\r\n\t
",isbn:"978-1-83969-545-2",printIsbn:"978-1-83969-544-5",pdfIsbn:"978-1-83969-546-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"c77f99db5569e8d0325b856cb7d75b17",bookSignature:"Prof. Maged Marghany",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10854.jpg",keywords:"Optical, Radar, Algorithm, Programming, Big Data, Deep Learning, Image Processing, Time Series Data Analysis, Large Scale Methods, Signal Processing, Computer Vision, Remote Sensing",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 18th 2021",dateEndSecondStepPublish:"March 18th 2021",dateEndThirdStepPublish:"May 17th 2021",dateEndFourthStepPublish:"August 5th 2021",dateEndFifthStepPublish:"October 4th 2021",remainingDaysToSecondStep:"9 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:'Prof. Marghany was recently ranked among the top two percent scientists in a global list compiled by the prestigious Stanford University. A pioneering scientist in microwave remote sensing invented a new theory Quantum Nonlinear Ocean Dynamics " Quantized Marghany\'s Front".',coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"96666",title:"Prof.",name:"Maged",middleName:null,surname:"Marghany",slug:"maged-marghany",fullName:"Maged Marghany",profilePictureURL:"https://mts.intechopen.com/storage/users/96666/images/system/96666.png",biography:"Prof.Dr. Maged Marghany, recently, ranked among the top two percent scientists in a global list compiled by the prestigious Stanford University. Prof.Dr. Maged Marghany is currently a Professor at the Department of Informatics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala Darussalam, Banda Aceh, Indonesia. He is the author of 5 titles including Advanced Remote Sensing Technology for Tsunami Modelling and Forecasting which is published by Routledge Taylor and Francis Group, CRC and Synthetic Aperture Radar Imaging Mechanism for Oil Spills, which is published by Elsevier, His research specializes in microwave remote sensing and remote sensing for mineralogy detection and mapping. Previously, he worked as a Deputy Director in Research and Development at the Institute of Geospatial Science and Technology and the Department of Remote Sensing, both at Universiti Teknologi Malaysia. Maged has earned many degrees including a post-doctoral in radar remote sensing from the International Institute for Aerospace Survey and Earth Sciences, a Ph.D. in environmental remote sensing from the Universiti Putra Malaysia, a Master of Science in physical oceanography from the University Pertanian Malaysia, general and special diploma of Education and a Bachelor of Science in physical oceanography from the University of Alexandria in Egypt. Maged has published well over 250 papers in international conferences and journals and is active in International Geoinformatics, and the International Society for Photogrammetry and Remote Sensing (ISPRS).",institutionString:"Syiah Kuala University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"9",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"Syiah Kuala University",institutionURL:null,country:{name:"Indonesia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"347259",firstName:"Karmen",lastName:"Daleta",middleName:null,title:"Dr.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"karmen@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"5104",title:"Environmental Applications of Remote Sensing",subtitle:null,isOpenForSubmission:!1,hash:"6f91748e9b1463ce5e7352ea982c3128",slug:"environmental-applications-of-remote-sensing",bookSignature:"Maged Marghany",coverURL:"https://cdn.intechopen.com/books/images_new/5104.jpg",editedByType:"Edited by",editors:[{id:"96666",title:"Prof.",name:"Maged",surname:"Marghany",slug:"maged-marghany",fullName:"Maged Marghany"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3838",title:"Advanced Geoscience Remote Sensing",subtitle:null,isOpenForSubmission:!1,hash:"74f648b4e5f6fb290baeb0642c037c1d",slug:"advanced-geoscience-remote-sensing",bookSignature:"Maged Marghany",coverURL:"https://cdn.intechopen.com/books/images_new/3838.jpg",editedByType:"Edited by",editors:[{id:"96666",title:"Prof.",name:"Maged",surname:"Marghany",slug:"maged-marghany",fullName:"Maged Marghany"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5096",title:"Applied Studies of Coastal and Marine Environments",subtitle:null,isOpenForSubmission:!1,hash:"c69d748a6e4e39139e6f4be531b1f30e",slug:"applied-studies-of-coastal-and-marine-environments",bookSignature:"Maged Marghany",coverURL:"https://cdn.intechopen.com/books/images_new/5096.jpg",editedByType:"Edited by",editors:[{id:"96666",title:"Prof.",name:"Maged",surname:"Marghany",slug:"maged-marghany",fullName:"Maged Marghany"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8395",title:"Advanced Remote Sensing Technology for Synthetic Aperture Radar Applications, Tsunami Disasters, and Infrastructure",subtitle:null,isOpenForSubmission:!1,hash:"9a36595723f2490fd4e414bba3547a50",slug:"advanced-remote-sensing-technology-for-synthetic-aperture-radar-applications-tsunami-disasters-and-infrastructure",bookSignature:"Maged Marghany",coverURL:"https://cdn.intechopen.com/books/images_new/8395.jpg",editedByType:"Edited by",editors:[{id:"96666",title:"Prof.",name:"Maged",surname:"Marghany",slug:"maged-marghany",fullName:"Maged Marghany"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"43449",title:"Herbicides in Aquatic Systems",doi:"10.5772/56015",slug:"herbicides-in-aquatic-systems",body:'\nWater plays a crucial role in maintaining the health of our global ecosystem. We rely on this valuable resource to provide drinking water, irrigation, and recreation; in addition, appropriate management of our waters is critical for flood control efforts. A diversity of native aquatic plants constitutes an integral part of the aquatic environment. These mixed populations of hydrophytes provide structure, habitat and food for fish, waterfowl, and other wildlife and act as nutrient sinks by removing phosphorus, nitrogen, and other elements from the water column. Many regions of the world – but especially those with mild climates – provide an ideal habitat for many organisms, including aquatic plants. Non-native aquatic plants are frequently introduced to aquatic systems through a number of pathways, including transport by animals, currents, or wind, but the majority of problematic plants are brought in as a result of anthropogenic activities. Human introduction of non-native aquatic plants may be accidental (e.g., via ballast water or as contaminants in desirable flora) or intentional.
