Engine specifications.
\r\n\tThis book aims to present an overview of the current status of nanofibers, fabrication and recent trends in the fabrication of nanofibers, and functional nanofibers and applications of nanofibers in various fields including environmental, bio-sensing, drug delivery, catalysis, and medical. The book hopes to provide a piece of up-to-date information about the mentioned topics and fundamental knowledge necessary for the advanced study in the field of nanofibers and their applications, making it interesting to research students, scientists, engineers, and material scientists.
",isbn:"978-1-80356-387-9",printIsbn:"978-1-80356-386-2",pdfIsbn:"978-1-80356-388-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"a255898117275990dffe83c75a9f815d",bookSignature:"Dr. Maaz Khan",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11462.jpg",keywords:"Nanofiber, Nanofiber Fabrication, Functional Nanofiber, Nanofiber Application, Fiber Technology, Electrospinning, Drug Delivery, Fabrication Strategy, Commercialization, Polymer, Tissue Engineering, Catalysis",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 23rd 2022",dateEndSecondStepPublish:"April 26th 2022",dateEndThirdStepPublish:"June 25th 2022",dateEndFourthStepPublish:"September 13th 2022",dateEndFifthStepPublish:"November 12th 2022",remainingDaysToSecondStep:"a month",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Maaz Khan is an expert in the field of Nanoscience and Nanotechnology with over 100 articles and 3,300 citations to his name.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"107765",title:"Dr.",name:"Maaz",middleName:null,surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan",profilePictureURL:"https://mts.intechopen.com/storage/users/107765/images/system/107765.png",biography:"Dr. Maaz Khan is working as Deputy Chief Scientist (Professor) at PINSTECH, Pakistan. He has done Ph.D. and post doctorate in the field of Material Science (Nanoscience). His research interests include fabrication of nanomaterials and their structural, optical, magnetic, and electrical characterizations. He has authored more than 100 research articles and published 10 books. Presently, he is the Editor-in-Chief of ‘Journal of Materials, Processing and Design\\' and \\'The Nucleus\\'. He is also the Executive Editor of \\'International Journal of Nano Studies and Technology\\'. Dr. Maaz also serves as the editorial board member of several journals of Material Science.",institutionString:"Pakistan Institute of Nuclear Science and Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"9",institution:{name:"Pakistan Institute of Nuclear Science and Technology",institutionURL:null,country:{name:"Pakistan"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"17",title:"Nanotechnology and Nanomaterials",slug:"nanotechnology-and-nanomaterials"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444315",firstName:"Karla",lastName:"Skuliber",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/444315/images/20013_n.jpg",email:"karla@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5404",title:"Raman Spectroscopy and Applications",subtitle:null,isOpenForSubmission:!1,hash:"7d447d2811c5d3fc696761bb12fe3166",slug:"raman-spectroscopy-and-applications",bookSignature:"Khan Maaz",coverURL:"https://cdn.intechopen.com/books/images_new/5404.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4644",title:"The Transmission Electron Microscope",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"6ef878a14961b97ec0bc5c1762a46aa0",slug:"the-transmission-electron-microscope-theory-and-applications",bookSignature:"Khan Maaz",coverURL:"https://cdn.intechopen.com/books/images_new/4644.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6552",title:"Silver Nanoparticles",subtitle:"Fabrication, Characterization and Applications",isOpenForSubmission:!1,hash:"fa35924b88365602189440c335634a77",slug:"silver-nanoparticles-fabrication-characterization-and-applications",bookSignature:"Khan Maaz",coverURL:"https://cdn.intechopen.com/books/images_new/6552.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1508",title:"The Transmission Electron Microscope",subtitle:null,isOpenForSubmission:!1,hash:"40719eadb88b36d3aab9d67fbef67fe3",slug:"the-transmission-electron-microscope",bookSignature:"Khan Maaz",coverURL:"https://cdn.intechopen.com/books/images_new/1508.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5747",title:"Nanowires",subtitle:"New Insights",isOpenForSubmission:!1,hash:"dde280ae9a6cf4036de089d63738a409",slug:"nanowires-new-insights",bookSignature:"Khan Maaz",coverURL:"https://cdn.intechopen.com/books/images_new/5747.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5195",title:"Magnetic Materials",subtitle:null,isOpenForSubmission:!1,hash:"4f04cfbb54e455378de5fc7725e36a0c",slug:"magnetic-materials",bookSignature:"Khan Maaz",coverURL:"https://cdn.intechopen.com/books/images_new/5195.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6133",title:"Cobalt",subtitle:null,isOpenForSubmission:!1,hash:"96be0c35234ae3c889e6ce68b218fe04",slug:"cobalt",bookSignature:"Khan Maaz",coverURL:"https://cdn.intechopen.com/books/images_new/6133.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7674",title:"Modern Spectroscopic Techniques and Applications",subtitle:null,isOpenForSubmission:!1,hash:"da3cb0d978d197ed95c07e8090e06136",slug:"modern-spectroscopic-techniques-and-applications",bookSignature:"Maaz Khan, Gustavo Morari do Nascimento and Marwa El-Azazy",coverURL:"https://cdn.intechopen.com/books/images_new/7674.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10941",title:"Ferrites",subtitle:"Synthesis and Applications",isOpenForSubmission:!1,hash:"f6a323bfa4565d7c676bc3733b4983b0",slug:"ferrites-synthesis-and-applications",bookSignature:"Maaz Khan",coverURL:"https://cdn.intechopen.com/books/images_new/10941.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5884",title:"Unraveling the Safety Profile of Nanoscale Particles and Materials",subtitle:"From Biomedical to Environmental Applications",isOpenForSubmission:!1,hash:"5e5811aa0f15ab9d8b6a235e8408875d",slug:"unraveling-the-safety-profile-of-nanoscale-particles-and-materials-from-biomedical-to-environmental-applications",bookSignature:"Andreia C. Gomes and Marisa P. Sarria",coverURL:"https://cdn.intechopen.com/books/images_new/5884.jpg",editedByType:"Edited by",editors:[{id:"146466",title:"Prof.",name:"Andreia",surname:"Ferreira de Castro Gomes",slug:"andreia-ferreira-de-castro-gomes",fullName:"Andreia Ferreira de Castro Gomes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"75018",title:"Combustion and Emissions of Gasoline Compression Ignition Engine Fuelled with Gasoline-Biodiesel Blends",doi:"10.5772/intechopen.95877",slug:"combustion-and-emissions-of-gasoline-compression-ignition-engine-fuelled-with-gasoline-biodiesel-ble",body:'The stricter limitations of vehicle emission regulation especially for compression ignition (CI) engines with petroleum diesel fuel motivates many researchers to explore the utilization of low volatile and alternative fuels for CI engines to obtain high efficiency, but produce lower emissions or so-called low temperature combustion (LTC). Due to the low volatility and short ignition delay of diesel fuel, CI engines produce high nitrogen oxides (NOx) and soot emissions. To obtain LTC combustion, which is increase engine efficiency, and improve exhaust emissions, a variety of combustion methods in CI engines have been investigated such as homogeneous charge compression ignition (HCCI), PPCI, multiple premixed compression ignition (MPCI), etc. HCCI engine is one method that potentially to achieve an advanced LTC, which possible to produce low particulate matter (PM) and NOx emissions to replace conventional diesel engine combustion [1]. However, many technical problems of HCCI engine strategy must be solved before released to the market. The maximum load limitation due to the surplus of pressure rise rate (PRR) and engine knocking phenomenon [2, 3] have been major obstacle as long as HCCI combustion influenced by fuel type and air fuel mixture quality.
Recently, several studies have shown that gasoline and some other fuels with low cetane number and higher volatility are potentially advantages for low temperature combustion in CI engine, which is popular as gasoline compression ignition engine (GCI) [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. At the beginning, GCI was proposed to exploit the benefit of high volatility and long ignition delay of gasoline fuel and high ratio of CI engine to obtain both high engine efficiency and low exhaust emission [20]. Later on, the concept of GCI was improved with PPCI concept by injecting fuel in the compression stroke, then mixture stratification is formed before combustion event [21]. The PPCI concept may extend load range at the same time maintaining high thermal efficiency, low NOx and soot emissions. Even though, the pressure rise rate (PRR) is remaining too high at the high load operation. The most advanced injection strategy on GCI is MPCI which has purpose to control combustion noise by manage the injection and combustion process in an order as spray – combustion – spray – combustion [22, 23]. By using MPCI mode, the acceptable pressure rise rate can be achieved and extended load range can be obtained.
There are many challenges in the implementation of GCI mode in CI engines. Several techniques are used to realize the utilization of gasoline fuel in CI engines including PPCI, MPCI and other various parameters. The start of injection (SOI) timing has effects on the balance of GCI combustion based on the study by Kodavasal et al., [24]. The study indicated that, the perfect combustion of a GCI engine was earned with start of injection (SOI) timing at -30o after top dead center (ATDC) and misfired was happened at SOI advanced than -42o ATDC. More advance SOI has potentially to solve the exhaust gas deterioration by minimizing NOx and keeps the high performance of LTC. However, more knocking, ringing, HC and CO will occur due to improper combustion. The multiple-injection strategy has been known as the solution for the NOx/soot and decrease of combustion noise with maintaining low fuel consumption in CI engine. The application of this method with higher volatility fuel which are suitable for well-premixed or properly stratified mixture prior to the ignition to reduce both NOx and soot emissions while maintaining high efficiency compared to conventional diesel CI engines was conducted previously [21, 25]. Meanwhile, the double injection strategy for pure gasoline fuel in GCI engines successfully reduced MPRR and NOx levels in half of the single-injection [17]. However, the IMEP and fuel economy were decreased. Furthermore, the significant increasing of the CO and soot emissions were also happened, even though the levels less than conventional diesel CI engine.
Blending gasoline fuel with certain percent of biodiesel in CI engines is the one way to obtain the good combustion and emissions results. Biodiesel is proven to be appropriated as a substitution fuel for CI engines [11, 26]. Furthermore, biodiesel has evidently decreasing engine exhaust pollutant [27, 28], due to the high content of oxygen which important to minimize the soot development in combustion process [29]. The implementation of gasoline-biodiesel blends in GCI engine with single and double injection modes has been studied previously [30, 31, 32]. The effect of biodiesel-gasoline blends on GCI combustion using 5% and 10% biodiesel was studied by Adams [30], which focused on reducing required intake temperature and utilization of split injection. To overcome the auto ignition difficulty of gasoline fuel without modification on intake temperature in GCI engine, the authors using a high compression ratio around 19.5 and various SOI of single injection mode in the previous study [31].
Previous studies have presented detailed analysis and discussion of the combustion and emission characteristics of GCI for PPCI or MPCI modes, by fueled with gasoline-diesel blends or gasoline biodiesel blends using direct injection GCI concept [4, 7, 8, 9, 10, 12, 30, 31, 32, 33, 34]. However, the combustion and emission characteristics of CI engines are also influenced by various other factors, such as fuel injection strategy, initial conditions and its combustion modes. Furthermore, based on previous study [30, 31, 32], the maintaining of high efficiency and emission reduction of GCI engine fueled with gasoline-biodiesel blends still challenging and need more to be optimized especially for its NOx and soot emissions. Since the auto-ignition sensitivity of gasoline fuel is influenced by several factors such as in-cylinder equivalence ratio, intake dilution, intake temperature and pressure, it is potentially to utilize EGR and boosting in GCI combustion. To overcome the load operation limit and adjusting heat release subject to engine speed by delaying the combustion phasing, EGR was used [35]. The high-load operation can be achieved without knocking by using EGR, in which increases of specific heats capacity and minimize of oxygen (O2) concentration in the chamber promotes longer ignition delay and shifted combustion phasing far away from after top dead centre [36, 37, 38, 39]. But, surplus of EGR supply leads to the decreasing of power and resulted more CO and HC emissions. Thus, boosting was utilized to increase the operating load simultaneously encourage fuel ignition reactivity. Furthermore, adjusting the CA50 is also necessary when boosting is operated. Because, the more intake charges mass leads to the high intensity of knocking due to the higher of pressure rise [40, 41, 42]. Suitable method of EGR and boosting was proven potentially to extend CI engine 12]. Thus, it is also potential to be used in GCI engines. The basic and control mechanism of EGR with boosting on GCI gasoline-biodiesel auto-ignition should be able to explain the relatively wide ranges of operating parameters. Thus, complementary experimental works are conducted to achieve a better understanding on the combustion process and emission characteristics of GCI engine fueled with gasoline-biodiesel blends. Information about the effects of EGR and boosting on GCI engines using gasoline-biodiesel blends are essential for advancing the theory and contributions to successfully implement gasoline in CI engines and biofuel into the transportation sector.
The objective of this study was to determine the effects of EGR and boosting on the combustion and emissions of a GCI engine fueled with gasoline-biodiesel blends. To obtain a clear and comprehensive analysis of the effect of various EGR and boosting rates on combustion and emissions of GCI engine the same basic energy input of injected fuels was used for comparing the various parameters. The PPCI combustion modes for the gasoline-biodiesel blend were utilized. Modification of several initial conditions, such as intake, oil, and coolant temperatures are also conducted. The combustion characteristics of cylinder pressure, heat release rate, ignition delay, and emission characteristics are analyzed accordingly as the focus of this study.
