by",editors:[{id:"4862",title:"Mr.",name:"Mikhail",surname:"Grishin",slug:"mikhail-grishin",fullName:"Mikhail Grishin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"256",title:"Optoelectronics",subtitle:"Materials and Techniques",isOpenForSubmission:!1,hash:"2c0d6a2a51ac114edd58f2c667297503",slug:"optoelectronics-materials-and-techniques",bookSignature:"Padmanabhan Predeep",coverURL:"https://cdn.intechopen.com/books/images_new/256.jpg",editedByType:"Edited by",editors:[{id:"36735",title:"Prof.",name:"P.",surname:"Predeep",slug:"p.-predeep",fullName:"P. Predeep"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3581",title:"Recent Optical and Photonic Technologies",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"recent-optical-and-photonic-technologies",bookSignature:"Ki Young Kim",coverURL:"https://cdn.intechopen.com/books/images_new/3581.jpg",editedByType:"Edited by",editors:[{id:"12009",title:"Dr.",name:"Ki Young",surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"525",title:"Optoelectronics",subtitle:"Devices and Applications",isOpenForSubmission:!1,hash:"f444b982565b0c4be6117a35f7810047",slug:"optoelectronics-devices-and-applications",bookSignature:"Padmanabhan Predeep",coverURL:"https://cdn.intechopen.com/books/images_new/525.jpg",editedByType:"Edited by",editors:[{id:"36735",title:"Prof.",name:"P.",surname:"Predeep",slug:"p.-predeep",fullName:"P. Predeep"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"67633",title:"A Philosophical Outlook on Africa’s Higher Education in the Twenty-First Century: Challenges and Prospects",doi:"10.5772/intechopen.86885",slug:"a-philosophical-outlook-on-africa-s-higher-education-in-the-twenty-first-century-challenges-and-pros",body:'\n
Higher education describes systematic learning that takes place in the universities and colleges or other equivalent institutions of learning mostly termed tertiary institutions refer to higher education institutions. A survey of higher education institutions in Africa’s ten most populous countries (Nigeria, South Africa, Ethiopia, Democratic Republic of Congo, Egypt, Sudan, Uganda, Algeria, Kenya, and Tanzania) indicates the existence of over 740 universities and colleges in Africa which are supported by both governments and private entities. As home to the world’s oldest universities, the University of Al Qarawiyyin in Fez in Morocco (founded in 859 AD) and Al-Azhar University in Egypt (founded in 970 AD), [40] the continent is not oblivious of the benefits of higher education. Yet society is sceptical about the kind of knowledge, skill and competencies graduates from higher institutions possess.
\nAlthough, governments in some African countries such as Kenya, Uganda, Ethiopia, Tanzania, Egypt, and South Africa have invested hugely in both public and private tertiary institutions. Such investments seem to have paid off locally. A 2016 Times Higher Education ranking identified 15 best universities in Africa. Among these, six were from South Africa, three were from Egypt, two were from Morocco, and one each from Ghana, Kenya, Nigeria, and Uganda [1]. But African Universities appear inferior to their counterparts in other continents. For example, the Edition 2019.1.2 of Webometrics indicates that the best university in Africa, University of Cape Town, ranked 272 on the world ranking [2].
\nThis meant that the best of African universities was missing on the intercontinental list of 250 best universities. Interestingly, South Africa had eight of the top ten best African universities. Perhaps, South Africa has found an antidote to the declining underperformance of universities in Africa. Could national funding of research policy be the reason for its relative success on the continent? This question and the queries raised so far begin the probe into the relevance and impact of African Universities. This study inquires into the objectives and roles of African universities in a quest to determine challenges obstructing these universities from achieving their objectives. In this regard, the study will identify prospects for harnessing the potentials of universities in Africa.
\nThrough the philosophical approach of methodic doubt [3], the study distrusts the relevance and impact of Africa universities, formulates a challenge-based argument that explains the underperformance and reduced impact of African universities, and argues for a solution based on identified prospects. The study casts doubts on all existing views on the relevance and impact of higher education in Africa in an attempt to arrive at indisputable recommendations for enhancing the relevance and impact of higher education in Africa. Rational analysis enabled secondary data on Africa’s higher education to be examined in light of the identified challenges and prospects on the continent. The thrust of this chapter is that concerted efforts by all stakeholders, reviewing teaching and learning approaches by incorporation nontraditional modes and restructuring governance systems in higher education institutions can aid universities in Africa to contribute significantly to the comprehensive development of the continent.
\nUniversities in Africa, like their counterparts elsewhere, are established to achieve lofty goals, but the continuous underperformance and low impact of these universities make these goals a mirage. Also, African universities seek to achieve the goals of a twenty-first century education institution wherein “knowledge producers, values and culture transmitters, and capacity builders” ([4], p. 221). In light of these goals, African tertiary institutions are seen as centers of learning for the development of Africa’s human capital and agency for the enhancement of the African identity.
\nIn contrast, the creation of national and African identities [5] bemoans how Western education philosophies have been wholly accepted in the African education system at the detriment of indigenous knowledge systems. The authors are of the view that current Western philosophies of education can be perfectly integrated into the indigenous education system. As centers of learning and the development of Africa’s human capital, these tertiary institutions are expected to acquire theoretical and practical information about issues and concepts relevant to the African community, process this information through systematic categorizations, and transmit this categorized knowledge to their students. African universities perform this task through research, assessment, and teacher-student engagements in both curricular and extracurricular activities. Once again, this highlights the call for African philosophies to form the framework for education in the continent [6] in order to make teaching and learning more relevant to students in African higher education institutions.
\nIt is worth noting that the significance of these universities is mostly viewed by society through the performances and competencies graduates bring to bear in their attempt to resolve challenging issues [7]. As such, society expects that these graduates will leave the universities with a body of relevant knowledge, ability to use this knowledge in the society meaningfully, and skills to apply knowledge to solve the myriads of problems facing countries on the continent [7]. After all, society prides itself in the high-level human workforce who not only exhibit knowledge but use this acquired knowledge to brace up society for the extensive changes of the twenty-first century [8].
\nGiven the considerable number of graduates produced annually by Africa higher education institutions and the disconnect between the industry and the knowledge and skill base of these graduates, one could argue for the relevance of establishing these universities. African societies do not just need the numbers because there must be commensurate quantity given that graduates are required for societal transformation given the pressures and opportunities of the twenty-first century. However, the high rate of graduate unemployability across the continent casts a slur on the relevance of African universities, bringing into the fore the question raised by Mouton et al. [9] on the relevance of these institutions on the continent. This unfortunate phenomenon has been blamed on the mismatch between graduate competencies and industrial/societal needs [10]. This has opened a Pandora box for both society and industry to question the worth of university graduates. Some university graduates are themselves not so hopeful of their future in terms of acceptance into the workplace and the contributions they can make.
\nTo further highlight the situation under scrutiny, [11] reported that 25% of graduates from African universities were unemployed. In a similar instance, the [12] quoted the president of Coco-Cola Company as claiming that 50% of the annual 10 million university graduates that churned out of African universities were unemployed. Additionally, Osazuwa [13] pegged graduate unemployment in Nigeria at an alarming 70%. Whereas in South Africa, the economic powerhouse in Africa, [39]indicated that graduate unemployment was ~14.9%.
\nThe picture painted above may readily suggest that high graduate numbers will result in unemployment when more jobs are not created. However, the situation is different in the case where it is noted that only 50% out of annual university graduates in Kenya are suitable for employment [14]. The report further indicated that less than half of this percentage possessed the requisite soft skills for their preferred careers. The lack of soft skills and mismatched knowledge and job requirement corroborates an earlier report by the [15] and that of the [10] which collected data from 36 Africa countries established a mismatch between university degrees awarded and “career paths such as telecommunications, engineering, agriculture, Information Technology, health, banking and education” [10].
\nSadly, Wambugu et al. [16] argued that “African tertiary graduates are weak in problem-solving, business understanding, computer use, and communication skills.” Relatedly, Ncube [17] picked a compelling sentence from the keynote address by Professor Emmanuel Ngara of African Association of Universities in what follows:
\nMany African tertiary institutions produce half-baked graduates that aren’t fit for the world of work mainly because of the way they are taught and the absence of curricular reviews that should respond to the calls of industry’s contemporary needs.
\nAs authors of this chapter, we note that entrance into African higher institutions are highly competitive and the best candidates are often offered admission until the throughput is overhauled to fill the mismatch the relevance of African universities in terms of graduate output will continue to be in doubt.