\nMany of the worst aquatic weed problems in the United States are the result of intentional introduction. For example, waterhyacinth [Eichhornia crassipes (Mart.) Solms] (Fig. 1) was reportedly introduced to the United States at the Southern States Cotton Expo in New Orleans in 1884. Visitors to the Expo were given waterhyacinth plants as souvenirs and many of these plants found their way into the waters of Louisiana, Texas, and Florida [1]. Local legend states that a Florida resident was entranced by the beautiful, showy flowers of this Amazonian native and brought plants back to his water garden near the St. Johns River. The plants grew abundantly and the backyard water gardener decided to share his “bounty of beauties” with others by tossing his extra plants into the St. Johns River [2]. Within a decade, the St. Johns was so clogged with waterhyacinths that navigation had become impossible [1-3].
\nWaterhyacinth. Photo courtesy Lyn Gettys.
The St. Johns constituted a major shipping passage through Florida; in order to mitigate this important resource and make it available to commercial concerns for the transport of goods, the US Army Corps of Engineers was authorized by the US Congress to use “any means necessary” to clear the system of these noxious weeds [1]. Attempts to control floating waterhyacinths utilized applications of a wide variety of substances, including arsenic, sulfuric acid, and other toxic chemicals [1]. Some of these substances effectively controlled waterhyacinths, but proved toxic to cattle that grazed on treated plants [2]. Feeding deterrents such as rotten eggs and manure were added to chemical applications to discourage grazing, but were ultimately ineffective or too expensive to use under operational conditions [1]. After these disappointing results, resource managers were forced to resort to mechanical control – manually removing plants from the surface of the water and offloading them to shore – in their attempts to clear Florida’s waterways (Fig. 2). This method proved expensive and ineffective, as plants grew faster than they could be harvested from the system, but was the only management tool available until the discovery of synthetic herbicides in the 1940s [3]. Waterhyacinth is now controlled in many regions via chemical means (e.g., application of herbicides), but this Brazilian native is still considered one of the world’s worst weeds [4, 5] and is intensively managed in virtually all areas the species has managed to invade.
\nMechanical harvesting of waterhyacinth. Photo courtesy UF/IFAS Center for Aquatic and Invasive Plants.
Floating weeds such as waterhyacinth are readily visible and many stakeholders understand the need to control these types of noxious species. Submersed invasive species, however, are often hidden from view and the problems associated with them are not readily apparent. Submersed weeds often go unnoticed until they form surface mats; by this point, plants have been growing unchecked, often for months, and the water column is filled with plant material. This is often the case with hydrilla [Hydrilla verticillata) (L.f.) Royle] (Fig. 3), a noxious invader with multiple centers of origin that has been called the world’s worst weed [6]. Hydrilla was introduced to the United States intentionally via the aquarium industry [7], and historical accounts suggest that some aquarium plant dealers cultivated hydrilla in canals and waters near their nurseries to have a ready supply of plant material for their customers [8]. However, the species has undoubtedly been introduced to the country’s waterways repeatedly, as hobbyists regularly dispose of extra aquarium plants by tossing them in the nearest body of water. Because hydrilla is able to root from extremely small fragments [9], other pathways of introduction include waterfowl, other fauna and recreational equipment such as boats and trailers. Hydrilla causes a host of problems in its regions of invasion and greatly reduces ecosystem services and anthropogenic uses of aquatic resources.
\nHydrilla. Photo courtesy William Haller.
Hydrilla can reportedly grow 1 inch (2.5 cm) per day [6], but most researchers agree that this is a gross underestimate of the plant’s actual productivity [10]. This noxious weed wreaks havoc on the ecosystem by forming monocultures [11], which serve as poor habitat for resident fauna. Dense plant growth traps heat, raises the temperature of surface water and depletes dissolved oxygen, resulting in conditions that negatively impact fish survival [12, 13]. Hydrilla also obstructs water flow, which can have catastrophic consequences if resource managers need to quickly move water to prevent flooding during tropical storms, hurricanes, and other severe weather events. Recreational uses of hydrilla-infested waters are limited as well; boats motors quickly become clogged and strangled with weeds (Fig. 4), fishing lines are snagged within moments of being cast, and swimmers have reportedly drowned after becoming entangled in hydrilla [14]. Hydrilla is intensively managed in its regions of invasion. Populations of this submersed weed are reduced by a number of means, including mechanical harvesting, hand-pulling, benthic barriers, and biological control organisms such as Asian or Chinese grass carp (Ctenopharyngodon idella Val.) [15, 16], but the vast majority of resource managers rely on chemical control to keep the growth of hydrilla in check.
\nBoat motor clogged with hydrilla. Photo courtesy UF/IFAS Center for Aquatic and Invasive Plants.
Waterhyacinth and hydrilla quickly establish and become invasive in virtually all areas where they have been introduced, but these species are not the only aquatic plants that cause problems in natural systems, reservoirs, and canals through the world. For example, resource managers charged with protecting the waters of the Pacific Northwest and many other parts of the US struggle with invasions of Eurasian watermilfoil (Myriophyllum spicatum L.), flowering rush (Butomus umbellatus L.), and curlyleaf pondweed (Potamogeton crispus L.) (Fig. 5). It is thought that these species were initially introduced through the aquarium and nursery trade, but have since spread throughout the country’s waters as a result of improper or inadequate cleaning of contaminated equipment that has been moved from infested sites to pristine waters.