The experimental study was conducted using a single-cylinder, four-stroke, direct injection, water-cooled, naturally aspirated diesel engine with 498 cm3 of displacement and four-valve SOHC. Figure 1 shows the schematic diagram of the test engine and measurement setup. The engine specifications are listed in Table 1. A standalone supercharger made by Engine Tech, a Korean local company, was used to supply the intake boosting. A conventional EGR system was used, in which the line is routed directly from exhaust manifold to the intake manifold. The engine was connected to the test system which is a 57 kW Dynamometer (Elin AVL Puma MCA325MO2). A data acquisition system (Dewetron DEWE-800-CA) in combination with an encoder (Autonics E40S8–1800-3-T-24), a pressure transducer (Kistler 6056A), and an amplifier (Kistler 5018) were used to obtain the combustion data. The fuel was injected to the combustion chamber using a Bosch seven-hole injector. A multi-stage injection engine controller (
Schematic diagram of the engine and measurement system setup.
Engine Parameters | Value |
---|---|
Displacement | 498 cm3 |
Bore | 83 mm |
Stroke | 92 mm |
Compression Ratio | 19.5 |
Con. Rod Length | 145.8 mm |
Crank Radius | 43.74 mm |
Valve System | 4-valve SOHC |
Fuel System | Electronic Common Rail |
Engine specifications.
Two fuels, which are diesel and gasoline-biodiesel blend were used in this study. The baseline fuels utilized in this study were commercial gasoline (GB00), neat diesel (D100) and pure soya bean biodiesel (B100). The chemical composition information of soya bean vegetable oil is given in Table 2. Biodiesel (5% by volume) and gasoline were blended and labeled as GB05. To maintain the homogeneity, the mixing process was conducted about 10 minutes then immediately used for experiment. The physical properties of baseline fuels and GB05 are given in Table 3.
Fatty Acid | System Name | Structure | Formulaa | Composition (wt %) |
---|---|---|---|---|
Myristic | Tetradecanoic | 14:0 | C14H28O2 | 0 |
Palmitic | Hexadecanoic | 16:0 | C16H32O2 | 12 |
Stearic | Octadecanoic | 18:0 | C18H36O2 | 3 |
Arachidic | Eicosanoic | 20:0 | C20H40O2 | 0 |
Behenic | Docosanoic | 22:0 | C22H44O2 | 0 |
Lignoceric | Tetracosanoic | 24:0 | C24H48O2 | 0 |
Oleic | cis-9-Octadecenoic | 18:1 | C18H34O2 | 23 |
Linoleic | cis-9,cis-12-Octadecadienoic | 18:2 | C18H32O2 | 55 |
Linolenic | cis-9,cis-12, cis-15-Octadecatrienoic | 18:3 | C18H30O2 | 6 |
Erucic | cis-13-Docosenoic | 22:1 | C22H42O2 | 0 |
Chemical composition of soya bean vegetable oil.
xx:y indicates xx carbons in the fatty acid chain with y double bonds.
Test Item | Unit | Test Method | Gasoline | GB05 | B100 | D100 |
---|---|---|---|---|---|---|
Heating Value | MJ/kg | ASTM D240:2009 | 45.86 | 45.32 | 39.79 | 45.93 |
Kinematic Viscosity (40°C) | mm2/s | ISO 3104:2008 | 0.735 | — | 4.229 | 2.798 |
Lubricity | mm | ISO 12156-1:2012 | 548 | 290 | 189 | 238 |
Cloud Point | oC | ISO 3015:2008 | −57 | −37 | 3 | −5 |
Pour Point | oC | ASTM D6749:2002 | −57 | −57 | 1 | −9 |
Density (15 °C) | kg/m3 | ISO 12185:2003 | 712.7 | 722.3 | 882.3 | 826.3 |
Physical properties of the fuels.
The engine was operated at stable condition with fixed 1200 rpm. An injection pressure of 70 MPa was used for PPCI. Single injection timing at 40 oCA BTDC was adopted and set for PPCI combustion mode. The total energy input of injected fuel was set at around 26 mg/cycle. The initial parameters of intake temperature, oil temperature, and coolant temperature were maintained at 85°C, 75°C, and 65°C, respectively. The reason why the intake temperature was maintained at 85°C is to promote the autoignition of the fuel easier. As already known that GB05 more likely as a pure gasoline which low autoignition characteristics. The homogeneous hot EGR and air mixture were applied in this study with 0%, 20% and 50% of flow rates by using a pair of gate valve. The EGR ratio was calculated using Eq. 1 as follows.
where mE and mi are the mass of EGR and intake fresh air, respectively.
The air boosting were set at 0.1 and 0.12 MPa in the intake manifold. The more detail engine operating parameters and injection strategies are presented in Tables 4 and 5, respectively. The data of 100 consecutive cycles such as in-cylinder pressure was recorded for combustion analysis.
Parameter | Diesel/GCI |
---|---|
Speed (rpm) | 1200 |
Inj. Pressure (MPa) | 70 |
Injection strategy | PPCI |
Inj. Quantity (mg) | 26 |
T intake (°C) | 85 |
T oil (°C) | 75 |
T coolant (°C) | 65 |
EGR (%) | 0, 20 and 50 |
Intake boosting (MPa) | 0.1 and 0.12 |
Operating parameters.
Combustion modes | Injection strategies | Injection timing and duration | Injected fuel | |
---|---|---|---|---|
D100 | GB05 | |||
PPCI | Single | 40 oCA BTDC (1000 μs) | (26 mg) |
Injection strategies.
The analysis and discussion was performed on several engine parameters such as in cylinder heat release rate, temperature, peak of pressure rise rate, IMEP, COV of IMEP, knocking/ringing intensity, thermal efficiency and combustion efficiency. Rate of heat release was calculated using Eq. 2.
Where, γ is the specific heat ratio, V is the instantaneous cylinder volume, and p is the cylinder pressure. The normal and suitable value of γ for a CI engine is 1.3. The in-cylinder pressure and volume data were used to calculate the in-cylinder temperature using ideal gas law, as shown in Eq. 3.
where p is for pressure, V for volume, n is the amount of substance, and R is the gas constant.
Furthermore, the emission of CO, HC, NOx and particulate matter (smoke) were also discussed and analyzed in detail.
The main purpose of this experiment is to improve the efficiency and emission characteristics of CI engine fueled with gasoline-biodiesel blends using GCI mode. To replace the utilization of diesel fuel with gasoline fuel in CI engine due to high demand of diesel fuel in the market, thus a small amount of biodiesel (5%) was added as the lubricity improver to overcome the wear problems in the fuel system. The performance results were compared with only pure diesel fuel, because the basic of the engine is diesel engine. The engine was run on single injections mode (PPCI) at 1200 rpm with various EGR rate (0%, 20% and 50%) and intake boosting 0.1 to 0.12 MPa to investigate the effect of EGR and boosting on performance, combustion and emissions. The performance, combustion and emissions characteristics data was analyzed and presented graphically for in-cylinder pressure, temperature, HRR, ignition delay, MPRR, PPRR, IMEP, thermal efficiency and its emissions including HC, CO, NOx and smoke opacity.
The total fuel consumption per cycle in PPCI mode is maintained at 26 mg per cycle and single injection timing at 40 oCA BTDC. The others engine operating conditions i.e. air intake, engine coolant and engine oil temperatures were set at 358 K, 338 K and 348 K, respectively. Meanwhile, the fixed intake pressure 0.1 MPa and various EGR rates for 0%, 20% and 50% were used to characterized the effect of EGR and PPCI injection strategy on combustion and emissions of GCI engine fueled with gasoline-biodiesel blends.
Figure 2 shows the in-cylinder pressure, temperature and HRR of PPCI mode at various EGR rate for 0%, 20% and 50%, and fixed intake boosting 0.1 MPa. It can be seen from the figure that CI engine fueled with diesel fuel reveal the decreasing in-cylinder pressure when the EGR rate is increase. Similar with the diesel fuel, gasoline-biodiesel blend also indicates the same trend when EGR rate increase the in-cylinder pressure decrease. The in-cylinder temperature for diesel fuel decreasing as the trend of in-cylinder pressure when EGR rate increase. However, the in-cylinder temperature trends of gasoline-biodiesel blend show that EGR 50% lead to the highest value among the others EGR rates. Observing at heat release rates curves, it is seen that the heat release process of both diesel and gasoline-biodiesel blends fuels show a marked two-stage ignition. The first stage ignition of diesel fuel consistently higher than 20 J/deg., even though all of the curves reveal decreasing trends for various increasing EGR rate. Meanwhile, the first stage ignitions from gasoline-biodiesel blends are very low for all various EGR rates, and it is almost very difficult to be recognized. The highest peak of heat release rate can be obtained from gasoline-biodiesel blends with 50% EGR rate. The highest peak of heat release rate can be used to determine that the excessive pressure rise rate is happened. The excessive of PRR means that the combustion is not stable or some time when in the high load condition, the rapid pressure rise rate can result in heavy knocking operation.
Effect of EGR on cylinder pressure, temperature and HRR of PPCI mode.
Figure 3 shows the effect of EGR on ignition delay when engine operated using PPCI mode. The higher EGR rate results the longer ignition delay for both of diesel and gasoline-biodiesel blends. However, it can be observed that gasoline-biodiesel blends lead to the much longer ignition delay compared to diesel fuel in every EGR rate variations. This condition is the advantage of gasoline fuel, which is longer ignition delay due to high volatile and low cetane number, thus there is a possibility of complete mixing period before combustion occurred. However, the longer ignition delay caused the shifted of maximum in-cylinder pressure far away form TDC which can reduce the performance of the engine. To overcome this condition the earlier injection timing can be applied among many other solutions.
Effect of EGR on ignition delay of PPCI mode.
Figure 4(a) shows the effect of EGR on maximum of in-cylinder pressure and (b) peak of pressure rise rate of PPCI strategy. The higher of EGR rate generate the lower in-cylinder pressure maximum and lower the maximum pressure rise rate for both diesel fuel and gasoline-biodiesel blends. Similarly, the increasing of EGR rates also reducing the maximum of pressure rise rate for both diesel fuel and gasoline-biodiesel blends. This condition happened due to the slowdown of combustion process. One of the reasons when utilizing EGR to slowing down of combustion process is the concentration of O2 is lowered and the concentrations of CO2 and H2O unintentionally increased. Therefore, this slows down the reactions in the oxidizing direction and speeds up the reactions of reduction process direction.
Effect of EGR on (a) max pressure and (b) peak pressure rise rate of PPCI mode.
The effect of EGR on IMEP of GCI engine using PPCI strategy is presented in Figure 5. The increasing of EGR rates does not give any effect on IMEP of GCI engine fueled with diesel fuel. However, the 50% EGR rate results the highest IMEP value for gasoline-biodiesel blends, even much higher if compared with diesel fuel that is almost 1.0 MPa. Related to the IMEP value, the engine efficiencies especially indicated thermal efficiency also can be calculated by using it derivative that is indicated power/work. The effect of various EGR rates on indicated thermal efficiency of GCI engine using PPCI strategy can be seen in Figure 6. It can be seen that by increasing EGR rate the value of indicated thermal efficiencies are decreased for both of diesel and gasoline-biodiesel blends. The 50% EGR rate for diesel fuel lead to a little increasing value of indicated thermal efficiency is compared with 20% of EGR rate. However, it caused the significant drop value of indicated thermal efficiency in case of gasoline-biodiesel blends fuel.
Effect of EGR on IMEP of PPCI mode.
Effect of EGR on indicated thermal efficiency of PPCI mode.
Effect of EGR rates on CO emission of GCI engine using PPCI mode can be observed on Figure 7. All variation of EGR rates showed that CO emission of gasoline-biodiesel blends are lower than diesel fuel due to the volatile properties of gasoline and higher oxygen content of biodiesel, which make more complete mixing and produce more perfect combustion. However, in general, the increasing of EGR rates caused no different of CO emission for both diesel and gasoline-biodiesel blends fuels. A little decreasing value of CO emission was only happened on GCI engine fueled with gasoline-biodiesel blends when running on 50% EGR rate.
Effect of EGR on CO emission of PPCI mode.
Figure 8 shows the effect of various EGR rate on HC emission of GCI engine running on PPCI strategy. As like the trend of CO emission, HC emission of GCI engine fueled with gasoline-biodiesel blends was also showed a lower value compared to diesel fuel. This condition can be explained also due to the properties of gasoline fuel and the oxygen content of biodiesel. The 20% of EGR rate value gives the lowest effect of HC emission both for diesel and for gasoline-biodiesel blends. Therefore, it is assumed in the PPCI mode the 20% of EGR rate as an optimum value to obtain lowest HC emission.
Effect of EGR on HC emission of PPCI mode.
The NOx emission and its effect by using various EGR rate on GCI engine using PPCI mode can be seen in Figure 9. Normally, the increasing of EGR rates will lead to the lower NOx emission. However, in this case, for diesel fuel, the 20% of EGR rate gives highest NOx emission. Even though, when 50% EGR was applied the NOx emission will also decreasing. However, there are no effects of EGR rate variations on NOx emission of GCI engine fueled with gasoline-biodiesel blends. This condition can be seen in the trend of graph that from the three EGR rate variation resulted almost same NOx emission value.
Effect of EGR on NOx emission of PPCI mode.