\nApart from the socio-economic function of African higher institutions, there is a greater expectation that these institutions will be agencies by which the goal of constructing an African identity in the twenty-first century can be realized. Africanization is a concept that highlights the need to determine and sustain the personhood and the relationship of the African people in a globalized world [18, 19]. It stresses the need to incorporate the patterned way by which the African thinks, behaves, and expresses feelings about reality into the total life of the university [20]. Far from hostility towards the Western worldview, there should be a conscious and concerted effort of re-modeling higher education in Africa such that the goal, content, method, research, and administration converge to produce graduates who recognize the needs and values of the continent [21]. Essentially, tertiary institutions in Africa will achieve this aim if the graduates they churn out display a sense of Africa’s commonalities, affirm Africa’s culture, tradition and value systems, and foster a comprehension of the African consciousness in a bid to blend both western and African methodologies of resolving the challenges of the African people [5, 22].
\nAn appraisal of tertiary institutions in Africa in terms of Africanization only deepens the doubt of the relevance of these institutions. For instance, research conducted in Kenya revealed that graduates from higher institutions were only strangers to the socio-economic development needs of the country [23]. A similar observation can be made across the continent as most African universities employ content and delivery methods that are simply out of tune with the developmental needs of African society or as noted by Amponsah et al. [5] are skewed towards western philosophies of education. As such, graduates from these tertiary institutions “are not active, creative participants in the economy” of their countries [24]. The logical conclusion from the disparity between African graduates and their subsequent irrelevance in Africa’s socio-economic struggles would seem to suggest that content and methodologies used in educating these graduates are foreign to the demands of their developmental context [25]. In this regard, higher education institutions in Africa have, to a large extent, failed to contribute to the improvement of the quality of life of the African community [26]. As a result, most tertiary graduates in Africa are marginalized by society. This is obviously a defect in the efforts to educate people to the highest level and this needs to be fixed to reverse the negative assertions on higher education institutions.
\nThe doubt on the relevance and impact of higher education in Africa has been sustained by certain pillars. A common proverb goes like “there is no smoke without fire.” This section is therefore dedicated to establishing some key challenges African higher education institutions continue to battle among which are the commercialization of teaching and learning, scarcity of qualified faculty, inadequate resources for research, and ineffective governance of higher education institutions. First of all, the increasing demand for higher education in Africa explains the escalation of private tertiary education institutions on the continent. It is recorded that private universities grew from 35 in 1969 to 972 in 2015. As a consequence, higher education in Africa has become a privileged right instead of a public good. This implies a for-profit drive rather than a nonprofit drive. Like other neoliberal institutions, widening the profit margins of the entity is a primary interest of its owners. In this regard, management of higher education institutions in Africa engages faculty, students, content, teaching and administrative methodologies that contribute to the economic interest of owners. Such for-profit motif has even infected public higher education institutions. African governments are reducing state funding of public universities in favor of commercializing policies such as “cost-sharing” [27]. The effect is that economic interest instead of the need to produce a refined workforce for society determines the standard of operations in most African universities.
\nMore so as higher education in Africa expands, the need for qualified faculty becomes apparent but that has mostly been the case. For example, Kenya’s Commission for University Education revealed that only 34% out of 18,005 faculties from the nation’s 74 universities and colleges possessed doctorate degrees [14]. This reality implies that higher education institutions in Africa will have to rely on faculty without the requisite qualifications or part-time lecturers for students’ engagement. Since these part-time lecturers have a primary commitment in their substantive institutions, their services in these part-time institutions are limited both in terms of contact times and quality of contents. Lecturing in multiple institutions most likely lead to limited research output. Available records indicate that Africa produced 2.1% of the world’s academic publication compared with 33.1% by Asia and 32.9% by Europe. This results in the production of half-baked graduates for the African corporate society. No wonder the endless cycle of the mismatch between graduates from African higher institutions and African industries continue to exist and has been put on autopilot until something is done to salvage the situation.
\nAlso, the lack of funding for research activities in African higher institutions is becoming pronounced [27]. Well-resourced libraries, Information-Technology facilities, and research-experienced faculty are lacking in most African higher institutions. For this cause, most Africa higher institutions fall short of being described as research universities. Not only are the research outputs low, but they are also regarded as substandard and hardly find their way to top-notch publication outlets. Global statistics on internationally collaborated publications in 2014 showed 90% of scholarly publications by African faculties were done in partnership with western countries. Most of the research outputs have more significance to the western partners than the African counterparts. This is indicative that such African scholars are insignificant to socio-economic issues of their immediate milieu [28]. By inference, even the majority of the research carried out by African scholars may never result in solving the problems of the continent.
\nTo a large extent, the governance of Africa’s higher institutions leaves much to be desired. Corporatization of African higher institutions has included individuals who are oblivious of leadership skills in academia. Governing councils of universities in Africa direct the affairs of the universities without recourse to the autonomy and freedom of the academic community. In some parts of Africa, the attitude of government regulatory bodies has added to the decline of quality in the operations of Africa’s universities. Instead of adopting the collaborative approach to building these universities, these regulatory bodies have taken an interventionist stance. Through this approach, they prescribe content and methods that are mostly inconsistent with the aims of the general academic community under their jurisdiction. In some circumstances, these regulatory bodies assume a bias stance against private universities. Such internal and external pressures rob African university communities of the vitality that academic freedom and autonomy brings.
\nThe presence of these challenges and their consequent hindrance to the optimal performance of the task of higher education in Africa is in itself a case for the relevance of these institutions in the twenty-first century. To have maximum impact on the African continent, it is suggested that the higher education system in Africa revisualizes its fundamental mandate and usefulness in the twenty-first century society. To this end, research collaborations across disciplines and higher education institutions, improvement in irregular/nontraditional modes of teaching and learning, utilization of student-based learning models, and restructuring the governance of higher education institutions will aid universities in Africa to contribute significantly to the comprehensive development of the continent. Such revisioning is necessary given the increasing demand for higher education in Africa [10].
\nSecondly, research collaborations across disciplines and higher education institutions will equip African faculties for significant research undertaking. Through such partnerships, African higher institutions will pull resources together for academic research. In working together, inexperienced-researchers will acquire skills from their experienced counterparts and skills learned will sharpen their curriculum planning, delivery, and research [29]. Also, the quest to conduct research that is relevant to the socio-economic and developmental needs of African society should be the top priority of African higher institutions. Such studies have the potential of attracting industries in Africa to invest in the research programs of the institutions. Through meaningful collaborations, such higher institutions will not only heighten their impact in the local context, but they would also create an impact on the global front.
\nDeveloping and maintaining irregular or nontraditional modes of learning is one sure way for higher education in Africa to respond to the increasing demand for quality and accessible higher education [30]. Otherwise known as innovative/modern learning methods, nontraditional learning modes refer to learning strategies that enable communication between learners and their faculties/institutions without the need to be physically present in the institution of learning. These strategies are generally self-directed and interactive. They can effectively engage the learner through technology-based methods such as virtual study environments (e.g., webinars), interactive interfaces, and blended techniques (use of videos and computers for teaching and learning). In the twenty-first century, harnessing the convenience, accessibility, self-paced and self-directed nontraditional learning modes of learning within the context of affordability can boost the quest of African higher institutions to remain relevant to the changing times.
\nAdditionally, other modes of learning such as distance education, sandwich, weekend schools, and cohort learning methods could bring the benefits of a robust professional connection and single purpose experiences in the life of the learner. By these means, the missing link between higher education institutions and the requirements of industries in Africa could be supplied. In using these modes of learning, it is expected that regulatory bodies will objectively ensure quality in performing the task of education. In some places in Africa, these twenty-first century modes of learning have been rejected because they are always inferior to traditional styles of learning. Instead of showing hostility towards these learning modes, regulatory bodies should acquire the expertise needed to understand various technologies that drive these methods in their bid to ensure quality content, delivery, and assessment.
\nThis requires a shift from teaching methods that emphasizes a teacher-mediated-classroom learning to more dynamic models of learning relevant to the comprehensive task of higher education in the twenty-first century. Such dynamic pedagogies utilize formal, nonformal, and informal strategies to engage students in analytical learning contexts that aim at making learning both a social construct and activity [31]. These dynamic pedagogies are drawn from several theories on the methods of teaching. The behaviorist learning approach is one of such models. This approach sees the learning process as a means of sharpening specific and general ways individuals respond to environmental conditions [32]. A mastery of these responses may equip learners with skills that may enhance their productivity in the society.
\nThe constructivist paradigm may also be helpful in this regard. Shifting attention from the passive recipients of teacher-mediated information, constructivist learning engages learners in active learning contexts that use both the past and current situation of the learner as bases for the generation of functional ideas [33]. Its usage of collaborative learning ensures learners acquire knowledge from both their personal life and the life of their peers and/or colleagues. Situated learning is closely knitted with this paradigm. It distinctively uses the process of social interaction as the locus of learning [34]. Through field learning and interaction with experts of relevant professions, learners acquire firsthand information that aids personal reflections of subjects of study.