\nOther common aquatic invaders in the US. Left: curlyleaf pondweed. Right: flowering rush (emerged) and Eurasian watermilfoil (submersed). Photos courtesy Lyn Gettys.
It is clear that aquatic weeds can severely reduce ecosystem functions and limit the use of infested waters for anthropogenic activities such as recreation and flood control. However, invasive aquatic plants can pose serious risks to human health as well. For example, a number of floating species provide ideal conditions for mosquito breeding activities. Even in fast-flowing water, the stagnant water needed for mosquito reproduction is often present in the rosettes of floating weeds such as waterhyacinth and waterlettuce (Pistia stratiotes L.) [17-19] (Fig. 6).
\nWaterlettuce. Photo courtesy Lyn Gettys.
A number of techniques can be employed to control or reduce populations of aquatic weeds. Clearly, the most effective way to avoid the problems associated with invasive plants is through exclusion, or preventing them from entering uninfested aquatic systems. Public education programs that emphasize proper disposal of cultivated introduced plants and animals can be helpful, but target audiences (i.e., pet and aquarium owners) often remain unaware of the ecological consequences associated with the release of these organisms into public waters. Although this sort of intentional release is certainly a vector for the introduction of new invaders (see Section 2 of this chapter describing the introduction of waterhyacinth), accidental transfer of aquatic weeds frequently occurs when boats, trailers, and other equipment is moved from an invaded site to a pristine body of water (Fig. 7). The likelihood of introduction via this route can be reduced by requiring careful inspection of any object before movement from one body of water to another. This is especially important when boats and other equipment are being relocated from a body of water that is suspected of or known to harbor invasive species to one that is pristine. These inspections can identify seeds, vegetative fragments, larvae, veligers, and other propagules of invasive aquatic species and ensure their removal before launching at a new site, thus preventing the introduction of exotic organisms into an uninfested body of water. This method has been employed with some success in the northern US, where rigorous boat inspection programs have kept invasive aquatic plants and animals such as zebra and quagga mussels (Dreissena polymorpha and D. rostriformis bugensis, respectively) from spreading to new sites [20, 21].
\nAquatic weeds on a boat trailer. Photo courtesy Lyn Gettys.
When exclusion programs fail and an exotic plant species colonizes a new system, managers often attempt to manually remove the invader as a first line of defense. The methods employed for removal efforts vary and are often dependent on available resources. For example, hand-pulling of target weeds may be effective, especially if the infestation is small and localized, and may be cost-effective if a pool of engaged stakeholders and volunteers can be mobilized to accomplish the task. If the new invader has colonized a relatively large area or has established in water deeper than 1 meter, the use of specialized equipment such as mechanical harvesters (Fig. 8) may be employed. Mechanical removal of aquatic weeds is often viewed by the public as the most “environmentally friendly” control method, especially among clientele that dislike the use of pesticides, and the technique certainly has utility under some circumstances. However, a number of factors must be taken into consideration before starting mechanical control efforts, regardless of whether volunteer labor or mechanical harvesters are employed. For example, it may be logistically difficult or prohibitively expensive to dispose of harvested plant material. Resource managers sometimes have access to a nearby “high and dry” site where collected weeds can be stockpiled and allowed to desiccate and decay, but harvested material must often be transported off-site for disposal. This process can add significantly to the cost of the project, especially if the weeds must be disposed of in a landfill that charges tipping fees. As much as 95% of the fresh weight of aquatic weeds is water; a single acre of hydrilla can weigh as much as 24,000 pounds (10,886 kg), but only 1,200 pounds (544 kg) of that weight is plant material and the remaining 22,800 pounds (10,342 kg) is water [22]. Also, removal of weeds by volunteers or mechanical harvesters typically causes fragmentation of plant material and fails to capture root crowns, tubers, seeds, and other propagules in the sediment. Many aquatic weeds – including hydrilla, curlyleaf pondweed, and Eurasian watermilfoil – easily root from fragments and quickly regrow from sediment- borne propagules. As a result, initial observations at many sites that are managed using hand or mechanical removal of aquatic weeds may suggest that these methods have successfully addressed the problem, but control of the new invader is often ephemeral and weed populations regenerate in as little as a few weeks. A third factor to consider when hand-pulling or using mechanical harvesters to remove aquatic weeds is water depth. Volunteers are unlikely to be able to remove plants growing in water that is deeper than 3 feet (1 m) without diving gear and most traditional mechanical harvesters can only remove plant material in the upper 5 feet (1.5 m) of the water column, although newer equipment can harvest weeds in the upper 10 feet (3 m) of water. These factors should be considered before launching a weed removal program, regardless of whether weeds are taken out of the system by hand or by utilizing mechanical harvesters, but there are additional challenges inherent to each method. For example, volunteers tasked with hand-pulling invaders must be adequately trained to ensure that they will be able to successfully identify the target weed, especially when the invader is similar in appearance to desirable native plants that should be allowed to remain in the system. In contrast, mechanical harvesters are “non-selective” – they indiscriminately remove all plant material in the harvesting zone and are unable to distinguish between weeds and native species. Also, mechanical harvesters often result in bycatch, or the removal of fish and other aquatic fauna along with plant material. This problem is most pronounced when shallow-water (upper 5 feet; 1.5 m) harvesters are employed and can result in the removal of up to 28,000 fish per acre [23], but bycatch can be reduced by greater than 99% (removal of around 120 fish per acre) when deep-water (upper 10 feet; 3 m) harvesting is utilized [24].
\nMechanical harvesting of hydrilla. Photo courtesy William Haller.