The smoke emission of CI engine usually contrasts with NOx emission. When the NOx higher, the smoke will be a lower and vice versa. The effect of EGR rate variation on the smoke emission of GCI engine can be seen in Figure 10. Smoke emission of GCI engine fueled with diesel in the high level for all variation of EGR rate, even when the rate increased. However, the smoke emission of GCI engine using gasoline-biodiesel blends obtain its lowest value when EGR rates at 20%. It can be said that the optimums of EGR rate that can maintain lowest smoke emission while lowest NOx emission is 20%.
Effect of EGR on smoke emission of PPCI mode.
To understand the effects of intake boosting on GCI engine fueled with gasoline-biodiesel blends on PPCI mode in a simple and easy way, only the 20% of EGR rate was chosen an explained in this study. The intake boosting was set at 0.1 MPa and 0.12 MPa. Figure 11 shows the effect of boosting on in-cylinder pressure, temperature, and heat release rate of GCI engine fueled with gasoline-biodiesel blends when running on PPCI strategy. Normally found that the increasing of intake boosting rate, increasing the in-cylinder pressure for both diesel fuel and gasoline-biodiesel blends fuel. An ambient pressure of intake boosting gives a higher in-cylinder pressure of GCI engine fueled with diesel compared to gasoline-biodiesel blends. Even, the in-cylinder of gasoline biodiesel-blends with intake boosting 0.12 MPa is lower than diesel fuel with ambient intake boosting. It was also same, that the implementation of 0.12 MPa intake-boosting leads to a higher in-cylinder pressure of GCI engine fueled with gasoline-biodiesel blends than gasoline-biodiesel with 0.1 MPa intake boosting. To obtain in cylinder pressure of gasoline biodiesel blend at least equal to pure diesel fuel, the higher intake boosting can be applied as long as the engine material supports for high pressure condition and the real engine booster in this case turbocharger can achieves maximum desired pressure. Similar with in-cylinder pressure, the in-cylinder temperature curves show that the highest value is for GCI engine fueled with diesel fuel when intake boosting 0.12 MPa was applied. The lowest in-cylinder temperature, which is below 2000 K, was happened for GCI engine fueled with gasoline-biodiesel blends fuel when using ambient pressure 0.12 MPa. The HRR curves show that the highest value is for GCI engine fueled with gasoline-biodiesel fuel using 0.1 MPa intake boosting. The higher HRR value, the higher-pressure rise rate that can be determines the more unstable engine combustion. The lowest HRR value was obtained from GCI engine fueled with diesel fuel in the ambient pressure condition, which is the most stable combustion.
Effect of boosting on cylinder pressure, temperature, and heat release rate of PPCI mode.
The effect of intake boosting on ignition delay of GCI engine using PPCI strategy is presented in Figure 12. The intake boosting gives effect on the lower ignition delay for both diesel and gasoline-biodiesel blend fuel. The ambient pressure of intake boosting resulted ignition delay timing for diesel fuel at around 25 oCA BTDC, then the 0.12 MPa intake boosting lead to the slightly earlier of ignition delay timing at around 27 oCA BTDC. Similar trend happened on gasoline-biodiesel fuel, that ambient pressure of intake boosting resulted ignition delay timing at around 11 oCA BTDC, then when 0.12 MPa intake boosting was applied the ignition delay timing also more advanced at around 2 oCA BTDC. The higher volatile and lower cetane number properties of gasoline fuel caused the longer ignition delay timing if compared with diesel fuel. However, the application of intake boosting resulted a shifting of ignition delay timing earlier. The longer ignition delay timing is possible to produce more complete mixing period of air and fuel prior to combustion, however, too long ignition delay timing sometimes caused problem in the engine emission and efficiency.
Effect of boosting on ignition delay of PPCI mode.
Figure 13 shows the effect of various intakes boosting on maximum of in-cylinder pressure and its maximum pressure rise rate. A normal condition happened that the increasing intake boosting, the increasing maximum in-cylinder pressure for both diesel and gasoline-biodiesel blends fuels. However, the increasing level of maximum in-cylinder pressure of diesel fuel is much higher than gasoline-biodiesel fuel. It is suspected that intake boosting caused the mixing of air fuel in diesel fuel more optimum than gasoline-biodiesel blend. The increasing of intake boosting leads to the increasing maximum pressure rise rate of GCI engine fueled with gasoline-biodiesel blend in almost same value with diesel fuel. It is mean that the GCI engine running with intake boosting for gasoline-biodiesel blend has an almost similar stability compared with diesel fuel. However, very high-pressure rise rate indicated that the engine in unstable condition.
Effect of boosting on (a) max pressure and (b) peak pressure rise rate of PPCI mode.
Effect of various intakes boosting on IMEP of GCI engine fueled with gasoline-biodiesel blends in PPCI strategy can be seen in Figure 14. The IMEP of GCI engine fueled with gasoline-biodiesel blend in ambient pressure of intake boosting is higher than when intake boosting is 0.12 MPa. The opposite condition was happened for diesel fuel, which is the IMEP value of GCI engine is higher when 0.12 MPa intake boosting was applied compared with ambient pressure. The condition for IMEP of diesel fuel as the effect of increasing the intake boosting is the normal phenomenon; however, for gasoline-biodiesel blend it is quiet special. This condition suspected by the effect of high volatile and low cetane number of gasolines, which resulted higher-pressure rise rate as shown in Figure 13. Fluctuate of in-cylinder pressure may lead to the unstable combustion and resulted the lower IMEP value.
Effect of boosting on IMEP of PPCI mode.
The indicated thermal efficiency of GCI engine using PPCI strategy affected by various intake boosting is presented in Figure 15. The indicated thermal efficiency of GCI engine fueled with diesel fuel increased due to the increasing of intake boosting. Similarly, for GCI engine fueled with gasoline-biodiesel blend, even though the IMEP reduced when the intake boosting increased to be 0.12 MPa. This condition, in any case, is expected in the GCI engine fueled with gasoline-biodiesel blend. Furthermore, both for ambient and 0.12 MPa intake boosting showed that the indicated thermal efficiency of GCI engine with diesel fuel is higher than gasoline-biodiesel blend.
Effect of boosting on indicated thermal efficiency of PPCI mode.
Figure 16 shows the effect of intake boosting on CO emission of GCI engine using PPCI strategy. It is already known that the utilization of gasoline-biodiesel blend in GCI engine resulted lower CO emission compared to diesel fuel. Similarly, in the single injection method of PPCI strategy also obtained the lower CO emission of GCI engine fueled with gasoline-biodiesel blend compared to diesel fuel. The increasing of intake boosting from 0.1 to 0.12 MPa in GCI engines gives effect on the decreasing of CO emission for both gasoline-biodiesel blend and diesel fuels. It is suspected due to the combination of 20% EGR and 0.12 MPa of intake boosting, which may lead to the complete combustion.
Effect of boosting on CO emission of PPCI mode.
The effect of intake boosting on HC emission of GCI engine can be observed in Figure 17. Similar with the trend on CO emission, the HC emission of GCI engine fueled with of GCI engine with gasoline-biodiesel blend originally is lower than diesel fuel as it can be seen in the ambient intake boosting condition. When the intake boosting increased to be 0.12 MPa HC emission of GCI engine decreased around a half value than 0.1 MPa of intake boosting. For GCI engine fueled with gasoline-biodiesel blend, it is obtained greatly decreasing of HC emission when the 0.12 MPa of intake boosting applied compared with 0.1 MPa. The decreasing value of HC emission in 0.12 MPa of intake boosting is almost 90% lower from the ambient pressure of intake boosting.
Effect of boosting on HC emission of PPCI mode.
Figure 18 shows the effect of intake boosting on NOx emission of GCI engine with PPCI strategy. Overall, the NOx emission of GCI engine fueled with diesel is higher than GCI engine fueled with gasoline-biodiesel blend when using PPCI mode for either ambient intake pressure or increasing intake pressure at 0.12 MPa. The trend of graph shows that the increasing intake boosting also followed by increasing the NOx emission for both diesel and gasoline-biodiesel blend. It is mean that the increasing of intake boosting has opposite function with 20% EGR. In this case, by using only 20% EGR rate, the NOx emission of GCI engine fueled with gasoline-biodiesel blend is very low under 0.05 mg/kWh. However, increasing intake boosting 0.12 MPa, leads the deterioration on NOx emission to be around 0.2 mg/kWh.
Effect of boosting on NOx emission of PPCI mode.
The effect of intake boosting on smoke emission of GCI engine with PPCI strategy can be seen in Figure 19. Smoke emission of GCI engine fueled with diesel fuel is very high almost 6 g/m3 when running on PPCI mode by 20% of EGR rate and ambient pressure of intake boosting. While, in this condition smoke emission of GCI engine fueled with gasoline-biodiesel blend much lower than diesel fuel at around 1.5 g/m3. Increasing intake boosting to be 0.12 MPa makes smoke emission of GCI engine fueled with diesel fuel decrease very significant around 3 g/m3. However, the increasing of intake boosting to be 0.12 MPa for GCI engine fueled with gasoline-biodiesel caused the increasing of smoke emission, even though still lower than the emission of GCI engine fueled with diesel fuel which is to be around 2.5 g/m3. If the point of view of GCI engine fueled with gasoline-biodiesel blend running on PPCI mode focused simultaneously on NOx emission and smoke emission, then it can be stated that the optimum effort to reduce both of emission parts is by using 20% EGR rate and 0.1 MPa intake boosting.
Effect of boosting on smoke emission of PPCI mode.
The study on GCI engine was conducted in an experiment using biodiesel addition 5% into gasoline, compared to neat diesel with single injection (PPCI) strategy combined with the application of EGR and intake boosting in order to obtain high efficiency and low emission of GCI engine. The engine testing was set in the same of energy input that is injected fuel amount around 26 mg per cycle. Based on the results and comprehensive analysis, the following general conclusions may be drawn from this study:
Increasing EGR rate the value of indicated thermal efficiencies are decreased for both of diesel and gasoline-biodiesel blends. The highest 50% EGR rate for diesel fuel leads to a little increasing value of indicated thermal efficiency is compared with 20% of EGR rate. However, it caused the significant drop value of indicated thermal efficiency in case of gasoline-biodiesel blends fuel. By using diesel fuel, the 20% of EGR rate gives highest NOx emission. Even though, when 50% EGR was applied the NOx emission will also decreasing. The utilization of EGR gives effect on the drop of NOx emission value for gasoline-biodiesel blend much lower than diesel fuel. However, there are no effects of EGR rate variations on NOx emission of GCI engine fueled with gasoline-biodiesel blends. Smoke emission of GCI engine fueled with diesel in the high level for all variation of EGR rate, even when the rate increased. However, the smoke emission of GCI engine using gasoline-biodiesel blends obtains its lowest value when EGR rates at 20%.
The indicated thermal efficiency of GCI engine fueled with diesel fuel increased due to the increasing of intake boosting. Similarly, for GCI engine fueled with gasoline-biodiesel blend, the indicated thermal efficiency was also increased when the intake boosting increased to be 0.12 MPa. The NOx emission of GCI engine fueled with diesel is higher than GCI engine fueled with gasoline-biodiesel blend when using PPCI mode for either ambient intake pressure or increasing intake pressure at 0.12 MPa. The increasing intake boosting also followed by increasing NOx emission for both diesel and gasoline-biodiesel blend. Increasing intake boosting to be 0.12 MPa makes smoke emission of GCI engine fueled with diesel fuel decrease very significant around 3 g/m3. However, the increasing of intake boosting to be 0.12 MPa for GCI engine fueled with gasoline-biodiesel caused the increasing of smoke emission, even though still lower than the emission of GCI engine fueled with diesel fuel.
This research was supported by the University of Ulsan, Korea. Yanuandri Putrasari acknowledges the support from the Indonesian Institute of Sciences (LIPI) and the Ministry of Research and Technology/National Research and Innovation Agency of Republic Indonesia (RISTEK-BRIN).
The authors declare no conflict of interest.
All authors contributed equally as the main contributor of this chapter. All authors read and approved the final version of this chapter.
The 7 transmembrane receptors (7TMRs) also known as G-protein coupled receptors (GPCRs) constitute the largest family of plasma membrane receptors. The superfamily of 7TMRs includes receptors for hormones, neurotransmitters and ion channels, and is critical to mediate physiological and cellular processes [1, 2].
Composed of seven transmembrane hydrophobic alpha (α) helices joined by three intracellular and three extracellular loop structures, a cytoplasmic carboxyl terminus and an extracellular amino terminus (Figure 1), 7TMRs signal by stimulating heterotrimeric G proteins following the presentation of an agonist to the receptor [3]. Agonist binding at the 7TMR extracellular region initiates the formation of a G protein. Guanosine diphosphate (GDP) is released from the G protein in exchange for guanosine triphosphate (GTP). The GTP bound α subunit disassociates from the βγ dimer, both of which activate several effectors such as adenylyl cyclase, phospholipases and ion channels [3]. The Gα subunit can be categorised in to sub groups Gαs, Gαi, Gαq/11 and Gα12/13 [3]. The Gα subunits and the Gβγ dimer deriving from the heterotrimeric G protein can combine with downstream effector molecules such as adenylyl cyclase or phospholipase C to control cellular signalling pathways involving secondary messengers [3]. Examples of secondary messengers include cyclic adenosine monophosphate (cAMP), inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) which elicit cellular and physiological responses [4].
General structure of a seven transmembrane receptor (7TMR)/G protein coupled receptor (GPCR). Extracellular loops 1–3 (EL1–3) and intracellular loops (IL1–3) connecting the 7 transmembrane helices (TM1–7). NH2▬N-terminal chain and COOH▬C-terminal chain.