\nSame techniques may be observed in pedagogies that uses the problem-based learning approach. In this paradigm, learners are encouraged to resolve career-related dilemmas in a structured manner [35]. These problems may be real or hypothetical. However, knowledge gained from such exercises is likely to enhance learners’ attitude of problem identification and resolution in real life situations. This also appears to be the goal of the lifelong learning model. Lifelong learning is predicated on the notion that learning is a process that continues through one’s life, either unconsciously or consciously [36, 37]. In this regard, lifelong learning equips learners with the skills to master the content of what they learn as they progressively encounter the changing seasons of life.
\nAfrican higher institutions cannot be relevant to their immediate society if the content, method of delivery, and assessment are irrelevant to the students. This calls for the utilization of student-based learning models in African higher institutions. Learning plans, content, and methods that place premium on the cognition, behavior, and affective traits of learners achieve “effective learning, self-efficacy, self-motivation, ability to plan, and seek help when necessary and be able to reflect on past learning experiences to look to the future” [27]. Such learning methods are capable of creating the environment necessary for students to apply, create, and evaluate the knowledge they obtained from the study [38]. By mastering their environment, students leave these institutions of higher learning with the skills needed to effectively transfer knowledge from the school setting to the wider society for meaningful output. African higher institutions will be re-imagined as the producers of the workforce necessary to drive the socio-economic development of the continent. The optimal performance of graduates from African higher institutions will call attention to the impact and relevance of these institutions in Africa.
\nLastly, restructuring the governance of higher education institutions in Africa will be a step in the right direction. African higher institutions need administrative and finance teams who understand what it means to perform the task of teaching. These teams will partner academic communities to use their autonomy and freedom for effective teaching and learning. A conscious effort should be made to form institutional Councils with a membership that possesses the necessary capacities to understand the interplay of innovation, science, and technology, on the one hand, and strategic planning of higher education institutions, on the other side. Also, governmental regulatory bodies must collaborate the efforts of African higher institutions, whether private or public, in ensuring that the institutions meet both the local and international standards of teaching. Together, the internal and external control of African higher institutions will solidify their existence as indispensable entities in the pursuit of the socio-economic developmental goals of the African continent and its people.
\nThe gap between higher education in Africa and the socio-economic development of Africa has led to doubts on the relevance and impact of higher education institutions in Africa. Through the philosophical approach of methodic doubt, the core objectives for establishing these institutions were questioned. The mismatch between knowledge acquired from the higher education institutions and the soft skills required by the society to positively drive its quest towards socio-economic developmental goals in the African society sustains this doubt. Also, failure to satisfactorily reconstruct the African identity in the face of trends in the twenty-first century casts shadows on the significance of higher education institutions in Africa. Other factors such as the commercialization of higher education in Africa, the shortage of qualified faculty, inadequate or nonexistent funding, and corporatization of the governance systems of higher education institutions have crystallized the perception of nonperformance of the higher education institutions in the African society.
\nDespite the gloomy portrait of the relevance and impact of higher education in Africa, this chapter established that higher education is significant to the societal quest of resolving the socio-economic developmental challenges that continue to beset the African continent in the twenty-first century. Research collaborations across disciplines and higher education institutions, quality enhancement of nontraditional learning modes, utilization of student-based learning methods, and a restructured governance system of higher education institutions will enhance the relevance and impact of higher education in Africa. To this end, the system of higher education must consciously incorporate functional policies that will sustain cohesive teaching, learning, and research communities, funding and financial management, and improved governance of higher institutions in Africa.
\nNitrogen is the most abundant (78%) of the atmosphere in gaseous form as an N2 molecule. But it is not directly available to the plants for their growth and development [1]. It is the foremost important major essential nutrient element involved in the physiological processes in plants. Globally, nitrogen deficiency is a crucial growth-limiting factor for plants, especially under abiotic stresses. The nitrogen use efficiency (NUE) is defined as the output of any crop plant per unit of nitrogen applied under a specific set of soil and climatic conditions [2]. Agronomist usually considers the amount of rough rice produced per unit of nitrogen applied as the efficiency of nitrogen, but physiologist defined it as the amount of rough rice produced per unit of nitrogen absorbed [3, 4]. The latter is also termed as N utilization efficiency. Apparent N recovery is based on N uptake measurement in the above-ground plant parts and assumes that fertilized and control crops absorb the same amount of soil N. On the other hand, physiological and agronomic efficiencies are based on grain yield rather than total dry matter production. However, the enhancement of NUE under an abiotic stressful environment has paramount importance to the future rice breeder.
Rice (Oryza sativa L.) is grown in a wide range of ecosystems from the tropic to the temperate regions, but productivity is severely tormented by various abiotic stresses [5, 6]. Farmers may encounter flooding or waterlogging if heavy rain occurs immediately after seeding before or after transplanting. The flooding can cause complete crop failure because of the high sensitivity of rice to anaerobic conditions caused by flooding during germination [7, 8]. There are various forms of flooding caused by directly from heavy rains and/or flooding from adjacent rivers, leading to drastic reductions in rice yield, ranging from 0.5 to 2.0 t ha−1 [9]. Flash floods are relatively short durations, prevailing some days to a couple of weeks. Apart from this, stagnant flooding (30–50 cm water depth) may occur at any time of the monsoon. Sometimes, the stagnant flooding may have coincidence with the flash flood resulting in severe impacts on rice production. In deepwater areas, stagnant water present from 0.5 m to a few meters in the field, usually for 4-6 months. The depth of water in some of these deepwater areas can exceed 4 m as in floating-rice areas. Rice breeders have been trying to develop a unique rice variety having specific adaptive traits to tackle these types of floods [10, 11, 12]. Recently, the Bangladesh Rice Research Institute has developed a deepwater rice variety, BRRI dhan91, for the deepwater ecosystem. However, the application of nitrogenous fertilizer is very challenging to the deepwater rice field and the NUE of this ecosystem is not yet been well investigated.
Another one among the most important abiotic stresses is drought. Despite the importance of drought as a major factor in yield reduction in rainfed ecosystems, few efforts have been made to develop high-yielding drought-tolerant rice variety. Impending rice production will experience a range of drought stress. The root architectural plasticity is taken into accounts as a very important characteristic to confer tolerance to drought stress [13]. Deciphering the genetic and molecular mechanisms controlling root phenotypic plasticity is important for effective screening, selection and rice breeding efforts. Despite the likely genetic complexity behind the regulation of trait expression in line with environmental conditions, phenotypic plasticity is heritable and selectable. The QTLs have been identified incur for plasticity in aerenchyma development and lateral root growth in response to drought stress in rice [14]. These QTLs can be used in advanced breeding for the development of a drought-tolerant rice variety. Due to global climate change, rice crops will face diverse stresses, including prolonged drought stress, poor soil fertility, and unpredictable rainfall. Rice establishment, either by transplanting or direct seeding, depends upon the rainfall pattern. Therefore, the identification of root phenotypic plasticity traits suitable for adaptation to the particular range of conditions faced by rice crops, as well as the genetic regions responsible for those plasticity traits, may facilitate selection for wide adaptation of rice genotypes to variable conditions to confer sustainable yield. Quantification of root architectural plasticity possesses significant value to detect which root traits may play the pivotal roles in rice adaptability to drought. It is reported that the most plastic genotypes in root traits may show the most yield stability under various dynamics of drought stress [11]. In this regard, many drought-tolerant cultivars, like N22 and Moroberekan, have been selected from rainfed ecosystems through traditional processes. These cultivars harbor genes for tolerance to abiotic stresses, including a wide range of drought [15]. But due to their low yield potential and poor grain quality, farmers and consumers are reluctant to prefer these cultivars. This provides a unique opportunity for rice breeders to develop high-yielding drought-tolerant varieties.