Another method that can provide some control of unwanted aquatic species is biological control, or the use of organisms to reduce weed populations. This technique, often referred to as biocontrol, is based on the concept that most species that become weedy after introduction to a new region are not problematic in their native range due to the presence of endemic predators that keep their growth in check. Identifying and evaluating potential biocontrol agents is an arduous, time-consuming, expensive process. The process typically begins with researchers travelling to the invader’s center of origin and collecting insects, pathogens, or other organisms that are found in association with the target weed species. These biological agents are quarantined and subjected to a battery of tests to determine whether they fit the criteria and requirements of successful biocontrol agents. A hallmark of a biocontrol agent is host specificity; in other words, they must cause damage exclusively to the target weed species while leaving other plants untouched [25, 26]. Biocontrol agents should also be able to survive, grow, and reproduce in the invaded range of the weed and ideally, they should be able to form self-sustaining populations without augmentation. Some success has been realized using biocontrol organisms for aquatic weed control; for example, the Asian or Chinese grass carp (Ctenopharyngodon idella Val.) (Fig. 9) is well-known as a voracious consumer of hydrilla [27]. Unfortunately, grass carp are somewhat non-selective; although they are most frequently employed to control hydrilla, they will consume and eliminate virtually all submersed vegetation in an aquatic system. Also, because the grass carp is a non-native introduced species, special precautions must be taken to reduce the likelihood of these biocontrol agents becoming invasive themselves. In Florida and many other states in the US, a permit must be issued by state resource managers before the introduction of grass carp into an aquatic system (although some states prohibit the use of grass carp as biocontrol agents altogether) [28]. In most cases, permit holders must ensure that stocked waters are secured (i.e., water intakes and outflows must be screened) to prevent the fish from escaping into other waters and all released grass carp must be triploid. Triploidy is the presence of an additional set of chromosomes, a condition that is induced by subjecting fish eggs to cold, heat, or pressure shock treatments immediately after artificial fertilization, and renders the grass carp unable to reproduce [29].
\nAsian grass carp. Photo courtesy William Haller.
Other organisms have also been employed as biocontrol agents. For example, a number of insects and pathogens have been evaluated for control of various aquatic weeds, including the noxious aquatic invader alligatorweed [Alternanthera philoxeroides (Mart.) Griseb.]. The most promising of these agents, the alligatorweed flea beetle (Agasicles hygrophila Selman and Vogt) (Fig. 10), can reduce populations to the point that more aggressive weed control methods can be reduced or even eliminated, provided winter temperatures in the region are mild enough to allow overwintering of the beetles [30]. Although these and other biocontrol agents have some utility in aquatic weed control, they cannot be relied on to completely eliminate infestations of invasive weeds. True biocontrol agents are host-specific; therefore, populations of the target weed must always be present in order to serve as a host or food source for the agent. As a result, weedy species cannot be eradicated through the actions of a biocontrol agent. When more complete control of aquatic weeds is necessary, resource managers rely heavily on chemical control, or the use of herbicides.
\nAlligatorweed flea beetle. Photo courtesy Lyn Gettys.
A number of factors must be taken into consideration when selecting a herbicide for chemical control. Clearly, the most important criterion is efficacy of the product on the target weed. However, resource managers must also take into account how treated waters will be used. Although some aquatic systems are used for fisheries or crop production (e.g., rice cultivation), most are not used to grow food. Non-production waters targeted for aquatic weed control efforts can be categorized in a number of different ways, but the most common broad groupings include agricultural waters, flood control canals, recreational waters, retention ponds, and “development” waters (man-made lakes and ponds created for aesthetic reasons). Many waters are multi-use and span several of these categories, but this discussion will focus on the primary purpose of each grouping.
\n\n Agricultural waters are typically used for crop irrigation and for watering of livestock. A number of herbicides labeled for use in aquatic systems have irrigation and/or livestock watering restrictions. These restrictions preclude the use of treated water for a specific period of time or until the concentration of the herbicide is below a specified level. These restrictions vary among products and may also vary among products with the same active ingredient. Irrigation and livestock watering restrictions are clearly listed on the product label; compliance may be as simple as not using treated water for the appropriate length of time or may require laboratory tests to determine the concentration of herbicide in the water. Intentional or accidental failure to adhere to irrigation restrictions may result in a number of consequences, including – but not limited to – damage to livestock and non-target crop plants, herbicide residues in crops that exceed the allowed tolerance established by the United States Environmental Protection Agency (USEPA), and prosecution by the USEPA for failure to follow label guidelines.
\n\n\n Flood control canals should be able to quickly move large volumes of water. These systems may be used only rarely for their true purpose; however, their ability to function as intended is critical when residential or developed areas are threatened by tropical storms, hurricanes or other extreme weather events. As such, it is critical that these canals be kept clear of aquatic vegetation that may impede the flow of water. A “scorched earth” philosophy and the use of a non-selective herbicide is sometimes employed to ensure that flood control canals remain free of aquatic weeds, and native plants are not exempt from weed control efforts in these systems. This is because even a small population of submersed plants – be it a weed such as hydrilla or a native plant such as eelgrass (Vallisneria americana Michx.) (Fig. 11) – can severely restrict water flow and increase the likelihood of flooding. Although the goal of weed control efforts in flood control canals is often to eliminate as much vegetation in the water column and surface as possible, canal banks should remain vegetated (ideally with a well-rooted, non-invasive native species) to prevent erosion during periods of rapid flow.
\nEelgrass. Photo courtesy Lyn Gettys.