7TMRs are the target for a large proportion of therapeutic drugs, currently encompassing more than 30% of prescription medications [5] which directly or indirectly alter cellular signalling mechanisms.
Adrenergic receptors (ARs; also known as adrenoreceptors) are a class of 7TMRs located in the heart and vasculature and are responsible for relaying sympathetic nervous system (SNS) messages into cardiovascular reactions [1]. The neurotransmitters norepinephrine (NE) and epinephrine (Epi), which originate from the SNS, exert their effects on cardiac cells and tissues by binding to adrenoreceptors [6]. A number of adrenoreceptor subgroups are present in the mammalian heart, including three α1-ARs, three α2-ARs and three β-ARs (β1, β2 and β3) [6].
β-Adrenergic receptors (β-ARs) are the most important and one of the most frequently studied receptors belonging to the family of G-protein coupled receptors [7]. There are three subtypes of β-ARs: β1, β2 and β3, activation of which regulates important cardiovascular functions [7, 8]. The β1-ARs are characterised mainly for the heart, β2-ARs for blood vessels and β3-ARs for adipose tissue [9]. Within the vasculature the predominant subtype is β2-AR, which is 65–70% homologous to β1- and β3-ARs [8]. The agonists that bind with all three subtypes of β-ARs are the hormones adrenaline and noradrenaline, which help regulate cardiovascular and pulmonary function [10, 11].
Human genes encoding the β2-ARs are without introns and have been mapped to chromosome 5q31–32 [12]. The β-ARs consist of 413 amino acid residues, approximately 46.5 kDa [8]. There are three domains of β2-ARs: The extracellular domain, the transmembrane domain responsible for the ligands binding and the intracellular domain, which interacts with G protein and kinases such as β-ARK [13]. β2-ARs occur mainly in the lungs, where their presence has been shown in airway smooth muscle (30,000–40,000 per cell), epithelial and endothelial cells, type II cells and mast cells [8]. Moreover β2-ARs are in heart, kidney and blood vessels—mainly arterioles [8, 14].
As in the other G-receptors the signalling pathway of β2-ARs, which bind with a hormone ligand includes three basic steps: Receptor binding, G protein activation and effector system activation. β2-ARs may occur in two forms, activated and inactivated [6]. The binding of β-ARs agonist with β2-receptor activates the pathway in which Gs coupled proteins are involved. The stimulation of G proteins causes guanosine triphosphate (GTP) to bind to the α-subunit (Gsα) that activates it. The G-subunits dissociate, and α-subunits stimulate adenylate cyclase (AC) to formation of cyclic adenosine 3′,5′-monophosphate (cAMP). It is stated that cAMP acts as a catalyst for the process of activation of protein kinase A (PKA) and due to that it is involved in control of muscle tone. On the other hand cAMP inhibits the release of cytosolic calcium ion (Ca2+) in the smooth muscle cells, which leads to vascular relaxation (vasodilation) [8, 15].
Although the β2-ARs activated by β2-ARs agonists mostly influence the blood vessels (mainly arterioles and coronary arteries), they can also act in the heart and kidney. In the atrial and ventricular myocardium, stimulation of β2-ARs leads to increase in cardiac muscle contractility or relaxation, whilst in the kidneys it stimulates the release of renin, what it turn influences activation of the renin-angiotensin-aldosterone system [1, 8].
The primary role of the β-ARs in the heart is to coordinate the heart rate and contractility in response to the SNS neurotransmitters [6]. β1-AR is the most abundant subtype accounting for 75–80% in a healthy myocardium [6]. Around 15–18% of cardiomyocyte β-ARs are β2-AR whilst the remaining 2–3% of β-AR density is composed of β3-ARs [6]. Activation of β1-ARs and to a smaller degree β2-ARs, leads to an increase in cardiac contractility and an accelerated cardiac rate. Stimulation of the two predominate β-ARs also increases impulse transmission via the atrioventricular node [6]. The activation of cardiomyocyte β1- and β2-ARs also leads to a significant increase in free intracellular Ca2+ concentration [6]. Calcium is a secondary messenger in many biological systems. In cardiomyocytes, calcium affects ion channels which regulate ionic currents, impacting upon action potentials and muscle contractility [16]. Β3-AR appears to illicit an opposite effect on cardiac function to that induced by β1- and β2-ARs in that it acts to prevent cardiac hyperstimulation from NE and Epi (Table 1) [6].
Action | β1-AR | β2-AR | Β3-AR |
---|---|---|---|
Heart muscle contraction | Yes | Yes | |
Increases cardiac output | Yes | Yes | |
Increases heart rate in SA node | Yes | Yes | |
Increases atrial contractility | Yes | Yes | |
Increases contractility and automaticity of ventricular muscle | Yes | Yes | |
Dilates muscular blood vessels | Yes | Yes | |
Increases perfusion in blood vessels | Yes | ||
Metabolism/lipolysis/thermogenesis | Yes | ||
Prevent cardiac hyperstimulation | Yes |
Actions of β-adrenergic receptors.
Constant elevation of catecholamines leading to β-AR signalling changes results in overstimulation of cardiac function [1]. Reducing the β-AR activity is vital to alleviate the risk of long-term cardiac tissue damage such as cardiomyopathy. Propanolol was discovered to be a β-AR antagonist in 1964, a so called β-blocker. Alprenolol and Practolol β-blockers have also been used for the management of heart failure [1]. β-Blockers function to overcome the harmful effects of norepinephrine which overstimulate the β1-AR, leading to a reduction in cardiac workload [1]. The most recently used β-blockers bisoprolol and carvedilol target both β1- and β2-ARs produce a survival benefit for heart failure patients [1]. In rats β2-AR agonists (fenoterol and zinterol) were shown to reduce progression of left ventricular modelling in dilated cardiomyopathy in addition to decreasing myocardial cell death [17]. In a later study the same group determined that in a rat model of dilated ischemic cardiomyopathy, Metoprolol, a β1-AR blocker, action is enhanced when given in combination with the β2-AR agonist fenoterol [18].
The β2-ARs have also been directed implicated in patients with ischaemic cardiomyopathy. A Gln27Glu polymorphism of β2-AR was discovered in a study investigating 155 people with heart failure of ischaemic aetiology with impaired Left Ventricular Ejection Fraction ≤35% [19]. Three allele categories were discovered, the most common genotype in heart failure was Gln27Gln, and the least common was Glu27Glu, whilst Gln27Glu was not significantly different between heart failure and control subjects. The study concluded that the Glu allele was associated with lower myocardial infarction rate and highlighted that patient response to β-blockade therapy may be altered [19]. Likewise β1-AR (Ser49Gly, Arg389Gly) and β2-AR (Arg16Gly, Gln27Glu, Thr164Ile) polymorphisms did not alter in a Polish cohort study of patients with idiopathic dilated cardiomyopathy [20]. It is of interest that in patients with Takotsubo cardiomyopathy, β-AR polymorphisms (β1-AR (Gly389Arg) and β2-AR (Arg16Gly and Gln27Glu)) were significantly different to controls but similar to patients with ST-elevation myocardial infarction [21]. Work combining beta-blockers with ACE-inhibitors/angiotensin receptor blockers over the years using meta-analysis data has shown reduced recurrence of the disorder [22].
A murine model depleting levels of β2-ARs also resulted in diabetic cardiomyopathy in vivo and reduced β2-ARs in cardiomyocytes grown under in hyperglycemic conditions [23]. Conversely, overexpression of β2-ARs (by 300 fold) in mice showed that over time severe cardiomyopathy was observed, resulting in interstitial fibrosis, loss of myocytes and myocyte hypertrophy. In the majority of the 81% of mice that died within 15 months, heart failure was observed [24]. These results were similar to other transgenic overexpression mouse lines. The authors hypothesised that a number of mechanisms from activation of growth or transcriptional factors, cross-talk with other pathways, necrosis or apoptosis of cardiac myocytes and/or high heart rates limiting energy supply.
The human heart also possesses α1 adrenoreceptors (α1-AR) although in a smaller quantity to the β-ARs [25]. The α1-ARs are expressed in the heart, both the α1A-and α1B-AR subtypes are expressed in human myocytes, and have been shown to regulate contractility [26, 27]. The α1-ARs combine with the Gq/11 family of G proteins, in turn activating phospholipase C. The secondary messenger IP3 binds to receptors on the membrane of the sarcoplasmic reticulum, triggering the release of intracellular Ca2+ [6]. The raised Ca2+ level leads an increase in vasoconstriction [6]. The coupling of α1-ARs to the Gq/11 family of G proteins also produces DAG and subsequent protein kinase C [6].
In heart failure the α1-ARs may offer a protective benefit to maintain cardiac inotropy, preventing cardiomyocyte apoptosis and maladaptive cardiac remodelling [6]. Although a small study, loss of β1-AR and no change in β2-AR levels in end-stage dilated cardiomyopathy patients was observed alongside a loss of α1A-ARs [28]. Although the role of β1-AR in heart failure has long been described, this interaction between the α-ARs was novel as the few previous studies had shown no change or increases in α-ARs binding but these were different types of heart failure. In addition a total of 26 proteins of interest were also identified in the cardiomyopathy patients, some of which have been linked to G-protein coupled receptor signalling and desensitisation [28]. Prostatic binding protein levels decreased whereas increases in ANP32A and clathrin were noted. Also of interest are Takotsubo cardiomyopathy (also known as stress cardiomyopathy) patients. This condition is often reversible, and two studies have shown that several β1-AR and α2c-AR polymorphisms were not implicated in Takotsubo cardiomyopathy [29, 30].
Angiotensin II (AngII) is an important protein in the renin-angiotensin system (RAS). In the bloodstream renin converts angiotensinogen (derived from liver) into angiotensin I, which in turn is transformed into AngII by angiotensin converting enzyme (ACE) [14, 31, 32]. AngII can be also secreted in some local tissues including within the brain, heart, arteries and kidney [32].
The Angiotensin II type 1 and 2 receptors (AT1 and AT2 receptors) belong to the wide family of G-protein coupled receptors (GPCRs), members of which have seven transmembrane spanning domains and is the biggest member of the human genome [31, 33]. The distinction and classification of AT1 and AT2 receptors is based on their varied affinity for different non-peptide antagonists [34]. Moreover the AT1 and AT2 receptors differ between each other in their number of amino acids, tissue-specific expression and mechanisms of signal transferring [13]. Both of these receptors occur in all mammals and bind a peptide hormone angiotensin II (AngII), which is the most important effector in the RAS [32].
The main role of angiotensin becomes apparent in the cardiovascular and endocrine systems where it regulates blood pressure and hydro-electrolytic homeostasis [32, 33]. It is stated that the main physiological functions of AngII (vasoconstriction, aldosterone secretion, renal regulations cellular dedifferentiation and proliferation) are mediated mostly by the AT1 subtype of angiotensin receptor [14, 31, 33, 34, 35, 36]. In humans, the genes encoding AT1 receptors are mapped on chromosome 3q21–3q25 [37]. The AT1 receptors consist of 359 amino acids, with a molecular weight of 41 kDa, and their amino sequence reveals 20–35% homology with other GPCRs [31].
In adult mammals, AT1 receptors are mainly expressed in kidney (glomeruli, proximal tubules, vasculature, medullary interstitial cells), adrenal glands (cortex, medulla), heart (myocardium, ganglia, conduction system), brain (circumventricular organs, thalamus, basal ganglia, cerebellar cortex, medulla oblongata) and vasculature (smooth muscles, adventitia) [32, 38]. Rats and mice can have two isoforms of the Angiotensin II 1 receptor: AT1A and AT1B with amino acid sequence convergence seen at 94% [14, 31, 33, 34]. AT1A receptors are present predominantly in vascular smooth muscle, liver, lung and kidney whilst AT1B receptors occur mainly in the adrenal gland and anterior pituitary [31, 34, 38]. The rodent AT1A and AT1B receptor genes are situated on chromosomes 17 and 2 respectively [38].
The activity of angiotensin II through AT1 receptors should be considered in physiological and pathophysiological conditions. The physiological signalling pathway involves the renin-angiotensin-aldosteron system and leads to changes in blood pressure primarily through vasoconstriction of arteries and arterioles, secretion of aldosterone from adrenal gland and sodium reabsorption by via the kidney tubules [32]. Ang II mediates vasoconstriction through the IP3/DAG pathway, which uses Gq/11 protein-coupled receptors. Gq/11 activates phospholipase C (PLC), which hydrolyses phosphatidylinositol 4,5-bisphosphate (PIP2) and produces diacyl glycerol (DAG) and inositol trisphosphate (IP3). IP3 causes an increase in intracellular calcium whilst DAG activates protein kinases C [31]. The increased concentration of calcium (Ca2+ ions) within vascular smooth muscle cells leads to vasoconstriction which results in an increase in blood pressure or may causing a localised reduction in blood flow in some specific tissues [32, 36]. AngII acting through the AT1 receptors located in the zona glomerulosa of the adrenal gland stimulates the release of aldosterone [32]. Aldosterone then acts on the distal convoluted tubules and the cortical collecting ducts in kidney, firstly causing sodium (Na+) retention, leading to increased peripheral resistance and secondly causing resorption of water from urine which also increases extracellular fluid volume. Both of these mechanisms lead to an elevation in arterial pressure [32].