Salinity is another major abiotic stress that is globally distributed in both irrigated and non-irrigated areas [16, 17]. On a global basis, salinity stress ranked second after the drought [18]. Salt stress affects many aspects of rice growth and development, especially during seed germination and seedling growth [19]. It is one of the most prevalent environmental threats to global agricultural productivity, especially in arid and semi-arid climates, where population growth, water shortage and land degradation are major concerns [1, 20]. Salt-affected soils are identified by high electrical conductivity (EC), sodium adsorption ratio (SAR) and pH, calcareousness, poor organic matter, less biological activity and imbalance in physical soil conditions. Salinity causes toxicities of ions like Na+ and Cl−, osmotic stress and ionic imbalance to the root zone or in the soil body, including soil impermeability [21], resulting in nutrient uptake problems in rice plant. Salt stress is the osmotic stress expressed on seedling to the reproductive stage when they are growing under high saline conditions. The N is the essential element for the synthesis of chlorophyll, amino acids, nucleic acids, and proteins. Reduction in plant dry matter is sometimes observed under severe NaCl salt stress and N deficiency. This phenomenon possibly happens because of the decrease in sugar or starch accumulation [1, 22]. The NUE of nitrogenous fertilizers in saline soil depends upon its mineralization pattern, soil salinity levels, soil texture, temperature, freshwater irrigation and soil pH [23]. As NUE for rice plants under salt-affected soils is relatively lower than those on normal soils, the judicious use of nitrogenous fertilizer application in saline soil is needed. Breeders involved in salinity tolerant rice, it is groundbreaking news that the over-expression of PHYTOCHROME-INTERACTING FACTOR-LIKE14 (OsPIL14), or loss of function of the DELLA protein SLENDER RICE1 (SLR1), accelerate mesocotyl and root growth under salt stress and minimize the sensitivity to NaCl-induced hindrance of seedling growth in rice [17].
Crop establishment under abiotic stress is crucial for farmers, even though farmers are coping with this stress condition. There are many more abiotic stresses; out of those, we will discuss only flooding, drought and salinity stress.
Proper rice establishment is significantly important in flood-prone areas because of its sensitivity to flooding during germination (Figure 1) and early seedling stage relative to other growth stages [24, 25]. In most areas of Asia, irrigated rice is established by transplanting of seedlings into puddle soil [26, 27], after which the fields are flooded for a prolonged time and recession of water is done before harvesting. Puddling gives some advantages such as it reduces water loss by percolation, assists weed control through destroying weeds, burying weed seeds and maintaining anaerobic conditions that impede weed germination, and makes the soil soft for transplanting [28, 29]. In many rainfed areas of Bangladesh and the eastern part of India, water deposits in the field to around 30 cm or more within a few days after the onset of the rainy season, making the farmers to transplant taller and older seedlings being their only viable option in their hand [30]. Many variations in direct-seeding are being practiced depending on water availability and field conditions [29]. Due to increasing labor scarcity and cost, however, the need to shift a more suitable establishment method with much lower labor requirement than manual transplanting is conducted. This can be achieved by changing to mechanical transplanting or direct-seeding, which also enable timelier planting/seeding and improved crop stand [31]. Researchers in China [32], South Asia [33], and Australia [34] reported that rice could be successfully grown using dry-seeding. Dry-seeding rice has been developed as an alternative establishment method of rice that alters labor requirements and other inputs while increasing or maintaining economic productivity and alleviating soil degradation problems in cropping systems [35, 36].
Crop establishment methods and seed management options under early flooding stress using anaerobic germination (AG) potential rice genotypes in direct-seeded rice (DSR) system under field condition.
The three basic methods of direct seeding are water seeding (broadcasting seed into standing water), dry-seeding and wet-seeding [31]. In wet seeded rice (WSR), the pre-germinated seeds are broadcasted or sown in rows on the saturated soil surface, typically after puddling. Dry-seeding involves broadcasting or preferably drilling the seed into non-puddled soil, usually after dry tillage [31]. Water seeding involves pre-germinated rice seeds broadcast in standing water and is practiced in some cooler areas like in California, Central Asia and Australia [30]. The main advantage of this method is that the standing water suppresses the majority of weed species. This is common in temperate irrigated areas, but could potentially be adapted in flood-prone rainfed lowlands in the tropical area where farmers can practice early sowing without waiting for a complete recession of floodwater, to minimize the risk of delayed maturity and late-season drought [26]. Once the rice crop has been established in direct-seeded systems and based on water availability, the field is flooded to suppress weed growth and water depth is then maintained at 5–10 cm through most of the season, later water is gradually drained prior to harvest [30]. The type and degree of adoption of alternative rice crop establishment methods to puddling and manual transplanting vary across Asia. In some parts of South East Asia (Philippines, Malaysia, and Vietnam) and Sri Lanka, transplanting has been replaced in large areas by wet-seeding on puddled soil [2, 26]. In the more developed East Asian countries, like Japan and South Korea, transplanting in puddled soil using specialized machinery has been a common practice for many years, and there is now emerging interest in mechanical transplanting into either puddle or non-puddle/dry tilled soil in parts of India. In parts of South Asia, especially in the rice-wheat systems of north-west India, dry-seeding of rice is at the early stages of adoption. The same seed drill can also be used for sowing other crops; thus, dry-seeding may be more conducive to the mechanization of rice establishment than the use of a single purpose mechanical transplanters in regions where farmers also grow non-rice crops [37].
The establishment methods involving puddling have several disadvantages, including higher tillage costs, adverse effects on soil structure for upland crops grown in rotation with rice, and high water requirement for crop establishment. Irrigation cost for crop establishment can be reduced by avoiding puddling, with or without a change in the crop establishment method. For example, both mechanical transplanting and wet-seeding can be done in non-puddled soil after saturating the soil (after dry tillage or no-tillage) [38]. Dry-seeding into dry or moist soil, can further reduce the water requirement for crop establishment, with or without prior dry tillage as for transplanted and wet seeded rice. Nevertheless, direct-seeded rice in the field for 2–3 weeks is longer than transplanted rice, increasing the length of the irrigation season. It has been observed that the extraction of water is more uniform across depths with direct-seeded rice because of better root growth than with transplanted rice [39]. At the early stage of crop growth, up to 60 days after sowing (DAS) growth rate is relatively higher in DSR and WSR than transplanted rice, having more plant density per unit area compared to transplanting [40].
Drought is an environmental occurrence imposed by the synergistic effect of hydrological, climatic, and natural forces that result in insouciant precipitation for agricultural production over a long period [41]. Globally drought severity is one of the serious concerns because of its immense impacts [42]. The frequency and severity of global drought remain omnipresent and the incidence or extremity of drought has been increasing globally, such as in the Mediterranean region [43], Central China [44], and Africa [45]. Drought is a major constraint to rice production worldwide, as it can occur for varying lengths of time and intensity at any stage of rice growth and development. With the increasing human population and depleting water resources, the development of drought-tolerant rice is of supreme importance to minimizing rice yield losses from drought stress [46]. The major obstacle of rain-fed rice production is drought [47]. Irrigated conditions induce shallow root systems to uptake the resources from the top layer of the soil, whereas rain-fed conditions favor a deep and robust root system, needed to extract the water and nutrients from a wider volume of soil [48]. Three common types of drought can be found for rice production: early water scarcity that causes a delay in seedling establishment through transplanting, mild sporadic stress having cumulative effects, and late stress affecting long duration varieties [49].
Drought stress induces different physiological and biochemical changes in rice at various developmental stages [50]. It is reported that the plant acclimatized to drought stress through modification of its roots into thicker and longer to uptake nutrient and water from a relatively higher depth of soil and it is found that assimilates are translocated to roots instead of shoots in response to drought stress [51]. In contrast, some researchers opined that root growth in rice decreases under drought stress [52]. These findings show that the response of roots to water stress is highly dependent on the rice genotype, period and intensity of stress [53]. The impact of drought stress on rice yield also depends on the growth stages, with the seedling, tillering, flowering, but if rice plant faces severe drought at the panicle initiation stage might be the most sensitive stage resulting huge loss in yield [54].
As roots uptake water and nutrients from the soil; hence, the morphological and physiological characteristics of roots play a vital role in determining shoot growth, successive development and ultimate crop production [55]. The access of water to a plant is measured by its root system, root properties, root structure, and distribution of root and rootlets, so improving root traits to expedite the uptake of soil moisture and uphold the productivity under drought stress is of paramount interest [56, 57]. Herbaceous plants like rice have a root system comprised of coarse roots, which include the primary roots that originate from the taproot system and the nodal/seminal roots of fibrous root systems, easily distinguishable from the finer lateral roots [58]. Moisture deficiency can be recovered through modification of the root-shoot ratio and maintain leaf gourd cell-mediated process under drought stress [59]. The optimal dry matter partitioning theory proposes that a plant distributes the assimilates among its different parts for optimum growth and development [60]. It further suggests that the shoot ratio and some other signaling processes may change the ratio to balance the assimilates that alter plant growth even the plants produce certain root for adaptation [61]. Roots having a small diameter and a high specific root length expedite the surface area of roots in contact with soil water and also increase the influx of the xylem through the apoplastic pathway [62, 63]. Moreover, the decrease in root diameter also assists in enhancing water access and upraises the productivity of plants under drought stress [64].