\n\n Recreational waters are typically managed to facilitate anthropogenic activities such as fishing, duck hunting, boating, and swimming. As a result, stakeholders – along with expectations and concerns – are many and varied. For example, most research has shown that sport fish populations in natural areas are greatest when submersed plants inhabit 30-40% or less of the water column [31, 32], but many sportfishers believe that dense weeds are necessary to provide good habitat for sportfish such as largemouth bass [33-35]. Also, some aquatic plants – including native species such as pondweed (Potamogeton spp.) and invasive weeds such as hydrilla – are eaten by ducks and waterfowl (Fig. 12). In fact, many duck hunters (and some waterfowl scientists) are less than supportive of aquatic vegetation control operations because they say these efforts deplete duck and waterfowl feeding habitat [36, 37]. These and other stakeholders often protest when weed control efforts are undertaken because they suspect reductions in weed coverage will negatively impact their hunting and fishing activities. Although some sportsmen recognize that it is rarely possible to maintain low coverage rates of aquatic weeds, many others fail to appreciate that the unchecked growth characteristic of submersed weeds necessitates weed control efforts that focus on eliminating as much vegetation as possible.
\nDucks consuming seeds and vegetation on a pond bank. Photo courtesy Lyn Gettys.
Other recreational activities – such as boating and the use of personal watercrafts such as jet skis – are also directly impacted by aquatic weeds. Access to boat ramps can be restricted by overabundant growth of macrophytes in and around the littoral zone, while dense submersed vegetation can wrap around the propellers of outboard motors and hinder or halt boat operation. In addition, dense submersed vegetation can make swimming and waterskiing difficult, dangerous, or nearly impossible, and can increase the risk of drowning if individuals become entangled in dense weeds.
\n\n\n Retention ponds are by definition designed to be ephemeral; their ultimate purpose is to retain storm water, capture runoff, filter nutrients, and lessen or prevent flooding. Nevertheless, many stakeholders consider retention ponds to be long-term “water features” that enhance the aesthetics of urban and suburban areas. Retention ponds may be used on a limited basis for recreational purposes (e.g., fishing and swimming), but these activities are often restricted by the resource owner to limit liability. Aquatic weed control efforts in retention ponds must take into account stakeholder expectations; for example, if the goal is to reduce or eliminate unsightly algae or submersed weeds while leaving a fringe of ornamental flowering plants in the littoral zone, care must be taken to choose a selective herbicide that will control the target species without causing unacceptable levels of damage to desirable vegetation. Weed control efforts in retention ponds may also be challenging for resource managers due to the high visibility of these sites. Many stakeholders become alarmed at the sight of herbicide applicators wearing “moon suits” (Fig. 13) – a common name for personal protective equipment specified on the herbicide label – and assume that the water is being poisoned. Therefore, it can be useful to ensure that applicators are able to communicate with the public and to assuage fears regarding the toxicity of herbicides labeled for use in aquatic systems.
\nHerbicide applicator wearing personal protective equipment. Photo courtesy Lyn Gettys.
\n\n “Development” waters are man-made lakes and ponds that are created with the primary goal of increased aesthetics. These artificial bodies of water provide residential developers with a source of fill dirt, after which they are able to market adjacent homesites as desirable waterfront property, which are often sold at a premium. They also increase the value of the entire development, which can now be advertised as including ponds and water features. Some development waters are maintained in a pristine, plant-free state and rely on fountains or other hardscape features to provide an attractive visage. Others are planted or aquascaped, either to simulate natural bodies of water or to mimic large-scale water gardens with showy ornamental plants (Fig. 14). Because development waters are rarely connected to public waters, weed problems in these systems are typically the result of introduction by humans, or less often, by waterfowl and wildlife that have visited the development waters after spending time in nearby weed-infested aquatic systems. Anthropogenic introduction of aquatic weeds is frequently intentional, as when property owners dump unwanted aquarium or water garden plants into the development waters. However, the introduction of aquatic weeds can occur inadvertently when invasive species are misidentified and sold as desirable native plants or when propagules of invasive species “hitchhike” as contaminants on the desirable plants that are used for aquascaping [38-40]. Because development waters are considered valuable components of the landscape, they are often intensively managed to ensure that their aesthetic qualities are optimized.
\nWaterlilies in a development pond. Photo courtesy Lyn Gettys.
Herbicides are used extensively to control weeds in crop production and agricultural systems. The terrestrial agrichemical industry in the US is robust; estimated sales in 2007 were $12.454 billion, with 40% of the market ($5.856 billion) attributable to herbicides [41]. In contrast, the market for aquatic weed control products is much smaller; for example, public agencies in Florida spent around $22.5 million in 2005 to manage aquatic invaders in public waters [42]. Any product that is marketed in the US to control pests – including weeds – must first be labeled by the US Environmental Protection Agency (USEPA or the Agency). Obtaining a pesticide label from the USEPA is a time-consuming and expensive undertaking; the Agency requires registrants (the manufacturer or group seeking a pesticide label) to submit data from more than 100 tests before a product can be evaluated for possible labeling, and the testing process typically requires the investment of tens of millions of dollars [43]. These tests are conducted to determine the effects of the experimental pesticide on the organism targeted for control, but also to assess its impact on non-target organisms, human health, and the environment as well. USEPA regulation of pesticides began with the adoption of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) in 1947; FIFRA has since been amended multiple times, most notably by the Federal Environmental Pesticide Control Act of 1972, and continues to serve as the primary process to ensure that human health and the environment are not negatively impacted by the use of pesticides [43].