Considering the pathological conditions, the activity of AngII through AT1 receptors may induce the proliferation of vascular smooth muscle cells which in turn promotes myocyte hypertrophy and causes vascular fibrosis. Proliferation of smooth muscle cells is also involved in the initial stages of atherosclerotic plaques formation in arteries [32]. AngII binding to AT1 receptors also activate the multiple intracellular signalling pathway that promotes atherosclerosis. The pathway includes oxidative stress, inflammation, endothelial dysfunction, tissue remodelling, proliferation fibrosis, thrombosis and autostimulation. Moreover AngII may participate in the process of atherosclerosis lesion formation as it stimulates the release of endothelin-1 (ET-1) from the endothelial cells [32]. In addition to inducing proliferation and atherosclerotic plaques formation, AngII may have an effect on the developing/developed plaques. Atherosclerotic plaque stability and disruption is in turn associated with matrix metalloproteinase (MMP) enzymes, the production of which can be stimulated by AngII [32]. The MMPs are inhibited by tissue inhibitors of metalloproteinases (TIMPs) and disruption of the balance between MMPs and TIMPs may lead to cardiovascular diseases [37, 39]. Moreover, in pathological states, the activation of AT1 receptor by AngII may cause vascular remodelling and growth by expression of autocrine growth factors (including fibroblast growth factor and platelet-derived growth factor) in vascular smooth muscle cells [32, 40].
The activation of AT2 receptors by AngII has an opposite effect to AT1 receptors. It means that the functions of AngII mediated by AT2 receptors are vasodilation, natriuresis and inhibition of cellular growth and proliferation [14]. Genes encoding AT2 receptors are localised on chromosome Xq22-q2 [13, 31]. The molecular weight of AT2 receptors is approximately 41 kDa and they consist of 363 amino acids [13, 41].
AT2 receptor expression has been localised in both foetal and adult tissues. In foetuses, expression of AT2 receptors is intense, especially in a cardiovascular system [13]. In adult mammals the expression of AT2 receptor is still observed in heart (mainly in myocardium) and renal blood vessels but is significantly lower than before birth [13, 38]. Expression of AT2 receptors has been also noted in the adrenal gland (cortex and medulla), brain (thalamus, cerebellar cortex), mesenteric and uterine arteries [38, 42].
It is stated that the AT2 receptor acts to stabilise blood pressure by controlling vascular tone by vasodilation [13]. In this action the AT2 receptor together with other GPCR family B2 receptors for bradykinin form a stable functional heterodimer, which causes the increase of nitric oxide (NO) and stimulating cyclic guanosine monophosphate (cGMP) synthesis. The cGMP contributes to relaxation of smooth muscles, which in large veins, large arteries, and smaller arterioles leads to vasodilation and causes decreased blood pressure. It has also been suggested that activation of AT2 receptors by AngII may inhibit arterial and myocardial hypertrophy and fibrosis in the ageing heart and vasculature.
Therefore AngII exerts its influence via the activation of the Angiotensin II type I receptor (AT1R), a 7TMR located in vascular smooth muscle as well as in the kidneys, brain and adrenal glands in an effort to maintain sodium/water homeostasis and moderate vasoconstriction [1]. AT1R acts to control arterial pressure, blood volume and to encourage growth and proliferation through the activation of cellular signalling mechanisms [15]. The AT1R is a Gq/11 coupled receptor [25]. Stimulation by AngII leads to the activation of phospholipase C-β and the release of DAG and IP3, followed by the activation of protein kinase C and movement of intracellular calcium [3]. AT1Rs are upregulated in cardiac tissue in response to hypertrophic triggers, encouraging unfavourable cardiac remodelling in heart failure [9]. These complex roles have resulted in a number of angiotensin receptor blockers (ARBs) and angiotensin converting enzyme (ACE) inhibitors to be developed and used as cardiovascular treatments. ARBs and ACE inhibitors have demonstrated a reduction in deleterious left ventricular remodelling, such as hypertrophy and myocardial stiffness which as associated with heart failure [6]. ACE inhibitors alongside antagonists of the AT1R, the -sartans, have become one of the main pharmaceutical treatments for hypertension and cardiovascular disease [1]. Commonly used ARBs include Losartan, Valsartan and Candesartan [43]. ARBs function to interfere with the renin-angiotensin system by preventing the binding of AngII to AT1R. This inhibition of AngII result in vascular smooth muscle relaxation, a reduction in cellular hypertrophy, and a decrease in plasma volume resulting from an increase in salt and water excretion [43].
A number of advances in terms of cardiomyopathy and ANGII and its receptors have been made in the last few years. In terms of cardiomyopathy, the AngII receptor inhibitor LCZ696 has been shown to inhibit extracellular signal-regulated kinase (ERK), resulting in increased survival in pregnancy-associated cardiomyopathy mice. The authors indicated that by reducing cardiac hypertrophy, fibrosis and apoptosis it could act as a potential treatment for this cardiomyopathy [44]. Another study showed that this angiotensin receptor-neprilysin inhibitor reduced inflammation, oxidative stress and apoptosis in vitro and in vivo [45]. It has also been stated that in end-stage hypertrophic cardiomyopathy, the modern Angiotensin receptor neprilysin inhibitor treatments are both safe and effective [46]. Angiotensin-converting enzyme 2 (ACE2) has also showed therapeutic potential when looking at doxorubicin-induced cardiomyopathy rat models [47]. The enzyme reduced apoptosis, inflammatory responses, and oxidative stress and reduced mortality and myocardial fibrosis whilst improving ventricular remodelling and cardiac function. They also showed activation of the AMPK and PI3K-AKT pathways, inhibition of the ERK pathway, and decreased TGF-β1 [47]. Sulforaphane, which activates nuclear factor erythroid 2-related factor 2 (Nrf2), has also been shown to present angiotensin II-induced cardiomyopathy via Akt/GSK-3ß/Fyn -mediated Nrf2 activation [48].
Aldehyde dehydrogenase 2 (ALDH2) has also been shown to protect against alcoholic cardiomyopathy [49]. By decreasing angiotensinogen and AngII this cardioprotective enzyme inhibited local RAS in mice by inhibiting the p38 MAPK/CREB pathway. In another form of cardiomyopathy, hypertrophic, ACE inhibitors angiotensin-receptor blockers have been used to try and regulate the renin-angiotensin-aldosterone system [50]. This has resulted in patients having a lower risk of developing atrial fibrillation which is associated with hypertrophic cardiomyopathy.
Much work has looked into polymorphisms in the angiotensin-converting enzyme gene itself in relation to hypertrophic cardiomyopathy risk; however, the studies have sometimes shown conflicting results. A systematic review and meta-analysis indicated that the ACE insertion/deletion (I/D of 287 base pairs in intron 16) polymorphism was probably a risk for hypertrophic cardiomyopathy [51]. People with the DD genotype have increased levels of ACE and angiotensin II and therefore more hypertrophy and fibrosis, as seen in other situations where their levels increase. Although many of the 1 in 500 people affected by hypertrophic cardiomyopathy have mutations in the genes coding for sarcomeric proteins, polymorphisms in the components of the RAS are implicated. ACE DD has also been associated with dilated cardiomyopathy patients, angiotensin receptor type 11166CC genotypes with both hypertrophic and dilated cardiomyopathy and the 235TT genotype of angiotensinogen (M235T) is associated with hypertrophic, dilated and restrictive cardiomyopathy [52].
Overstimulation of AngII has also been reported in dilated cardiomyopathy [53] and AT1R overexpression resulted in female mice being more affected (especially in terms of heart failure and increased mortality) than males [53]. In particular, ventricular hypertrophy and dilation and changes in Ca2+ activity and homeostasis were observed, and these reflect that clinical observations that dilated cardiomyopathy can be exacerbated in women in comparison to men. This can also be linked to oestrogen which increases angiotensinogen and decreased renin, ACE and AT1R expression but of course following menopause these effects are lost [54].
Much has been investigated in relation to the use of ACE inhibitors in patients with ischemic cardiomyopathy. Much work has been carried out in patients with an ejection fraction of less than 40% with these enzymes working well. More recently attention has turned to those with an ejection fraction of more than 40% who were studied less. In patients with 40–50% ejection fraction, the ACE inhibitors were seen to reduce the risk of mortality, nonfatal myocardial infarction and stroke by 21% [55].
There are three different forms of 21-amino acid peptides, which belong to the endothelin peptide family: ET-1, ET-2, and ET-3 [56]. They vary in biological function and may affect blood vessels as well as other tissues both within and outside of the cardiovascular system [56]. The predominant form of endothelin peptide is an isopeptide ET-1 with potent vasoconstrictor and proliferative properties [57]. ET-1 is synthetized by endothelial cells, airway smooth muscles cells, cardiomyocytes, macrophages, leukocytes and mesangial cells [57].
There are two subtypes of receptors which are mediated by endothelin, known as Endothelin Type A receptor (ETA) and type B (ETB) [57]. Although mediated by the same peptide agonist, activity of these two subtypes is usually opposite, as the ETA receptor promotes vasoconstriction, growth, and inflammation whilst ETB receptors may cause both vasoconstriction and vasodilation and also increases in sodium excretion and inhibition of growth and inflammation [57, 58, 59].
The potential to bind with ETA receptors is the same for ET-1 and ET-2 endothelin but lower for ET-3 endothelin, whilst the potential binding rate with ETB receptors is equal for every form of endothelin [57, 58]. In people the genes responsible for expression of the ETA receptors are situated on chromosome 4q31.22-q31.23, whilst genes encoding ETB receptors are mapped onto chromosome 13q22.3 [60]. The molecular weight of the ETA and ETB receptors are 48 and 50 kDa respectively [61, 62]. The human 427 amino acid long ETA receptors and 442 amino acid long ETB receptors are approximately 64% homologous [58]. The homology of ETA and ETB receptors in humans and other mammalian species is between 88% and 97% [58].
ETA receptors are expressed predominantly in the heart (coronary vasculature and cardiomyocytes), lungs (pulmonary artery), kidney (renal artery, afferent and efferent arteriole, cortical vasculature, mesangial cells), brain (cerebral vasculature) and adrenal gland. ETB receptors also occur in the heart (coronary vasculature and cardiomyocytes), lungs (pulmonary artery), kidney (renal artery, afferent and efferent arteriole, medullar vasculature), brain (cerebral vasculature) and adrenal gland [63].
The ETA receptors mediated by ET-1 endothelin in vascular smooth muscle cells promoting vasoconstriction, hypertension, hypertrophy, fibrosis and inflammatory changes, including atherosclerosis and due to that has activity similar to the AT1 receptors mediated by AngII [63]. The vasoconstrictive pathway of ETA receptors includes: Coupling to phospholipase C (PLC) via GTP-binding protein, phospholipase C activation, phosphatidyl inositol hydrolysis, inositol 1,4,5 triphosphate (IP3) generation and 1,2-diacylglycerol (DCG) accumulation. Inositol triphosphate is a signalling molecule that leads to mobilisation of Ca2+ from intra- and extra-cellular sources resulting in long-lasting vasoconstriction [56, 64].
The ETB receptors mediated by ET-1 endothelin in the vascular endothelium are involved in the clearance of ET-1 and stimulate vasodilation due to the nitric oxide and cyclooxygenase metabolites production, which also exert vasorelaxant effects on the underlying smooth muscle. Moreover, the ETB receptors have a natriuretic action causing sodium and water resorption from the distal tubules and collecting ducts in the kidney. The ETB receptors, which occur in smooth muscle cells, additionally act as vasoconstrictors [57, 63, 64].
In the last few years research into endothelin has progressed the information known about links to cardiomyopathies. Some of the early published studies showed that ET-1 and its receptor either played a causative role in hypertrophic cardiomyopathy, idiopathic dilated cardiomyopathy and uremic cardiomyopathy or could be a marker [65, 66, 67, 68]. Indeed work in cats has even reflected the increased ET-1 levels in cases of hypertrophic, dilated, restrictive and unclassified cardiomyopathy [69]. More work has now been carried out into other cardiomyopathies and the potential mechanisms of action. Much like ACE2, the endothelin receptor blocker bosentan has been shown to inhibit doxorubicin-induced cardiomyopathy in a rodent model [70]. This study looked at the receptor blocker as elevated levels of ET-1 were discovered in doxorubicin treated patients. The in vitro studies indicated that activation of the epidermal growth factor (EGF) receptor and the MEK1/2-ERK1/2 cascade were possible mechanisms of action [70]. A good review looking at endothelin-1 and atrial cardiomyopathy, published in 2019 brings together the information in this area. The work over the years has indicated that endothlin-1 plays an active role affecting Ca2+ levels, via the ET-1-superoxide-MMP9 cascade and via apoptosis, resulting in both electrical and anatomical remodelling [71].
