Heavy metal pollution has become one of the most serious environmental problems throughout the world. Among the innovative solutions for treatment of contaminated water and soil, bioremediation that use biological materials like living or dead microorganisms is a promising, safe and economical technology. One of the most ubiquitous biomass types available for bioremediation of heavy metals is yeast. Yeast cells represent an inexpensive, readily available source of biomass that retains its removal ability for a broad range of heavy metals to varying degrees. Furthermore, yeasts exhibit the ability to adapt to extreme conditions such as temperature, pH and high levels of organic and inorganic contaminants. To understand the different mechanisms of interactions between metals and yeast strains in the environment, this paper will give an overview on the role that yeasts play in the immobilization/mobilization of toxic metals and factors affecting these processes. Biotechnological applications in the bioremediation of heavy metal such as bioaugmentation using degradation abilities of yeasts will also be discussed.
Part of the book: Yeast