Agronomic adjustments to root plasticity may occur when plant combat with multiple resources limitation [65]. Root architecture varying with rice seedling establishment methods; dry direct seeding prone to more edaphic stresses than irrigated transplanted methods [31]. Moreover, the adjustments in high yield potential among genotypes showing the highest degree of root plasticity may be due to genetic potentiality rather than functional adjustments. Undesirable traits to drought stress such as tall plant height and very early flowering have been reported previously, later in high-yielding, medium-duration drought-tolerant rice varieties developed [66, 67]. So the exact identification and fine-mapping of the QTLs governing the root plasticity traits identified [68]. The positive plasticity values noticed in response to stress indicate that the growth of that particular root trait was increased due to stress application. This response is distinct from an allometric response, in which larger root biomass is related to larger shoot size, because though root growth increased under drought stress but shoot growth down-regulated under stress [68]. The genotypes showing most root-plasticity have positive correlations for root architectural traits between and drought suggest that the most root-plastic genotypes would consistently show a plastic response in different drought environments either in transplanting or direct seeding or in other soil types [68]. The genotypes having the most root-plasticity under drought also would show a relatively greater degree of plasticity under low phosphorus content soil, depending on the soil depth [68]. Combinations of multiple root plasticity traits in response to drought and/or low-phosphorus have been related to genotypic variation for adaptation to various environments [69]. It is reported that no single functional parameter was strongly incurred to trends in root plasticity or yield [68]. In line with root architectural plasticity, traits such as root anatomy, water use efficiency, and phenology has been reported to be related to more stable plant establishment across versatile environments in various species [70, 71]. In the case of rice, phenological plasticity in response to drought may be difficult to assess because rice exhibited delayed flowering under drought, and this delay can be reduced by plasticity in root architectural traits, which improve moisture uptake. A set of QTLs has been identified related to root architectural plasticity traits and phenotypic plasticity traits in rice, resulting in getting a better understanding of rice establishment under drought stress [68].
Generally, rice plants are very sensitive to salinity stress during the early stages of seedling establishment, post-germination and reproductive stage and relatively less sensitive during tillering and grain filling stages [72, 73]. Under salinity altering in the shoot to root ratio as a consequence of root length reduction was supposed to be the avoidance mechanism of the seedlings from salt stress. Salinity accumulates the toxic ion in plants, causing a mineral imbalance. The essential ions are reduced and do not meet the demand resulting in hindrance in normal physiological activities of rice plants. High salt stress impedes the seed germination process, while low salt stress induces seed dormancy [74]. To cope with such stress conditions, seeds develop a mechanism of maintaining low water potential, other specific avoidance, escaping, or tolerance mechanisms to protect the damage by salt stress [75]. Salinity limits germination in a number of ways. From reducing the osmotic potential of soil, which makes a decline in water imbibitions by seed [74] to the creation of ionic toxicity, which alters enzymatic action involved in nucleic acid metabolism. Other effects of salt stress on seed germination include changes in the metabolic process of protein [76]. Seeds are usually more sensitive to salt stress due to close association to the surface of the soil. Accumulation of NaCl to a toxic level in soil, ionic stress decreases the rate of germination [77]. Seed could not absorb water properly because of lower water potential induced by salt stress resulting in toxic effects to the developing embryo and delay in the germination process [78]. The average time of seed germination depends on salinity severity and genotype’s inherent quality. There is a strong negative co-relationship between the strength of salinity stress and the rate of germination [79]. Salinity exhibits an immense effect on the germination index and seed size [80]. Small-sized seeds show a relatively higher germination index than large size seeds under salinity stress. Salinity has a negative effect on germination percentage, rate of germination and germination speed [81]. After germination, in successive growth of the seedling, salinity reduces shoot and root dry matter production in rice genotypes [82], and the magnitude of reduction increased with increasing salinity level (Table 1).
Genotype | Salinity level (dS m−1) | |||||||
---|---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 0 | 5 | 10 | 15 | |
Shoot dry weight (g/10 plants) | Root dry weight (g/10 plants) | |||||||
IR20 | 0.060 | 0.05 (17) | 0.028 (53) | 0.016 (73) | 0.068 | 0.048 (29) | 0.036 (47) | 0.016 (76) |
POKKALI | 0.134 | 0.116 (13) | 0.064 (52) | 0.044 (67) | 0.152 | 0.076 (50) | 0.026 (83) | 0.018 (88) |
IR29 | 0.140 | 0.07 (50) | 0.036 (74) | 0.014 (90) | 0.06 | 0.048 (20) | 0.022 (63) | 0.012 (80) |
NERICA 1 | 0.084 | 0.064 (24) | 0.024 (71) | 0.008 (90) | 0.054 | 0.038 (30) | 0.018 (67) | 0.01 (82) |
NERICA 5 | 0.076 | 0.054 (29) | 0.032 (58) | 0.02 (74) | 0.13 | 0.056 (57) | 0.016 (88) | 0.004 (97) |
NERICA 12 | 0.092 | 0.068 (26) | 0.046 (50) | 0.028 (70) | 0.062 | 0.04 (35) | 0.024 (61) | 0.01 (84) |
NERICA 19 | 0.054 | 0.038 (30) | 0.014 (74) | 0.004 (93) | 0.036 | 0.028 (22) | 0.002 (94) | 0.0 (100) |
IWAII | 0.090 | 0.068 (24) | 0.032 (64) | 0.02 (78) | 0.068 | 0.046 (32) | 0.028 (59) | 0.016 (76) |
Effect of salinity on shoot and root dry weight (g/10 plants) of different rice varieties [82].
Values in parenthesis indicate percent reduction to respective controls.
Higher amounts of salt in the soil cause a serious threat to various metabolic processes of plants, which results in a reduction of crop yield. Soil salinity limits the uptake of essential ions into the plants resulting in metabolic disorder leading to downstream in plant growth rate [83]. Excess salt concentration in the root zone of plants causes a change in plant water potential. Salinity causes a reduction in turgor pressure in plant cells due to less water uptake by the plants. Insufficient water limit cell division and regulation of stomatal aperture, which lead to low photosynthesis rate and in severe case causes plant tissues death [84]. Aside from this, reduction in turgor pressure causes stomatal closure, resulting reduction in gaseous exchange of transpiration [20]. Salinity causes other physiological disorders, like changes in membrane permeability, leading to misfolding of membrane proteins [85] and suppression of the photosynthesis [86]. Reduction in enzymatic activities and photopigments causes a lowering of photosynthesis rate [87]. Many plant physiological and biochemical processes, photosynthesis [88], water conductance through stomata [75, 89] are affected by salinity, resulting in an adverse effect on biological processes and crop yield reduction.
Rice adopts various strategies in response to salinity through their anatomical modification, which allows them to cope with the stress. Plants with growth in high salt concentration have more thickness of leaves [90], epidermis, cell walls and cuticles. The higher the salt concentrations, the higher the mesophyll cell layers and cell size up to some extend [91], due to more elasticity in the cell wall at high turgor pressure [92]. Salinity expedites the density of stomata at the lower side of leaves [93] with increased palisade tissues [94]; however, salinity downregulates the number of cells per leaf. Salinity reduces the number of stomata on the surface of the epidermis [95], vessels number [94]. However, salinity accelerates subrinization inside the roots resulting in hindrance in nutrient uptake from soil [96]. In rice, it is reported that stem diameter was reduced [97], while trichome and stomata density increased. Salt stress reduced cell size, the epidermal thickness of leaves, apical meristem, diameter of the cortex and central cylinder [98]. Salinity induced thickening of exodermis and endodermis [99] and assist in developing sclerenchymatous tissues [98]. Once the seed has germinated, the next goal for the plant is an establishment. Salinity causes a reduction in crop establishment by reducing shoot growth, sealing leaf development and expansion, reducing the growth of internodes and inducing abscission of leaf [91, 100]. Salinity causes some complexity to plants, like osmotic stress, ion toxicity and nutrient imbalance, which are detected as the most prominent reasons for a reduction in crop growth, resulting in crop failure in severe cases. Nonetheless, different developmental stages like germination, vegetative growth, flowering, spikelet’s setting and grain filling of rice behave differently with salinity. It is reported that salinity decreased biomass and leaf area in rice [101].