Not only is endothelin-1 a potential therapeutic route but it also shows promise in predicting patient outcomes. A recent study investigating new-onset atrial fibrillation in patients with obstructive hypertrophic cardiomyopathy has shown that elevated pre-operative levels may indicate increased likelihood of atrial fibrillation [72]. Big endothelin-1, the precursor of endothelin-1 has also been shown to be useful when predicting prognosis for hypertrophic cardiomyopathy patients and the authors have suggested that it should be added to marker panels [73, 74]. Endothelin 1 has also been implicated as a modifier in dilated cardiomyopathy. With variations including the rare G > A and a C > T at c.90 seen in dilated cardiomyopathy patients and
Cardiac function is controlled by the SNS and parasympathetic nervous system (PNS). Parasympathetic vagal nerves are distributed throughout all areas of the heart, particularly in the ventricles [77]. Cardiac muscarinic receptors are activated by acetylcholine, having been stimulated by vagal nerve activation. The muscarinic acetylcholine receptors (M-ChR) are glycoproteins belonging to the 7TMR superfamily [77]. The M2 subtype of M-ChR are the most prevalent group within the mammalian heart and their function is opposed to the β-ARs in that they cause a reduction in myocardium contractility and a lower cardiac rate [10]. M-ChR exert their influence on the myocardium via the Gα1-coupled receptors which inhibit adenylyl cyclase whilst the Gβγ dimer impedes the activity of potassium channels in the sinoatrial node [1]. M-ChR can also exert an effect over Ca2+ channels [77] affecting cardiac contractility.
Heart failure patients demonstrate an increase in M2 muscarinic receptor density, with activated M2 receptors encouraging an inotropic response [9]. One study using serum from a patient showed that when autoantibodies to the muscarinic receptors and β-ARs were activated it resulted in cardiomyopathy and atrial tachyarrhythmias [78]. Along a similar line, autoantibodies against β1-ARs have been shown to cause sudden death in idiopathic dilated cardiomyopathy patients [79]. Antibodies to β-ARs have been discovered in people with idiopathic dilated cardiomyopathy, even leading to the suggestion of a form of ‘adrenergic cardiomyopathy’ [80]. In addition autoantibodies against muscarinic receptors have also been noted in cases of peripartum cardiomyopathy [81], dilated cardiomyopathy [82, 83, 84, 85], and M2-muscarinic acetylcholine receptor autoantibodies have been implicated in playing a role in atrial fibrillation in dilated cardiomyopathy patients [86] Similar increases were not observed in patients with Takotsubo cardiomyopathy [87] or in rats with cirrhotic cardiomyopathy [88]. Autoantibodies against cardiomyocytes, β1- or β2-ARs or M2 muscarinic receptors were not noted in 20 people with Takotsubo cardiomyopathy in comparison to healthy controls, or in rats with cirrhotic cardiomyopathy.
The superfamily of 7TMRs includes receptors for hormones, neurotransmitters and ion channels, and are critical to mediate physiological and cellular processes [1, 2]. This chapter has investigated adrenoreceptors (both α- and β-adrenergic receptors) and the components of the renin-angiotensin system (RAS) especially AngII, ACE and the AT1 and AT2 receptors. The chapter has also looked at endothelin-1 (ET-1) and its receptor, and precursor Big endothelin-1 and finally the muscarinic receptors. By looking at their numerous effects in both healthy and diseased vasculature and cardiac disorders, especially cardiomyopathies, it can be seen that there are wide ranging effects. Developing these 7TMRs as markers of disease, for prognosis, diagnosis and therapeutic treatments is becoming more important as their many roles as being uncovered in the cardiovascular system.
The authors would like to thank their institutions for funding them. Ewelina Prozorowska, Kristýna Glocová, and Lucy Slater were undertaking research internships with Catrin Sian Rutland at The University of Nottingham, UK. Kristýna Glocová had her internship funded by The European Association of Veterinary Anatomists (EAVA), Young Research Career Development Award; therefore, Kristýna and Catrin would like to thank the EAVA. The ORCID ID of Catrin Rutland is https://orcid.org/0000-0002-2009-4898.
The authors declare no conflicts of interest.
IntechOpen’s team of Scientific Advisors supports the publishing team by providing editorial and academic input and ensuring the highest quality output of free peer-reviewed articles. The Boards consist of independent external collaborators who assist us on a voluntary basis. Their input includes advising on new topics within their field, proposing potential expert collaborators and reviewing book publishing proposals if required. Board members are experts who cover major STEM and HSS fields. All are trusted IntechOpen collaborators and Academic Editors, ensuring that the needs of the scientific community are met.
",metaTitle:"STM Publishing and Free Peer Reviewed Articles | IntechOpen",metaDescription:"IntechOpen’s scientific advisors support the STM publishing team by offering their editorial input, ensuring a consistent output of free peer reviewed articles.",metaKeywords:null,canonicalURL:"scientific-advisors",contentRaw:'[{"type":"htmlEditorComponent","content":"\\n"}]'},components:[{type:"htmlEditorComponent",content:'
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:12,limit:12,total:132763},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"19"},books:[{type:"book",id:"11680",title:"Immune Checkpoint Inhibitors - New Insights and Recent Progress",subtitle:null,isOpenForSubmission:!0,hash:"65dc94eb0a8dd733522f67d95b2c2d48",slug:null,bookSignature:"Dr. Afsheen Raza",coverURL:"https://cdn.intechopen.com/books/images_new/11680.jpg",editedByType:null,editors:[{id:"339296",title:"Dr.",name:"Afsheen",surname:"Raza",slug:"afsheen-raza",fullName:"Afsheen Raza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11688",title:"Advances in Drug Delivery Methods",subtitle:null,isOpenForSubmission:!0,hash:"b237999737fb375b4f629ab01a498a9f",slug:null,bookSignature:"Prof. Bhupendra Gopalbhai Prajapati",coverURL:"https://cdn.intechopen.com/books/images_new/11688.jpg",editedByType:null,editors:[{id:"340226",title:"Prof.",name:"Bhupendra",surname:"Prajapati",slug:"bhupendra-prajapati",fullName:"Bhupendra Prajapati"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11690",title:"COVID-19 Drug Development - Recent Advances, New Perspectives, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"f8092a491f68ca0b63cc6d40936a010a",slug:null,bookSignature:"Dr. Arli Aditya Parikesit",coverURL:"https://cdn.intechopen.com/books/images_new/11690.jpg",editedByType:null,editors:[{id:"72288",title:"Dr.",name:"Arli Aditya",surname:"Parikesit",slug:"arli-aditya-parikesit",fullName:"Arli Aditya Parikesit"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11812",title:"New Insights Into Pharmacodynamics",subtitle:null,isOpenForSubmission:!0,hash:"b889e24b3132aa437b6745db36fffe9b",slug:null,bookSignature:"Prof. Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/11812.jpg",editedByType:null,editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11813",title:"RNA Therapeutics - History, Design, Manufacturing, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"fbffd7b2f97a65ffb0901de38a65bed0",slug:null,bookSignature:"Prof. Irina Vlasova-St. Louis",coverURL:"https://cdn.intechopen.com/books/images_new/11813.jpg",editedByType:null,editors:[{id:"211159",title:"Prof.",name:"Irina",surname:"Vlasova-St. Louis",slug:"irina-vlasova-st.-louis",fullName:"Irina Vlasova-St. Louis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11814",title:"Liposomes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"62d8542d18b8cddcf507f7948b2ae74b",slug:null,bookSignature:"Dr. Rajeev K. Tyagi",coverURL:"https://cdn.intechopen.com/books/images_new/11814.jpg",editedByType:null,editors:[{id:"269120",title:"Dr.",name:"Rajeev",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12205",title:"Photodynamic Therapy",subtitle:null,isOpenForSubmission:!0,hash:"8099dd8f660b401e5ecfa85ce3f0df81",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12205.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12206",title:"Antibiotic Resistance - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"708d9c997d91bdbe75c55cb5d9f7b526",slug:null,bookSignature:"Dr. Ghulam Mustafa",coverURL:"https://cdn.intechopen.com/books/images_new/12206.jpg",editedByType:null,editors:[{id:"298756",title:"Dr.",name:"Ghulam",surname:"Mustafa",slug:"ghulam-mustafa",fullName:"Ghulam Mustafa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12207",title:"Statins",subtitle:null,isOpenForSubmission:!0,hash:"245ddb277df310de302579b803b715b8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12207.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12208",title:"Metformin",subtitle:null,isOpenForSubmission:!0,hash:"6c00637f80ef05f5f46217dcbeaaa6e9",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12208.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12209",title:"Vitamin B Complex",subtitle:null,isOpenForSubmission:!0,hash:"f1277fdd717bc84d0437d483a1b78332",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12209.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12210",title:"Pharmacy Practice - Recent Advances in Therapeutic Approaches for Improved Health",subtitle:null,isOpenForSubmission:!0,hash:"faa98d6992643387af28c6ddf1b8df3e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12210.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:62},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:123},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:18},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"538",title:"Optical Communication",slug:"optical-communication",parent:{id:"88",title:"Communications and Security",slug:"communications-and-security"},numberOfBooks:3,numberOfSeries:0,numberOfAuthorsAndEditors:50,numberOfWosCitations:82,numberOfCrossrefCitations:49,numberOfDimensionsCitations:67,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"538",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7294",title:"Fiber Optics",subtitle:"From Fundamentals to Industrial Applications",isOpenForSubmission:!1,hash:"0323a38fa4ac1a4f7e90c886ee28e6fe",slug:"fiber-optics-from-fundamentals-to-industrial-applications",bookSignature:"Patrick Steglich and Fabio De Matteis",coverURL:"https://cdn.intechopen.com/books/images_new/7294.jpg",editedByType:"Edited by",editors:[{id:"223128",title:"Dr.",name:"Patrick",middleName:null,surname:"Steglich",slug:"patrick-steglich",fullName:"Patrick Steglich"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6021",title:"Visible Light Communications",subtitle:null,isOpenForSubmission:!1,hash:"424800554b91fe261adf8db6f5c99cad",slug:"visible-light-communications",bookSignature:"Jin-Yuan Wang",coverURL:"https://cdn.intechopen.com/books/images_new/6021.jpg",editedByType:"Edited by",editors:[{id:"200719",title:"Dr.",name:"Jin-Yuan",middleName:null,surname:"Wang",slug:"jin-yuan-wang",fullName:"Jin-Yuan Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1339",title:"Optical Communications Systems",subtitle:null,isOpenForSubmission:!1,hash:"5772c820074a3314e5729079c04b3e97",slug:"optical-communications-systems",bookSignature:"Narottam Das",coverURL:"https://cdn.intechopen.com/books/images_new/1339.jpg",editedByType:"Edited by",editors:[{id:"15357",title:"Dr.",name:"Narottam",middleName:null,surname:"Das",slug:"narottam-das",fullName:"Narottam Das"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"30925",doi:"10.5772/35186",title:"Effect of Clear Atmospheric Turbulence on Quality of Free Space Optical Communications in Western Asia",slug:"effect-of-clear-atmospheric-turbulence-on-quality-of-free-space-optical-communications-in-yemen",totalDownloads:5126,totalCrossrefCites:9,totalDimensionsCites:17,abstract:null,book:{id:"1339",slug:"optical-communications-systems",title:"Optical Communications Systems",fullTitle:"Optical Communications Systems"},signatures:"Abdulsalam Alkholidi and Khalil Altowij",authors:[{id:"100466",title:"Dr.",name:"Abdulsalam",middleName:null,surname:"Alkholidi",slug:"abdulsalam-alkholidi",fullName:"Abdulsalam Alkholidi"},{id:"131091",title:"MSc.",name:"Khalil",middleName:null,surname:"Altowij",slug:"khalil-altowij",fullName:"Khalil Altowij"}]},{id:"30924",doi:"10.5772/34740",title:"Wireless Optical Communications Through the Turbulent Atmosphere: A Review",slug:"wireless-optical-communications-through-the-turbulent-atmosphere-a-review",totalDownloads:2335,totalCrossrefCites:10,totalDimensionsCites:11,abstract:null,book:{id:"1339",slug:"optical-communications-systems",title:"Optical Communications Systems",fullTitle:"Optical Communications Systems"},signatures:"Ricardo Barrios and Federico Dios",authors:[{id:"101461",title:"Dr.",name:"Federico",middleName:null,surname:"Dios",slug:"federico-dios",fullName:"Federico Dios"},{id:"101708",title:"Dr.",name:"Ricardo",middleName:null,surname:"Barrios",slug:"ricardo-barrios",fullName:"Ricardo Barrios"}]},{id:"56396",doi:"10.5772/intechopen.69536",title:"Vehicular Visible Light Communications",slug:"vehicular-visible-light-communications",totalDownloads:2636,totalCrossrefCites:9,totalDimensionsCites:11,abstract:"Vehicular communications are foreseen to play a key role to increase road safety and realize autonomous driving. In addition to the radio frequency (RF)-based dedicated short range communication (DSRC) and long-term evolution (LTE) communication technologies, vehicular visible light communication (V2LC) is proposed as a complementary solution, utilizing readily deployed vehicle light emitting diode (LED) lights as transmitter with image sensors such as photodetector (PD) and camera as the receivers. V2LC fundamentals including transmitter and receiver characteristics with dimming capabilities are reviewed in this chapter. Depending on the field measurements using off-the-shelf automotive LED light, communication constraints are demonstrated. Moreover, considering the line-of-sight (LoS) characteristics, security aspects of V2LC is compared with the DSRC for a practical vehicle-to-vehicle (V2V) communication scenario. Finally, superiority of V2LC in terms of communication security with the proposed SecVLC method is demonstrated through simulation results.",book:{id:"6021",slug:"visible-light-communications",title:"Visible Light Communications",fullTitle:"Visible Light Communications"},signatures:"Bugra Turan and Seyhan Ucar",authors:[{id:"202217",title:"M.Sc.",name:"Bugra",middleName:null,surname:"Turan",slug:"bugra-turan",fullName:"Bugra