\nBecause obtaining a pesticide label from the USEPA requires significant financial resources, registrants only request Agency evaluation of products that are likely to capture a market large enough to offset the costs associated with obtaining a pesticide label. As outlined above, aquatic herbicides constitute a small niche market, with limited potential to allow registrants to recoup the funds required for initial labeling of a pesticide. Therefore, most herbicides that are labeled by the USEPA for use in aquatic systems have already been approved by the Agency for terrestrial use. Small-scale testing – such as greenhouse studies evaluating the efficacy of a product on aquatic weeds – may be conducted on a limited basis under specific conditions (Fig. 15). If these preliminary experiments suggest that a herbicide shows promise as an aquatic weed control agent, the registrant may pursue an aquatic label for the product. Registrants seeking an aquatic label must submit additional data to the Agency, including how the product affects target and non-target aquatic flora and fauna, its persistence in aquatic sediments and water, and the nature and impacts of its decomposition components. These tests are conducted under Experimental Use Permits (EUPs) issued by the USEPA and by state regulatory agencies. For example, the testing of pesticides in Florida waters is conducted under EUPs issued by the USEPA and by the Florida Department of Agriculture and Consumer Services (FDACS). There are a number of restrictions on waters that are treated with experimental products; for example, treated waters may not be used for fishing, swimming, irrigation, drinking, or watering of livestock. Evaluation of an EUP herbicide typically continues for several years until the registrant has sufficient data to submit to the USEPA, along with a proposed aquatic label [43]. The aquatic label includes all of the information found on terrestrial labels, such as the personal protective equipment that is required to handle and apply the herbicide. In addition, aquatic herbicide labels include water use restrictions to prevent harm to human health and the environment. Some products have no limitations on the use of treated waters; however, others may specify that water from the system may be not be used for various purposes until either a certain period of time has elapsed or until the concentration of the herbicide falls below a specified set point.
\nEfficacy testing in the greenhouse. Photo courtesy William Haller.
It is important to note that all herbicides labeled for aquatic weed control by the USEPA in the US are “general use” pesticides that can be purchased and applied by anyone, including homeowners and unlicensed applicators. However, the USEPA allows states to apply additional restrictions to pesticides; in fact, a number of states classify aquatic herbicides as “restricted use” products that can only be purchased and applied by individuals that have received a state-issued license. Any and all individuals using a pesticide must comply with all of the requirements outlined on the pesticide label. The label is a legally binding document and misuse of a pesticide can result in serious consequences, up to and including the levy of fines and incarceration [43]. Although licensing is not required by federal law to purchase or apply aquatic herbicides, the vast majority of public agencies and private companies that employ applicators to manage aquatic systems specify that all personnel using these products obtain an aquatic pesticide applicator license from the state in which they are employed. This ensures that applicators have been trained and have shown competency in a number of important areas, including label interpretation, proper application techniques, equipment calibration, use of personal protective equipment, and proper disposal methods. Each state has its own requirements for obtaining and keeping a pesticide license. For example, all certified pesticide applicators in Florida must pass at least two written examinations – one that tests core competency and one that evaluates competence in a specific area or category [44]. A number of categories are offered to individuals seeking certification in Florida, and applicators may become licensed in as many categories as desired after the core competency examination has been successfully completed. Most licensees that are charged with applying pesticides in aquatic systems have multiple category certifications, the most common being aquatics, natural areas, and right-of-way. Florida pesticide applicator licenses are valid for four years from the date of issuance, and a license can be renewed in one of two ways. Applicators may submit proof that they have attended training sessions and earned a specified number of continuing education units (CEUs) in core and category areas during the four-year period since the license was issued or last renewed. Alternatively, applicators may re-take core competency and category examinations every four years [44].
\nHerbicide applications to the aquatic environment share some of the challenges associated with treatment of agricultural lands, including drift (the unintended aerial dispersal of herbicides from the treatment area) and damage to desirable non-target plants. However, aquatic herbicide applications are further complicated by a number of factors unique to aquatic systems. For example, herbicides used for weed control in crop production typically reach the target plant at the concentration in which they are applied. In contrast, products employed to control submersed aquatic weeds must travel through the water column to reach their target and thus undergo substantial dilution before coming into contact with the plant. In addition, flow and currents result in the movement of the herbicide out of the treated area, which reduces contact exposure time (the period in which the product maintains contact with the target weed) and further limits efficacy of the treatment [45]. Another factor that complicates herbicide application in aquatic systems is the stratification of waters (Fig. 16), especially within systems in temperate regions. Most bodies of water have three distinct zones or layers, with little mixing among the layers. The upper and lower portions of a body of water are referred to as the epilimnion and hypolimnion, respectively. Water in the epilimnion is directly exposed to ambient air temperatures and therefore tends to be very warm in the summer and cold or frozen during winter. In contrast, water in the hypolimnion maintains a more or less constant temperature all year. The epilimnion and hypolimnion are separated by the thermocline, a layer characterized by drastic temperature changes [45, 46]. The effect of stratification may have little effect on efforts to manage emergent or floating aquatic weeds. However, this phenomenon can have a substantial effect on treatment of submersed invaders, because herbicides applied to the epilimnion are unlikely to penetrate through the thermocline to reach target weeds growing in the hypolimnion.
\nStratified lake (summer, with warm epilimnion). Illustration courtesy UF/IFAS Center for Aquatic and Invasive Plants.
Another important consideration in the treatment of aquatic systems is the effect of weed control activities on fish that reside in waters targeted for herbicide application. Although the presence of fish does not affect herbicide efficacy, special precautions must be taken to ensure that these and other aquatic denizens are not harmed as a result of weed control efforts. Only a few herbicides labeled for use in bodies of water are inherently dangerous to fish, but fish kills are nonetheless a major concern for applicators working in aquatic systems. The primary reason fish kills occur after weed control activities are undertaken is a reduction in dissolved oxygen (DO), which results from a number of factors [47]. Primary among these factors is the decomposition of vegetative material that has been killed by herbicides and is broken down by aerobic organisms, which deplete DO during the process. Also, photosynthesis by plants that have been killed by herbicides is eliminated and the DO they previously contributed to the water column is no longer produced, further reducing levels of DO. In order to reduce the likelihood of fish kills, most labels for aquatic products specify that herbicides be applied to only a portion of a weed-infested body of water at a time to allow fish to escape from treated areas and to prevent the extreme drop in DO that accompanies the elimination of all vegetation from an aquatic system.