In soil, inorganic nitrogen is available for plants as nitrate (NO3−) in aerobic upland condition and ammonium (NH4+) in flooded wetland or acidic soils. Nitrogen use efficiency (NUE) is a complex trait that is controlled by multiple genes. Many genes and/QTLs associated with NUE have been identified in rice. Studying and understanding the mechanisms of N utilization at a molecular level may help to improve rice varieties for N deficiency tolerance under different abiotic stresses. Researchers [102] identified 14 putative QTLs for NUE components and 63 QTLs for 12 physiological and agronomic characteristics with six hotspot regions using 174 recombinant inbred lines derived from the IR64/Azucena cross at the vegetative phase in the hydroponic Yoshida solution with three different N concentrations: 1X (standard), 1/4X and 1/8X. In line with this, it is reported that eight QTLs for plant height in hydroponics with two N supply levels in the Yoshida culture solution and 13 QTLs for plant height in a soil mediated experiment with two N supply treatments [103]. Twelve QTLs were detected for root weight, 14 for shoot weight and 12 for biomass from 239 rice recombinant inbreed lines (RILs) derived from a cross between two indica parents (Zhenshan97/Minghui63) under hydroponics medium using two N treatments [104]. In another pot experiment, seven QTLs were identified associated with nitrogen use and the yield on chromosome 3 [105]. Three candidate genes Os05g0208000, Os07g0617800 and Os10g0189600 were identified through fine-mapping of four QTLs located on chromosomes 5, 7 and 10 accelerated yield performance under low N level [106].
Five QTLs were identified on chromosomes 1, 2, 7 and 11 for grain yield (GY) using 127 RILs derived from the cross Zhanshan 97/Minghui 63 [107]. The phenotypic and genetic associations between grain NUE and GY are positive and highly significant; thus, QTLs for both NUE and GY could be used to trigger NUE and GY in a breeding program [108]. Seven QTLs for the glutamine synthetase (GS1) protein content and six QTLs for the NADH-GOGAT protein content were detected using backcross inbred lines between Nipponbare and Kasalath. Some of these QTLs were fined mapped to get a structural gene for GS1 from chromosome 2 and chromosome 1 [109]. A QTL on chromosome 2 activates cytosolic GS1 for protein synthesis in older leaves, resulting in more active tillers during the vegetative stage and a more panicle number and total panicle weight [110]. Using 166 RIL populations, 22 single QTLs and 58 pairs of epistatic QTLs associated with physiological NUE in rice have been identified [111]. With the same mapping population, 28 main effect QTLs and 23 pairs of epistatic QTLs were detected [112]. It is reported that [113], using 38 chromosome segment substitution lines derived from a cross between “Koshihikari,” a japonica variety, and “Kasalath,” an indica variety, identified a major QTL qRL6.1 on the long arm of chromosome 6 associated with root elongation under deficient and sufficient NH4+ condition. The “Kasalath” allele at this QTL region promoted significant root elongation. The marker interval was C11635–P3A2 and phenotypic variance explained by this QTL was 76.4%.
A set of RILs grown in four different seasons in two locations with three nitrogen fertilization treatments was analyzed for QTL for grain yield components and two main effect QTLs were detected viz., grain yield per panicle on chromosome 4 and grain number per panicle on chromosome 12 under N zero level [114]. Four QTLs for trait differences of plant height and heading date between two N levels have been mapped on chromosomes 2 and 8 co-locating with reported QTLs for NUE [111]. In response to low nitrogen application for two years, 33 QTL have been identified in RIL population, out of which only ten QTLs were consistent under low N [115]. QTL mapping for NUE and nitrogen deficiency tolerance traits in RIL population for two years resulted in four common QTL on chromosomes 1, 3, 4 and 7 [116].
From a recombinant inbred population, 20 single QTLs (S-QTLs) and 58 pairs of epistatic loci (E-QTLs) were detected for the nitrogen concentration of grain, nitrogen concentration of straw, the nitrogen content of shoot, harvest index, grain yield, straw yield and physiological nitrogen use efficiency (PNUE) [117]. Researchers [118] identified seven chromosomal regions using 40 introgression lines (ILs) derived from a cross between “Ilpumbyeo,” a temperate japonica variety, and “Moroberekan,” a tropical japonica accession from seedlings grown in 0, 250 and 500 μM NH4+. Among them, the qRW6 QTL was detected on the long arm of chromosome 6 associated with root weight in temperate japonica.
Recently, a group of scientists reported [119] about a main effect QTL qRDWN6XB (Table 2) on the long arm of chromosome 6, which positively confers tolerance to N deficiency in the Indica rice variety XieqingzaoB, was identified using a chromosomal segment substitution line population using Zhonghui9308 and XieqingzaoB. Nine candidate genes were found in this region through fine mapping. Out of these genes, Os06g15910 was seemed to be a strong candidate gene associated with root system improvement under low N status. However, putative QTLs/genes needed for multiple abiotic stress tolerance, NUE and associated novel traits in rice could be discovered through a holistic breeding approach (Figure 2).
QTLs/genes | Special traits | Chr. No | Reference |
---|---|---|---|
ARE1 | High-yield under N limiting condition | 8 | [108] |
qRL6.1 | Root elongation under deficient and sufficient NH4+ condition | 6 | [113] |
qRW6 | Enhance root traits and yield potential | 6 | [118] |
qRDWN6XB | Confers tolerance to N deficiency | 6 | [119] |
qGYLN7 | Increases grain yield under low N | 7 | [106] |
qGYPP-4b | Increases grain yield per plant under low N | 4 | [114] |
qGNPP-12 | Increases grain number per panicle under low N | 12 | [114] |
Major QTLs/genes associated with nitrogen use efficiency under abiotic stresses.
Holistic breeding approach for multiple abiotic stress tolerance in rice. F = flooding, D = drought, S = salinity, QTLs = quantitative trait loci.
Adverse environmental conditions like abiotic factors, triggering abiotic stresses, run a key role in determining the productivity of rice yields. Biologically, abiotic stress is considered as a substantial deviation from the model environments in which plants are grown, inhibiting them from expressing their complete genetic potential regarding growth, development and reproduction [120]. Agriculture production in Bangladesh is dwindled mainly due to biotic and abiotic stresses. Abiotic stress ubiquitously affects the crop growth and development process worldwide. Hence, these are one of major areas of concern to fulfill the required food demand [121, 122]. The major abiotic stresses, drought, flooding, salinity are making the risks to food and nutritional security from tropics to temperate regions worldwide. Drought affects plants in numerous ways like it affects plant growth, yield, membrane integrity, pigment content, osmotic adjustments, water relations and photosynthetic activity [123]. Over the last three decades, the temperature of the country has increased significantly. It is estimated that by 2030, 2050 and 2100, the temperature may increase around 1, 1.4 and 2.4°C, respectively [124]. This is significant as an increased temperature reduces the yield of rice. Therefore, the country is in a risky situation in meeting future challenges concerning food security.
Bangladesh is facing salinity intrusion into the arable agricultural lands. The decline in rice yield under judiciously salt-affected soils is anticipated to be 68 percent [126]. Due to global warming, the rise in sea levels, surplus irrigation without appropriate drainage in the inland area under salt stress is growing. Flash flood and cold injury also cause rice production loss almost every year in Bangladesh. Rainfed conditions in Bangladesh are quite complex, where multiple stresses frequently prevail and even follow in quick succession within a single cropping season. Two or more abiotic stresses often coexist in many rainfed lowland and saline areas of Bangladesh. Most of the rainfed areas in Bangladesh are often occurred by multiple abiotic stresses such as flooding, drought and salinity even within the same cropping season near the coastal areas. Therefore, we need to breed new hybrid rice varieties that could tolerate more than one abiotic stress and yield high under normal favorable rainfed conditions as well.
Northern districts of Bangladesh are cold prone areas of the country. Usually, Boro (winter) rice is seriously affected by cold during the seedling and flowering stage. Seedling mortality sometimes goes up to 90%, especially in the northern part of the country. In recent years, more than 2.0 million hectares of rice crops in the cold prune area of Bangladesh have been seriously affected by extreme cold stress, causing partial to total yield loss, especially in the northern part of the country. In the haor areas of Bangladesh, early planted Boro rice has to face cold stress at the reproductive stages (Panicle initiation to flowering). If the mean temperature goes down below 20°C for more than 5-6 days during the reproductive stage of the hybrid rice plant associated with spikelet sterility, cause serious yield damage.
In particular, abiotic stresses significantly constrain rice production in Bangladesh and the frequency of these stresses is, unfortunately, likely to increase with climate change. Hybrid rice breeding programs around the world have preemptively responded by breeding stress-tolerant rice varieties. By manipulating the heritable variation present in the germplasm, we can develop abiotic stress-tolerant cultivars through breeding techniques, but it is a cumbersome and time-consuming process. The slow progress is due to the complexity of the problem involving environmental conditions and the genetic system. The development of stress-tolerant hybrid rice varieties has gained momentum among the breeders in the recent past. The development of hybrid rice with inbuilt stress tolerance is most desirable to increase the production capacity of rice under saline conditions.