Turan"},{id:"207893",title:"Dr.",name:"Seyhan",middleName:null,surname:"Ucar",slug:"seyhan-ucar",fullName:"Seyhan Ucar"}]},{id:"30928",doi:"10.5772/29836",title:"Physical-Layer Attacks in Transparent Optical Networks",slug:"physical-layer-attacks-in-transparent-optical-networks",totalDownloads:2618,totalCrossrefCites:9,totalDimensionsCites:10,abstract:null,book:{id:"1339",slug:"optical-communications-systems",title:"Optical Communications Systems",fullTitle:"Optical Communications Systems"},signatures:"Marija Furdek and Nina Skorin-Kapov",authors:[{id:"79564",title:"MSc.",name:"Marija",middleName:null,surname:"Furdek",slug:"marija-furdek",fullName:"Marija Furdek"}]},{id:"55586",doi:"10.5772/intechopen.68919",title:"Real‐Time Software‐Defined Adaptive MIMO Visible Light Communications",slug:"real-time-software-defined-adaptive-mimo-visible-light-communications",totalDownloads:1643,totalCrossrefCites:1,totalDimensionsCites:4,abstract:"Visible light communications (VLC) based on light-emitting diodes (LEDs) merges lighting and data communications in applications of Internet-of-Things and 5G networks. However, phosphor-based white LED has a limited linear dynamic range and limited modulation bandwidth. In practical indoor mobile communications, complex channel conditions change dynamically in real-time, and line of sight (LOS) links may be blocked by obstructions. We propose a real-time software-defined adaptive multi-input multi-output (MIMO) VLC system, that both modulation formats (QPSK,16-QAM,64-QAM, 256QAM) and MIMO reconfigurations (Spatial Diversity and Spatial Multiplexing) are dynamically adapted to the changing channel conditions, for enhancing both link reliability and spectral efficiency. Real-time and software defined digital signal processing (DSP) are implemented by Field Programmable Gate Array (FPGA) based Universal Software Radio Peripheral (USRP) devices. We theoretically analysed and experimentally evaluated nonlinear electrical-optical properties and modulation characteristics of white LEDs. We demonstrated a real-time Single-Carrier 256-Quadrature Amplitude Modulation (QAM) 2×2 MIMO VLC, achieving 1.81% averaged error vector magnitude (EVM), 2×10-5 bit error rate (BER) after 2 m indoor transmission. As an obstacle moved across LOS links, real-time software-defined adaptive MIMO VLC system enhanced average error-free spectral efficiency of 12 b/s/Hz. This will provide high throughputs for robust links in mobile shadowing environments.",book:{id:"6021",slug:"visible-light-communications",title:"Visible Light Communications",fullTitle:"Visible Light Communications"},signatures:"Peng Deng",authors:[{id:"201867",title:"Dr.",name:"Peng",middleName:null,surname:"Deng",slug:"peng-deng",fullName:"Peng Deng"}]}],mostDownloadedChaptersLast30Days:[{id:"55586",title:"Real‐Time Software‐Defined Adaptive MIMO Visible Light Communications",slug:"real-time-software-defined-adaptive-mimo-visible-light-communications",totalDownloads:1643,totalCrossrefCites:1,totalDimensionsCites:4,abstract:"Visible light communications (VLC) based on light-emitting diodes (LEDs) merges lighting and data communications in applications of Internet-of-Things and 5G networks. However, phosphor-based white LED has a limited linear dynamic range and limited modulation bandwidth. In practical indoor mobile communications, complex channel conditions change dynamically in real-time, and line of sight (LOS) links may be blocked by obstructions. We propose a real-time software-defined adaptive multi-input multi-output (MIMO) VLC system, that both modulation formats (QPSK,16-QAM,64-QAM, 256QAM) and MIMO reconfigurations (Spatial Diversity and Spatial Multiplexing) are dynamically adapted to the changing channel conditions, for enhancing both link reliability and spectral efficiency. Real-time and software defined digital signal processing (DSP) are implemented by Field Programmable Gate Array (FPGA) based Universal Software Radio Peripheral (USRP) devices. We theoretically analysed and experimentally evaluated nonlinear electrical-optical properties and modulation characteristics of white LEDs. We demonstrated a real-time Single-Carrier 256-Quadrature Amplitude Modulation (QAM) 2×2 MIMO VLC, achieving 1.81% averaged error vector magnitude (EVM), 2×10-5 bit error rate (BER) after 2 m indoor transmission. As an obstacle moved across LOS links, real-time software-defined adaptive MIMO VLC system enhanced average error-free spectral efficiency of 12 b/s/Hz. This will provide high throughputs for robust links in mobile shadowing environments.",book:{id:"6021",slug:"visible-light-communications",title:"Visible Light Communications",fullTitle:"Visible Light Communications"},signatures:"Peng Deng",authors:[{id:"201867",title:"Dr.",name:"Peng",middleName:null,surname:"Deng",slug:"peng-deng",fullName:"Peng Deng"}]},{id:"55245",title:"Transceiver Design for MIMO DCO-OFDM in Visible Light Communication",slug:"transceiver-design-for-mimo-dco-ofdm-in-visible-light-communication",totalDownloads:1700,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Direct current-biased optical-orthogonal frequency-division multiplexing (DCO-OFDM) is a simple yet spectrally efficient multicarrier modulation scheme for visible light communication (VLC). But in multiple-input multiple-output (MIMO) scenario, which is more practical for VLC due to the LED deployment, the research on DCO-OFDM is still limited and calls for in-depth investigation. In this chapter, we first study the basic modulation scheme of DCO-OFDM, including the design of conventional receiver without considering the clipping noise. Secondly, we present a novel receiver for combating clipping distortion in the DCO-OFDM system, which can reconstruct the clipping noise and subtract it from the received signal. Thirdly, we generalize the results to MIMO scenario and investigate the preliminary transceiver design, which is based on the minimum mean-square error (MMSE) criteria. Based on this, we propose a precoding algorithm to further enhance the performance. Finally, the symbol error rate performance is compared through computer simulations to give the reader a whole picture of the performance of MIMO VLC system.",book:{id:"6021",slug:"visible-light-communications",title:"Visible Light Communications",fullTitle:"Visible Light Communications"},signatures:"Jian Dang, Mengting Wu, Liang Wu and Zaichen Zhang",authors:[{id:"200326",title:"Dr.",name:"Jian",middleName:null,surname:"Dang",slug:"jian-dang",fullName:"Jian Dang"},{id:"204089",title:"Dr.",name:"Mengting",middleName:null,surname:"Wu",slug:"mengting-wu",fullName:"Mengting Wu"},{id:"205516",title:"Prof.",name:"Zaichen",middleName:null,surname:"Zhang",slug:"zaichen-zhang",fullName:"Zaichen Zhang"},{id:"205517",title:"Dr.",name:"Liang",middleName:null,surname:"Wu",slug:"liang-wu",fullName:"Liang Wu"}]},{id:"55290",title:"Index Modulation-Aided OFDM for Visible Light Communications",slug:"index-modulation-aided-ofdm-for-visible-light-communications",totalDownloads:1893,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Index modulation-aided orthogonal frequency-division multiplexing(IM-OFDM) is a promising modulation technique to achieve high spectral and energy efficiency. In this chapter, the conventional optical OFDM schemes are firstly reviewed, followed by the principles of IM-OFDM. The application of IM-OFDM in visible light communication (VLC) systems is introduced, and its performance is compared with conventional optical OFDM, which verifies its superiority. Finally, the challenges and opportunities of IM-OFDM are discussed for the VLC applications.",book:{id:"6021",slug:"visible-light-communications",title:"Visible Light Communications",fullTitle:"Visible Light Communications"},signatures:"Qi Wang, Tianqi Mao and Zhaocheng Wang",authors:[{id:"203281",title:"Dr.",name:"Qi",middleName:null,surname:"Wang",slug:"qi-wang",fullName:"Qi Wang"},{id:"203455",title:"Mr.",name:"Tianqi",middleName:null,surname:"Mao",slug:"tianqi-mao",fullName:"Tianqi Mao"},{id:"203456",title:"Prof.",name:"Zhaocheng",middleName:null,surname:"Wang",slug:"zhaocheng-wang",fullName:"Zhaocheng Wang"}]},{id:"56160",title:"Spatial Modulation – A Low Complexity Modulation Technique for Visible Light Communications",slug:"spatial-modulation-a-low-complexity-modulation-technique-for-visible-light-communications",totalDownloads:2112,totalCrossrefCites:3,totalDimensionsCites:3,abstract:"In visible light communication (VLC), the fundamental limitation on the achievable data rate/spectral efficiency is imposed by the optical source, particularly the phosphor-converted white light emitting diode (LED). These low-cost white LEDs favoured in solid-state lighting have very limited modulation bandwidth of less than 5 MHz, typically. This imposes a severe limitation on the attainable data rate. This is recognised in the literature and has led to the emergence of techniques such as multiple-input-multiple-output (MIMO) VLC systems as a means of addressing this challenge. The MIMO approach takes advantage of the multi-LED/multi-receiver structure to improve performance. In this chapter, we shall be discussing spatial modulation (SM) as a novel low-complexity MIMO technique for the VLC system. The SM technique exploits the spatial location of the individual LED as an additional degree of freedom in data modulation. Moreover, the chapter includes the comparison analysis of the SM technique with other traditional methods of modulation such as on-off keying (OOK) and pulse position modulation (PPM).",book:{id:"6021",slug:"visible-light-communications",title:"Visible Light Communications",fullTitle:"Visible Light Communications"},signatures:"Hammed G. Olanrewaju, Funmilayo B. Ogunkoya and Wasiu O.\nPopoola",authors:[{id:"202419",title:"Dr.",name:"Wasiu O.",middleName:null,surname:"Popoola",slug:"wasiu-o.-popoola",fullName:"Wasiu O. Popoola"},{id:"206243",title:"Mr.",name:"Hammed G.",middleName:null,surname:"Olanrewaju",slug:"hammed-g.-olanrewaju",fullName:"Hammed G. Olanrewaju"},{id:"206244",title:"Dr.",name:"Funmilayo B.",middleName:null,surname:"Offiong",slug:"funmilayo-b.-offiong",fullName:"Funmilayo B. Offiong"}]},{id:"56396",title:"Vehicular Visible Light Communications",slug:"vehicular-visible-light-communications",totalDownloads:2636,totalCrossrefCites:9,totalDimensionsCites:11,abstract:"Vehicular communications are foreseen to play a key role to increase road safety and realize autonomous driving. In addition to the radio frequency (RF)-based dedicated short range communication (DSRC) and long-term evolution (LTE) communication technologies, vehicular visible light communication (V2LC) is proposed as a complementary solution, utilizing readily deployed vehicle light emitting diode (LED) lights as transmitter with image sensors such as photodetector (PD) and camera as the receivers. V2LC fundamentals including transmitter and receiver characteristics with dimming capabilities are reviewed in this chapter. Depending on the field measurements using off-the-shelf automotive LED light, communication constraints are demonstrated. Moreover, considering the line-of-sight (LoS) characteristics, security aspects of V2LC is compared with the DSRC for a practical vehicle-to-vehicle (V2V) communication scenario. Finally, superiority of V2LC in terms of communication security with the proposed SecVLC method is demonstrated through simulation results.",book:{id:"6021",slug:"visible-light-communications",title:"Visible Light Communications",fullTitle:"Visible Light Communications"},signatures:"Bugra Turan and Seyhan Ucar",authors:[{id:"202217",title:"M.Sc.",name:"Bugra",middleName:null,surname:"Turan",slug:"bugra-turan",fullName:"Bugra Turan"},{id:"207893",title:"Dr.",name:"Seyhan",middleName:null,surname:"Ucar",slug:"seyhan-ucar",fullName:"Seyhan Ucar"}]}],onlineFirstChaptersFilter:{topicId:"538",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517",scope:"Paralleling similar advances in the medical field, astounding advances occurred in Veterinary Medicine and Science in recent decades. These advances have helped foster better support for animal health, more humane animal production, and a better understanding of the physiology of endangered species to improve the assisted reproductive technologies or the pathogenesis of certain diseases, where animals can be used as models for human diseases (like cancer, degenerative diseases or fertility), and even as a guarantee of public health. Bridging Human, Animal, and Environmental health, the holistic and integrative “One Health” concept intimately associates the developments within those fields, projecting its advancements into practice. This book series aims to tackle various animal-related medicine and sciences fields, providing thematic volumes consisting of high-quality significant research directed to researchers and postgraduates. It aims to give us a glimpse into the new accomplishments in the Veterinary Medicine and Science field. By addressing hot topics in veterinary sciences, we aim to gather authoritative texts within each issue of this series, providing in-depth overviews and analysis for graduates, academics, and practitioners and foreseeing a deeper understanding of the subject. Forthcoming texts, written and edited by experienced researchers from both industry and academia, will also discuss scientific challenges faced today in Veterinary Medicine and Science. In brief, we hope that books in this series will provide accessible references for those interested or working in this field and encourage learning in a range of different topics.",coverUrl:"https://cdn.intechopen.com/series/covers/13.