\nSome of the techniques for applying herbicides in aquatic systems are similar to those used for weed control in crop production. This is especially true when the target aquatic invaders are growing along ditchbanks or shorelines or in narrow canals that can be treated using a backpack sprayer or a truck, tractor or other wheeled vehicle. However, herbicide applications to open waters require specialized equipment and tools in order to effectively reach the aquatic weeds that are targeted for control, and the primary vehicle required for aquatic weed control is a boat. The size and disposition of the treatment boat varies and is dependent on the application method to be employed, which is often dictated by the target weed and the form of herbicide being utilized. Aquatic herbicides are typically sold in liquid and granular formulations, and some active ingredients are available in both forms [48]. Granular formulations are most often applied using a boat-mounted spreader (Fig. 17). Most liquid formulations are packaged as concentrates and are applied in dilute form. Dilution is frequently accomplished by adding the concentrate to a boat-mounted tank filled with water. A variety of equipment exists to apply herbicides that have been diluted in an onboard tank; these include handguns (for treating emergent and floating weeds), booms (for treatment of surface water), and trailing weighted hoses (for subsurface treatments) [45, 49]. Regardless of the formulation and application method employed, calibration of application equipment is critically important to ensure that the correct amount of herbicide is introduced to the system. Poorly calibrated equipment may result in the application of too little herbicide, which will likely yield poor weed control and reduced product efficacy. Using an excess amount of herbicide will increase costs associated with the treatment and may result in concentrations above those specified on the product label; as outlined above, this is a violation of federal law and may have serious legal consequences.
\nApplication of granular herbicide using a boat-mounted spreader. Photo courtesy UF/IFAS Center for Aquatic and Invasive Plants.
Fresh-water resources are extremely important components of global and local ecosystems. The introduction of exotic invasive species to these systems limits their ability to function as healthy, diverse habitats for native flora and fauna; in addition, anthropogenic uses such as flood control, public safety, and recreation are hindered as well. The most effective method to reduce the impact of aquatic invaders is to prevent their introduction to these valuable and important systems, but invasive species continue to become established in aquatic systems throughout the world. The primary method used to control introduced aquatic weeds in the US is the application of registered aquatic herbicides. Pesticides that are applied to waters in the US are labeled and registered by the USEPA after extensive testing, and most states – including Florida – require that the use of these products be regulated by state agencies as well. Aquatic herbicides represent a small subset of the pesticides labeled by the USEPA and registrants only pursue aquatic labeling of products if there is a market large enough to offset the costs associated with additional registration requirements. A number of unique challenges are associated with weed control in aquatic systems, including the effects of dilution, current, and stratification of water within systems. These challenges can be overcome through the selection of proper herbicides and application methods.
\nThis publication is a contribution of the University of Florida Institute for Food and Agricultural Sciences and the Florida Agricultural Experiment Station.
\nDengue fever is a mosquito-borne disease caused by any one of four closely related dengue viruses (DenV-1, DenV-2, DenV-3, and DenV-4). Dengue fever is transmitted by the bite of an Aedes mosquito infected with a dengue virus. The female mosquito becomes infected when it bites a person with dengue virus in their blood both indoors and outdoors during the daytime (from dawn to dusk). Aedes aegypti is particularly involved, as it prefers to lay its eggs in artificial water containers, to live in close proximity to humans, and to feed on people rather than other vertebrates.
\nDengue infection is the most rapidly spreading mosquito-borne viral disease in the world. Infections are most commonly acquired in the urban environment. In recent decades, the expansion of villages, towns, and cities in the areas in which it is common and the increased mobility of people have increased the number of epidemics and circulating viruses. Dengue fever, which was once confined to Southeast Asia, has now spread to Southern China, countries in the Pacific Ocean and America, and might pose a threat to Europe. In the last 50 years, dengue virus infections had expanded to many other countries with significant increasing cases [1] up to 2.5 billion people living in endemic countries where about 1.8 billion (more than 70%) in Southeast Asia and the Western Pacific Region [1, 2, 3, 4]. About 50 million dengue infections occur every year [2, 3], and approximately 500,000 patients are hospitalized of whom dominated by children [2, 3, 4, 5, 6, 7]. The increasing incidence and geographical spread of dengue virus were more likely driven by demographic and societal changes such as population growth, urbanization, and modern transportation [8]. The traveler movement also contributed to the risk of contracting dengue disease from nonendemic countries to endemic dengue areas to nonendemic regions where competent mosquito vectors are currently found [9, 10, 11, 12].
\nIndonesia, with 257.5 million inhabitants and 17,500 islands spread across the equator, poses as the largest archipelago country in the world [13], comprising 3.1 million km2 of ocean (62% of the total area) with a coastline of 81,000 km and approximately 2 million km2 of land (38% of the total area). Its tropical climate and subsequent relative high humidity makes Indonesia favorable conditions for vector-borne disease transmission. The increasing trend of dengue infections over the current decades putting Indonesia as one of endemic area for dengue fever and tread both the people as well as travelers visiting the archipelago [14]. Its burden is a result of a constant ground of established infections in the past period, combined with epidemics of emerging infectious diseases (EID) [15]. This chapter describes the dengue fever status or situation in Indonesia, its vulnerability among population, the future challenges, and the disease prevention and control.
\nIndonesia is reported as the second largest with dengue fever cases among 30 endemic countries. The number of cases of dengue fever is most prevalent in the provinces of East Java, West Java, and Central Java. However, there are a number of provinces that are vulnerable with its high incidence rate of dengue fever. In 1968, the first 58 dengue cases were reported in Indonesia from the city of Jakarta (DKI Jakarta) and Surabaya (East Java) [16, 17, 18, 19]. Since then, the sharp increasing numbers of cases and spreading to many other geographical locations have been reported [16, 17, 20, 21, 22, 23, 24, 25]. The epidemiology of dengue fever in Indonesia has been described mostly in the form of case series, reporting on single outbreaks, or clinical and virological studies in confined geographical locations and selected years [26].