Climate change has affected Bangladeshi agriculture a lot. The most pronounced effects of climate change are the heat stress, periodic drought conditions, and salinity intrusion in coastal belts due to sudden flood and flash flood in major rice-growing areas of Bangladesh. In the last couple of decades, the salinity affected area increased drastically in Bangladesh (Table 3). Due to periodic drought and saline water intrusion in the coastal belt, the already existing problem of high amounts of salts in the upper surface soil has intensified. In the future, efforts should be directed to develop climate-smart hybrid rice, which can perform stably under diverse environmental conditions. Nonetheless, China is now feeding 20 percent of the world’s population from only 10 percent of the world’s arable land where hybrid rice covers around 57 percent of the total cultivated rice area [125]. They have achieved this success by adopting research on region-based and stress-tolerant hybrid rice development. Their way of success was not so smooth, but eventually, they overcome all the obstacles. On the other hand, rice is called “the life of the people of Bangladesh.” No obvious alternative crop can replace rice presently. Initially, after the introduction of hybrid rice in Bangladesh in 1998, the area under hybrid rice cultivation significantly increased, but not up to the mark. Currently, only 7.48 percent of the total rice area is under hybrid rice cultivation in Bangladesh [126]. We have released hybrid rice for a favorable environment. It is now worldwide accepted that hybrid rice can give 15-20% more yield compared to inbred high yielding rice cultivars. Therefore, the development of abiotic stress tolerant hybrid rice is the demand of the time to sustain food security.
Years | Salinity class and salt affected area (000’ha) | Total (000’ha) | |||
---|---|---|---|---|---|
S1 (2.0–4.0 dS/m) | S2 (4.1.0–8.0 dS/m) | S3 + S4 (8.1–16.0 dS/m) | S5 (>16.0 dS/m) | ||
1973 | 287.37 | 426.43 | 79.75 | 39.9 | 833.45 |
2000 | 289.76 | 307.20 | 336.58 | 87.14 | 1020.75 |
2009 | 328.43 | 274.22 | 351.69 | 101.92 | 1056.26 |
Extent of soil salinity during the last four decades (1973–2009) in coastal areas of Bangladesh.
Source: Soil Resources Development Institute (2010).
Among the essential nutrient elements, nitrogen has a paramount importance for rice growth and development in natural ecosystems. To promote optimum N nutrition for the higher rice yield, it is important to explore the possible variability in NUE in rice genotypes. Understanding the molecular mechanisms of variable NUE in rice genotypes would help to develop NUE in the elite rice variety under abiotic stressful conditions using traditional and molecular plant breeding methods, including genome editing. Global climate change plunges world rice production toward various abiotic stress. Flooding, drought and salinity are correlated to cause problems in rice production. If rice seedlings experience flooding during the vegetative stage, they may suffer from terminal drought during the reproductive stage, depending on the ecosystems. Likewise, periodic drought conditions may upregulate the existing salinity stress through intensification of a high amount of salt layer on the upper surface soil. Therefore, there is a dire need to adopt a holistic approach to address the problems of abiotic stresses for future rice breeding. Genomics and post-genomics approaches have high potentials for dissecting underlying molecular mechanisms in differential NUE in rice genotypes. With the help of molecular mapping, fine-tuning of target QTLs, genome editing of a number of major and minor QTLs associated with abiotic stress tolerance in rice have been detected in recent years. Further enhanced research endeavors are now underway toward the development of more tolerant rice varieties to abiotic stresses. The identified QTLs are valuable resources for marker-assisted selection (MAS) to develop elite rice genotypes tolerant to flood, drought and salinity. Novel approaches are needed to apply for accelerating the mitigation of the problems of abiotic stresses in rice such as marker-assisted breeding (MAB), rapid generation advance (RGA), gene editing and transgenic technology. Attempts should be taken to develop abiotic stress-tolerant rice varieties, which can perform in a sustainable manner in a wide range of environmental conditions. Identified QTLs and rice germplasms tolerant to abiotic stresses could be explored to understand the molecular genetics of flooding, drought and salt tolerance in rice. New genes involved in abiotic stress tolerance are needed to be identified. There is a need for strategic research on molecular breeding and agronomic aspects to enhance the resilience of global rice production. To achieve these goals, capacity building of rice scientists, farmers and other stakeholders involved in developing abiotic stress-tolerant rice variety might help to increase the desired NUE in rice.
General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed.
',metaTitle:"Horizon 2020 Compliance",metaDescription:"General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed. ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\\n\\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\\n\\nIn other words, publishing with IntechOpen guarantees compliance.
\\n\\nRead more about Open Access in Horizon 2020 here.
\\n\\nWhich scientific publication to choose?
\\n\\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\\n\\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\\n\\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\n\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\n\nIn other words, publishing with IntechOpen guarantees compliance.
\n\nRead more about Open Access in Horizon 2020 here.
\n\nWhich scientific publication to choose?
\n\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\n\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\n\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5228},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10370},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15791}],offset:12,limit:12,total:118192},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:16},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5240},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1225",title:"Optical Physics",slug:"optics-and-lasers-optical-physics",parent:{title:"Optics and Lasers",slug:"optics-and-lasers"},numberOfBooks:5,numberOfAuthorsAndEditors:92,numberOfWosCitations:47,numberOfCrossrefCitations:36,numberOfDimensionsCitations:55,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"optics-and-lasers-optical-physics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10075",title:"Nonlinear Optics",subtitle:"From Solitons to Similaritons",isOpenForSubmission:!1,hash:"b034b2a060292c8511359aec0db1002c",slug:"nonlinear-optics-from-solitons-to-similaritons",bookSignature:"İlkay Bakırtaş and Nalan Antar",coverURL:"https://cdn.intechopen.com/books/images_new/10075.jpg",editedByType:"Edited by",editors:[{id:"186388",title:"Prof.",name:"İlkay",middleName:null,surname:"Bakırtaş",slug:"ilkay-bakirtas",fullName:"İlkay Bakırtaş"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8350",title:"Fiber Optic Sensing",subtitle:"Principle, Measurement and Applications",isOpenForSubmission:!1,hash:"d35774b28952d3c4c4643b58dec25549",slug:"fiber-optic-sensing-principle-measurement-and-applications",bookSignature:"Shien-Kuei Liaw",coverURL:"https://cdn.intechopen.com/books/images_new/8350.jpg",editedByType:"Edited by",editors:[{id:"206109",title:"Dr.",name:"Shien-Kuei",middleName:null,surname:"Liaw",slug:"shien-kuei-liaw",fullName:"Shien-Kuei Liaw"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7582",title:"Nonlinear Optics",subtitle:"Novel Results in Theory and Applications",isOpenForSubmission:!1,hash:"a3ad4a3553a3ec59f7992d4f6495ac07",slug:"nonlinear-optics-novel-results-in-theory-and-applications",bookSignature:"Boris I. Lembrikov",coverURL:"https://cdn.intechopen.com/books/images_new/7582.jpg",editedByType:"Edited by",editors:[{id:"2359",title:"Dr.",name:"Boris",middleName:"I.",surname:"Lembrikov",slug:"boris-lembrikov",fullName:"Boris Lembrikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6599",title:"Small Angle Scattering and Diffraction",subtitle:null,isOpenForSubmission:!1,hash:"9b1efb6a54c3fbdadd875f7bac0f6718",slug:"small-angle-scattering-and-diffraction",bookSignature:"Margareth K. K. D. Franco and Fabiano Yokaichiya",coverURL:"https://cdn.intechopen.com/books/images_new/6599.jpg",editedByType:"Edited by",editors:[{id:"186337",title:"Dr.",name:"Margareth Kazuyo Kobayashi",middleName:null,surname:"Dias Franco",slug:"margareth-kazuyo-kobayashi-dias-franco",fullName:"Margareth Kazuyo Kobayashi Dias Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5348",title:"Luminescence",subtitle:"An Outlook on the Phenomena and their Applications",isOpenForSubmission:!1,hash:"d982c49fed4423a0ea7367af4f917b82",slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/5348.