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:10,editor:{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"19",title:"Animal Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",isOpenForSubmission:!0,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},{id:"20",title:"Animal Nutrition",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",isOpenForSubmission:!0,editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"28",title:"Animal Reproductive Biology and Technology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",isOpenForSubmission:!0,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:19,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79909",title:"Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models",doi:"10.5772/intechopen.101750",signatures:"Feda S. Aljaser",slug:"cryopreservation-methods-and-frontiers-in-the-art-of-freezing-life-in-animal-models",totalDownloads:167,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79782",title:"Avian Reproduction",doi:"10.5772/intechopen.101185",signatures:"Kingsley Omogiade Idahor",slug:"avian-reproduction",totalDownloads:151,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kingsley O.",surname:"Idahor"}],book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}}]},overviewPagePublishedBooks:{paginationCount:10,paginationItems:[{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}]},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}]},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",biography:"Naceur M’HAMDI is Associate Professor at the National Agronomic Institute of Tunisia, University of Carthage. He is also Member of the Laboratory of genetic, animal and feed resource and member of Animal science Department of INAT. He graduated from Higher School of Agriculture of Mateur, University of Carthage, in 2002 and completed his masters in 2006. Dr. M’HAMDI completed his PhD thesis in Genetic welfare indicators of dairy cattle at Higher Institute of Agronomy of Chott-Meriem, University of Sousse, in 2011. He worked as assistant Professor of Genetic, biostatistics and animal biotechnology at INAT since 2013.",institutionString:null,institution:null}]},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}]}]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11576",title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",hash:"5a01644fb0b4ce24c2f947913d154abe",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 26th 2022",isOpenForSubmission:!0,editors:[{id:"76041",title:"Prof.",name:"Pier Paolo",surname:"Piccaluga",slug:"pier-paolo-piccaluga",fullName:"Pier Paolo Piccaluga"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11577",title:"Tick-Borne Diseases - A Review and an Update of Knowledge on Infections in Human and Animal Population",coverURL:"https://cdn.intechopen.com/books/images_new/11577.jpg",hash:"3d72ae651ee2a04b2368bf798a3183ca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 29th 2022",isOpenForSubmission:!0,editors:[{id:"51521",title:"Prof.",name:"Elisa",surname:"Pieragostini",slug:"elisa-pieragostini",fullName:"Elisa Pieragostini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11570",title:"Influenza - New Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11570.jpg",hash:"157b379b9d7a4bf5e2cc7a742f155a44",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11569",title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",hash:"069d6142ecb0d46d14920102d48c0e9d",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 31st 2022",isOpenForSubmission:!0,editors:[{id:"189561",title:"Dr.",name:"Mihaela Laura",surname:"Vica",slug:"mihaela-laura-vica",fullName:"Mihaela Laura Vica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11568",title:"Staphylococcal Infections - Recent Advances and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11568.jpg",hash:"92c881664d1921c7f2d0fee34b78cd08",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"59719",title:"Dr.",name:"Jaime",surname:"Bustos-Martínez",slug:"jaime-bustos-martinez",fullName:"Jaime Bustos-Martínez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81471",title:"Semantic Map: Bringing Together Groups and Discourses",doi:"10.5772/intechopen.103818",signatures:"Theodore Chadjipadelis and Georgia Panagiotidou",slug:"semantic-map-bringing-together-groups-and-discourses",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79491",title:"Fuzzy Perceptron Learning for Non-Linearly Separable Patterns",doi:"10.5772/intechopen.101312",signatures:"Raja Kishor Duggirala",slug:"fuzzy-perceptron-learning-for-non-linearly-separable-patterns",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Raja Kishor",surname:"Duggirala"}],book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81234",title:"Cognitive Visual Tracking of Hand Gestures in Real-Time RGB Videos",doi:"10.5772/intechopen.103170",signatures:"Richa Golash and Yogendra Kumar Jain",slug:"cognitive-visual-tracking-of-hand-gestures-in-real-time-rgb-videos",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81331",title:"Machine Learning Algorithm-Based Contraceptive Practice among Ever-Married Women in Bangladesh: A Hierarchical Machine Learning Classification Approach",doi:"10.5772/intechopen.103187",signatures:"Iqramul Haq, Md. Ismail Hossain, Md. Moshiur Rahman, Md. Injamul Haq Methun, Ashis Talukder, Md. Jakaria Habib and Md. Sanwar Hossain",slug:"machine-learning-algorithm-based-contraceptive-practice-among-ever-married-women-in-bangladesh-a-hie",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81321",title:"Velocity Planning via Model-Based Reinforcement Learning: Demonstrating Results on PILCO for One-Dimensional Linear Motion with Bounded Acceleration",doi:"10.5772/intechopen.103690",signatures:"Hsuan-Cheng Liao, Han-Jung Chou and Jing-Sin Liu",slug:"velocity-planning-via-model-based-reinforcement-learning-demonstrating-results-on-pilco-for-one-dime",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Applied Intelligence - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11418.jpg",subseries:{id:"22",title:"Applied Intelligence"}}},{id:"80937",title:"Assessing Heterogeneity of Two-Part Model via Bayesian Model-Based Clustering with Its Application to Cocaine Use Data",doi:"10.5772/intechopen.103089",signatures:"Ye-Mao Xia, Qi-Hang Zhu and Jian-Wei Gou",slug:"assessing-heterogeneity-of-two-part-model-via-bayesian-model-based-clustering-with-its-application-t",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},subseriesFiltersForOFChapters:[{caption:"Applied Intelligence",value:22,count:1,group:"subseries"},{caption:"Computer Vision",value:24,count:8,group:"subseries"},{caption:"Machine Learning and Data Mining",value:26,count:8,group:"subseries"}],publishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",slug:"human-microbiome",publishedDate:"June 16th 2021",editedByType:"Edited by",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",hash:"c31366ba82585ba3ac91d21eb1cf0a4d",volumeInSeries:20,fullTitle:"Human Microbiome",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9002",title:"Glutathione System and Oxidative Stress in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9002.jpg",slug:"glutathione-system-and-oxidative-stress-in-health-and-disease",publishedDate:"August 26th 2020",editedByType:"Edited by",bookSignature:"Margarete Dulce Bagatini",hash:"127defed0a50ad5ed92338dc96e1e10e",volumeInSeries:17,fullTitle:"Glutathione System and Oxidative Stress in Health and Disease",editors:[{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:3},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:8},{group:"subseries",caption:"Chemical Biology",value:15,count:10}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:null,institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"23",type:"subseries",title:"Computational Neuroscience",keywords:"Single-Neuron Modeling, Sensory Processing, Motor Control, Memory and Synaptic Pasticity, Attention, Identification, Categorization, Discrimination, Learning, Development, Axonal Patterning and Guidance, Neural Architecture, Behaviours and Dynamics of Networks, Cognition and the Neuroscientific Basis of Consciousness",scope:"Computational neuroscience focuses on biologically realistic abstractions and models validated and solved through computational simulations to understand principles for the development, structure, physiology, and ability of the nervous system. This topic is dedicated to biologically plausible descriptions and computational models - at various abstraction levels - of neurons and neural systems. This includes, but is not limited to: single-neuron modeling, sensory processing, motor control, memory, and synaptic plasticity, attention, identification, categorization, discrimination, learning, development, axonal patterning, guidance, neural architecture, behaviors, and dynamics of networks, cognition and the neuroscientific basis of consciousness. Particularly interesting are models of various types of more compound functions and abilities, various and more general fundamental principles (e.g., regarding architecture, organization, learning, development, etc.) found at various spatial and temporal levels.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11419,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"13818",title:"Dr.",name:"Asim",middleName:null,surname:"Bhatti",slug:"asim-bhatti",fullName:"Asim Bhatti",profilePictureURL:"https://mts.intechopen.com/storage/users/13818/images/system/13818.jpg",institutionString:null,institution:{name:"Deakin University",institutionURL:null,country:{name:"Australia"}}},{id:"151889",title:"Dr.",name:"Joao Luis Garcia",middleName:null,surname:"Rosa",slug:"joao-luis-garcia-rosa",fullName:"Joao Luis Garcia Rosa",profilePictureURL:"https://mts.intechopen.com/storage/users/151889/images/4861_n.jpg",institutionString:null,institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:31,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80691",title:"Applications of Quantum Mechanics, Laws of Classical Physics, and Differential Calculus to Evaluate Source Localization According to the Electroencephalogram",doi:"10.5772/intechopen.102831",signatures:"Kristin S. Williams",slug:"applications-of-quantum-mechanics-laws-of-classical-physics-and-differential-calculus-to-evaluate-so",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80643",title:"EEG Authentication System Using Fuzzy Vault Scheme",doi:"10.5772/intechopen.102699",signatures:"Fatima M. Baqer and Salah Albermany",slug:"eeg-authentication-system-using-fuzzy-vault-scheme",totalDownloads:35,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80529",title:"Effective EEG Artifact Removal from EEG Signal",doi:"10.5772/intechopen.102698",signatures:"Vandana Roy",slug:"effective-eeg-artifact-removal-from-eeg-signal",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80505",title:"Soft Tissue Image Reconstruction Using Diffuse Optical Tomography",doi:"10.5772/intechopen.102463",signatures:"Umamaheswari K, Shrichandran G.V. and Jebaderwin D.",slug:"soft-tissue-image-reconstruction-using-diffuse-optical-tomography",totalDownloads:47,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79881",title:"Control of Cytoskeletal Dynamics in Cancer through a Combination of Cytoskeletal Components",doi:"10.5772/intechopen.101624",signatures:"Ban Hussein Alwash, Rawan Asaad Jaber Al-Rubaye, Mustafa Mohammad Alaaraj and Anwar Yahya Ebrahim",slug:"control-of-cytoskeletal-dynamics-in-cancer-through-a-combination-of-cytoskeletal-components",totalDownloads:104,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79580",title:"Dotting the “i” of Interoperability in FAIR Cancer-Registry Data Sets",doi:"10.5772/intechopen.101330",signatures:"Nicholas Nicholson, Francesco Giusti, Luciana Neamtiu, Giorgia Randi, Tadeusz Dyba, Manola Bettio, Raquel Negrao Carvalho, Nadya Dimitrova, Manuela Flego and Carmen Martos",slug:"dotting-the-i-of-interoperability-in-fair-cancer-registry-data-sets",totalDownloads:102,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79550",title:"Urologic Cancer Molecular Biology",doi:"10.5772/intechopen.101381",signatures:"Pavel Onofrei, Viorel Dragoș Radu, Alina-Alexandra Onofrei, Stoica Laura, Doinita Temelie-Olinici, Ana-Emanuela Botez, Vasile Bogdan Grecu and Elena Carmen Cotrutz",slug:"urologic-cancer-molecular-biology",totalDownloads:97,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79450",title:"Identification of Biomarkers Associated with Cancer Using Integrated Bioinformatic Analysis",doi:"10.5772/intechopen.101432",signatures:"Arpana Parihar, Shivani Malviya and Raju Khan",slug:"identification-of-biomarkers-associated-with-cancer-using-integrated-bioinformatic-analysis",totalDownloads:156,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},publishedBooks:{paginationCount:8,paginationItems:[{type:"book",id:"7999",title:"Free Radical Medicine and Biology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7999.jpg",slug:"free-radical-medicine-and-biology",publishedDate:"July 15th 2020",editedByType:"Edited by",bookSignature:"Kusal Das, Swastika Das, Mallanagouda Shivanagouda Biradar, Varaprasad Bobbarala and S. Subba Tata",hash:"083e5d427097d368a3f8a02bd6c76bf8",volumeInSeries:10,fullTitle:"Free Radical Medicine and Biology",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",institutionString:"BLDE (Deemed to be University), India",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8762",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",publishedDate:"June 24th 2020",editedByType:"Edited by",bookSignature:"Marilena Vlachou",hash:"bfbc5538173f11acb0f9549a85b70489",volumeInSeries:9,fullTitle:"Melatonin - The Hormone of Darkness and its Therapeutic Potential and Perspectives",editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",middleName:null,surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou",profilePictureURL:"https://mts.intechopen.com/storage/users/246279/images/system/246279.jpg",institutionString:"National and Kapodistrian University of Athens",institution:{name:"National and Kapodistrian University of Athens",institutionURL:null,country:{name:"Greece"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8002",title:"Tumor Progression and Metastasis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8002.jpg",slug:"tumor-progression-and-metastasis",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Ahmed Lasfar and Karine Cohen-Solal",hash:"db17b0fe0a9b6e80ff02b81a93bafa4e",volumeInSeries:8,fullTitle:"Tumor Progression and Metastasis",editors:[{id:"32546",title:"Dr.",name:"Ahmed",middleName:null,surname:"Lasfar",slug:"ahmed-lasfar",fullName:"Ahmed Lasfar",profilePictureURL:"https://mts.intechopen.com/storage/users/32546/images/system/32546.png",institutionString:"Rutgers, The State University of New Jersey",institution:{name:"Rutgers, The State University of New Jersey",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6897",title:"Biophysical Chemistry",subtitle:"Advance Applications",coverURL:"https://cdn.intechopen.com/books/images_new/6897.jpg",slug:"biophysical-chemistry-advance-applications",publishedDate:"February 19th 2020",editedByType:"Edited by",bookSignature:"Mohammed A. A. Khalid",hash:"0ad18ab382e2ffb9ff202d15282297eb",volumeInSeries:7,fullTitle:"Biophysical Chemistry - Advance Applications",editors:[{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",institutionString:"Taif University",institution:{name:"Taif University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:{title:"Infectious Diseases",id:"6"},selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/205100",hash:"",query:{},params:{id:"205100"},fullPath:"/profiles/205100",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()