The metal-filament-type resistive random access memories (ReRAMs) with copper were investigated from the point of view of dynamical microstructure evolution in the repetitive switching operations using in situ transmission electron microscopy (in situ TEM). Through a series of experiments for uncovered solid electrolyte films, stacked devices, and nanofabricated cells, formation and erasure of the copper filaments and deposits were confirmed. The behavior of the filament and deposit depended on the switching condition and history. Based on these in situ TEM results, the switching schematics and the degradation process were discussed.
Part of the book: Memristor and Memristive Neural Networks