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",middleName:null,surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,mostCitedChapters:[{id:"52294",doi:"10.5772/65118",title:"Photon-Upconverting Materials: Advances and Prospects for Various Emerging Applications",slug:"photon-upconverting-materials-advances-and-prospects-for-various-emerging-applications",totalDownloads:2472,totalCrossrefCites:2,totalDimensionsCites:9,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Manoj Kumar Mahata, Hans Christian Hofsäss and Ulrich Vetter",authors:[{id:"185891",title:"Dr.",name:"Manoj Kumar",middleName:null,surname:"Mahata",slug:"manoj-kumar-mahata",fullName:"Manoj Kumar Mahata"},{id:"194423",title:"Prof.",name:"Hans",middleName:null,surname:"Hofsäss",slug:"hans-hofsass",fullName:"Hans Hofsäss"},{id:"194424",title:"Dr.",name:"Ulrich",middleName:null,surname:"Vetter",slug:"ulrich-vetter",fullName:"Ulrich Vetter"}]},{id:"52465",doi:"10.5772/65385",title:"Bioluminescent Fishes and their Eyes",slug:"bioluminescent-fishes-and-their-eyes",totalDownloads:1372,totalCrossrefCites:5,totalDimensionsCites:7,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"José Paitio, Yuichi Oba and Victor Benno Meyer-Rochow",authors:[{id:"185998",title:"Dr.",name:"Yuichi",middleName:null,surname:"Oba",slug:"yuichi-oba",fullName:"Yuichi Oba"},{id:"186175",title:"Dr.",name:"Jose Rui",middleName:null,surname:"Lima Paitio",slug:"jose-rui-lima-paitio",fullName:"Jose Rui Lima Paitio"},{id:"202747",title:"Dr.",name:"Victor B.",middleName:null,surname:"Meyer-Rochow",slug:"victor-b.-meyer-rochow",fullName:"Victor B. Meyer-Rochow"}]},{id:"52672",doi:"10.5772/65185",title:"Luminescence in Rare Earth Ion‐Doped Oxide Compounds",slug:"luminescence-in-rare-earth-ion-doped-oxide-compounds",totalDownloads:2918,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Carlos Ruvalcaba Cornejo",authors:[{id:"186306",title:"Dr.",name:"Carlos",middleName:null,surname:"Ruvalcaba",slug:"carlos-ruvalcaba",fullName:"Carlos Ruvalcaba"}]}],mostDownloadedChaptersLast30Days:[{id:"52173",title:"The Dynamics of Luminescence",slug:"the-dynamics-of-luminescence",totalDownloads:1531,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Luyanda L. Noto, Hendrik C. Swart, Bakang M. Mothudi, Pontsho S.\nMbule and Mokhotjwa S. Dhlamini",authors:[{id:"102985",title:"Dr.",name:"Mokhotswa",middleName:null,surname:"Dhlamini",slug:"mokhotswa-dhlamini",fullName:"Mokhotswa Dhlamini"}]},{id:"52294",title:"Photon-Upconverting Materials: Advances and Prospects for Various Emerging Applications",slug:"photon-upconverting-materials-advances-and-prospects-for-various-emerging-applications",totalDownloads:2476,totalCrossrefCites:2,totalDimensionsCites:10,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Manoj Kumar Mahata, Hans Christian Hofsäss and Ulrich Vetter",authors:[{id:"185891",title:"Dr.",name:"Manoj Kumar",middleName:null,surname:"Mahata",slug:"manoj-kumar-mahata",fullName:"Manoj Kumar Mahata"},{id:"194423",title:"Prof.",name:"Hans",middleName:null,surname:"Hofsäss",slug:"hans-hofsass",fullName:"Hans Hofsäss"},{id:"194424",title:"Dr.",name:"Ulrich",middleName:null,surname:"Vetter",slug:"ulrich-vetter",fullName:"Ulrich Vetter"}]},{id:"52672",title:"Luminescence in Rare Earth Ion‐Doped Oxide Compounds",slug:"luminescence-in-rare-earth-ion-doped-oxide-compounds",totalDownloads:2922,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Carlos Ruvalcaba Cornejo",authors:[{id:"186306",title:"Dr.",name:"Carlos",middleName:null,surname:"Ruvalcaba",slug:"carlos-ruvalcaba",fullName:"Carlos Ruvalcaba"}]},{id:"65854",title:"The State-of-the-Art of Brillouin Distributed Fiber Sensing",slug:"the-state-of-the-art-of-brillouin-distributed-fiber-sensing",totalDownloads:793,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"fiber-optic-sensing-principle-measurement-and-applications",title:"Fiber Optic Sensing",fullTitle:"Fiber Optic Sensing - Principle, Measurement and Applications"},signatures:"Cheng Feng, Jaffar Emad Kadum and Thomas Schneider",authors:[{id:"280943",title:"M.Sc.",name:"Cheng",middleName:null,surname:"Feng",slug:"cheng-feng",fullName:"Cheng Feng"},{id:"290271",title:"Mr.",name:"Jaffar",middleName:null,surname:"Kadum",slug:"jaffar-kadum",fullName:"Jaffar Kadum"},{id:"290272",title:"Prof.",name:"Thomas",middleName:null,surname:"Schneider",slug:"thomas-schneider",fullName:"Thomas Schneider"}]},{id:"64727",title:"Nonlinear Schrödinger Equation",slug:"nonlinear-schr-dinger-equation",totalDownloads:822,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"nonlinear-optics-novel-results-in-theory-and-applications",title:"Nonlinear Optics",fullTitle:"Nonlinear Optics - Novel Results in Theory and Applications"},signatures:"Jing Huang",authors:[{id:"198550",title:"Ph.D.",name:"Jing",middleName:null,surname:"Huang",slug:"jing-huang",fullName:"Jing Huang"}]},{id:"52568",title:"Trap Level Measurements in Wide Band Gap Materials by Thermoluminescence",slug:"trap-level-measurements-in-wide-band-gap-materials-by-thermoluminescence",totalDownloads:1546,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Pooneh Saadatkia, Chris Varney and Farida Selim",authors:[{id:"185781",title:"Prof.",name:"Farida",middleName:null,surname:"Selim",slug:"farida-selim",fullName:"Farida Selim"},{id:"186734",title:"Ms.",name:"Pooneh",middleName:null,surname:"Saadatkia",slug:"pooneh-saadatkia",fullName:"Pooneh Saadatkia"},{id:"186735",title:"Dr.",name:"Chris",middleName:null,surname:"Varney",slug:"chris-varney",fullName:"Chris Varney"}]},{id:"66415",title:"Magnetic Solitons in Optical Lattice",slug:"magnetic-solitons-in-optical-lattice",totalDownloads:227,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"nonlinear-optics-from-solitons-to-similaritons",title:"Nonlinear Optics",fullTitle:"Nonlinear Optics - From Solitons to Similaritons"},signatures:"Xing-Dong Zhao",authors:[{id:"283277",title:"Dr.",name:"Zhao",middleName:null,surname:"Xingdong",slug:"zhao-xingdong",fullName:"Zhao Xingdong"}]},{id:"52708",title:"Bioluminescence of the Black Sea Ctenophores-Aliens as an Index of their Physiological State",slug:"bioluminescence-of-the-black-sea-ctenophores-aliens-as-an-index-of-their-physiological-state",totalDownloads:1126,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Tokarev Yuriy Nikolaevich and Mashukova Olga Vladimirovna",authors:[{id:"186292",title:"Dr.",name:"Yuriy",middleName:null,surname:"Tokarev",slug:"yuriy-tokarev",fullName:"Yuriy Tokarev"},{id:"186293",title:"Dr.",name:"Olga",middleName:null,surname:"Mashukova",slug:"olga-mashukova",fullName:"Olga Mashukova"}]},{id:"52133",title:"Excitation‐Intensity (EI) Effect on Photoluminescence of ZnO Materials with Various Morphologies",slug:"excitation-intensity-ei-effect-on-photoluminescence-of-zno-materials-with-various-morphologies",totalDownloads:1427,totalCrossrefCites:4,totalDimensionsCites:3,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Prasada Rao Talakonda",authors:[{id:"185838",title:"Dr.",name:"Prasada Rao",middleName:null,surname:"Talakonda",slug:"prasada-rao-talakonda",fullName:"Prasada Rao Talakonda"}]},{id:"52293",title:"Luminescent Glass for Lasers and Solar Concentrators",slug:"luminescent-glass-for-lasers-and-solar-concentrators",totalDownloads:1537,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Meruva Seshadri, Virgilio de Carvalho dos Anjos and Maria Jose\nValenzuela Bell",authors:[{id:"185581",title:"Dr.",name:"Seshadri",middleName:null,surname:"Meruva",slug:"seshadri-meruva",fullName:"Seshadri Meruva"},{id:"193648",title:"Prof.",name:"Anjos",middleName:null,surname:"V",slug:"anjos-v",fullName:"Anjos V"},{id:"193649",title:"Prof.",name:"Bell",middleName:null,surname:"M.J.V",slug:"bell-m.j.v",fullName:"Bell M.J.V"}]}],onlineFirstChaptersFilter:{topicSlug:"optics-and-lasers-optical-physics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/205649/taiji-wang",hash:"",query:{},params:{id:"205649",slug:"taiji-wang"},fullPath:"/profiles/205649/taiji-wang",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()