\nA study in 2014 reported that the annual dengue fever incidence increased from 0.05/100,000 in 1968 to ~35–40/100,000 in 2013. The highest epidemic occurred in 2010 with the incidence of 85.7/100,000 population. The data revealed declining of case fatality rate (CFR) from 41% in 1968 to 0.73% in 2013. Dengue cases increased among ages during the observation period up to 1998 with the highest incidence of aged 5–14 years. From 1999 onward, the trend of dengue incidence increased among those aged 15 years or over. This study indicates incidence of dengue fever increased rapidly over the past 45 years in Indonesia with peak incidence shifting from young children to older age groups [27].
\nThe threat of dengue fever among children was emphasized clearly on a recently published study among 3194 children aged 1 through 18 years who lived in 30 different urban neighborhoods. Children blood samples were drawn for antibodies to dengue, an indication that someone has been infected with the virus in the past, and found that 69.4% of all children tested positive for dengue antibodies. Among the age groups, positive antibodies found 33.8% at the group of 1–4 year olds, 65.4% at the group of 5–9 year olds, 83.1% at the group of 10–14 year olds, and 89% at the group of 15–18 year olds. The first time to become infected with dengue was at the age of 4.8 years as the median, and in addition, 13.1% of children on average get their first dengue infection each year. It was also found that the more people in a household who had been diagnosed with dengue since a child’s birth, the more likely the child were to test positive for dengue antibodies [28].
\nThe incidence rate (IR) for every 100,000 population in seven provinces were found over 100 or are prone to dengue cases. The seven provinces are Bali (484), East Kalimantan (306), DKI Jakarta (198.7), DI Yogyakarta (167.9), North Kalimantan (158.3), Southeast Sulawesi (123.3), and South Kalimantan (101.1). The lowest IR is achieved by Papua province (11.8) and West Kalimantan (12.1) (Figure 1). The whole of Indonesia is high (IR is 78.0). In general, the increasing number of dengue fever cases is more likely followed by the spread of the cities and districts infected in all of 34 provinces in Indonesia (Figure 2). From the total of 497 cities and districts in Indonesia, about 80% have reported the dengue fever cases in 2017.
\nIncidence rate (IR) of dengue fever per 100,000 population by province in Indonesia 2016 (source: DG of CDC MOH 2017).
Incidence rate (IR) of dengue disease per 100,000 population and number of cities/districts infected in Indonesia 1968–2016.
In the context of dengue fever mortality, as many as 1229 people died in 2015 from the disease caused by this dengue virus. Throughout the history of dengue fever in Indonesia, the highest death rate occurred when first time the disease was discovered in 1968 in Surabaya. Of the 58 people infected, 24 lives were lost. In 2016, the highest percentage of CFR was obtained in Maluku Province (6.0%), Gorontalo (6.1%), and West Papua (4.6%). Provinces with the lowest CFR were achieved by Papua (0%), DKI Jakarta (0.1%), and NTT (0.2%). In some provinces, dengue disease was an outbreak in 1998 and 2004 that caused 79,480 people and 800 more deaths. In subsequent years, there has been reported a decrease in the case of death but note that the number of cases continues to increase. In 2008, there were 137,469 cases and 1187 deaths. In 2009, there were 154,855 cases and 1384 deaths [29].
\nStudies on Indonesian vulnerability to climate change were mostly focused on mitigation aspects, such as water scarcity, reduction emission from deforestation and degradation (REDD), the forest conservations, disasters, land drought, floods, and others. Meanwhile, the vulnerability study on adaptation is still rare, especially to human health. In 2013, Research Center for Climate Change—University of Indonesia (RCCC-UI) initiated a study on vulnerability of dengue disease to climate change/variability in collaboration with the Directorate of Environmental Health of the Ministry of Health and supported by Indonesia Climate Change Trust Fund (ICCTF). The study involved 20 districts/cities in 5 provinces namely West Sumatra, Jakarta, East Java, Bali, and Central Kalimantan which were selected based on the availability of monitoring station of the Indonesian Agency for Meteorology, Climatology, and Geophysics (BMKG). The dengue disease vulnerability components were generated based on bionomic mosquito and habitat, pathology dengue disease, and factors related to dengue disease occurrence. The exposure variables include land use (settlement, offices, business, schools, etc.) and population density. The sensitivity variables include breeding places and resting areas of Aedes mosquitoes, pupa and adult density, incidence of dengue fever, and population mobility. The adaptive capacity variables include availability of health services (number of hospitals, clinics, and public health centers), treatment management and skilled providers, implementation of dengue fever intervention program, community participation and involvement on dengue fever prevention program, and personal protection behavior. The Intergovernmental Panel Convention for Climate Change (IPCC) vulnerability analysis was implemented to gain the coping range index of DF for each city/district [31]. The coping range index (CRI) = 1 (blue) indicates the people vulnerability of having dengue fever is very low and located at quadrant between low exposure and sensitivity index and high adaptive capacity index; CRI = 2 (green) indicates the people vulnerability of having dengue fever is low and located at quadrant between high exposure and sensitivity index and high adaptive capacity index; CRI = 3 (yellow) indicates the people vulnerability of having dengue fever is medium and located at quadrant between medium exposure and sensitivity index and medium adaptive capacity index; CRI = 4 (brown) indicates the people vulnerability of having dengue fever is high and located at quadrant between low exposure and sensitivity index and low adaptive capacity index; and CRI = 5 (red) indicates the people vulnerability of having DF is very high and located at quadrant between high exposure and sensitivity index and low adaptive capacity index (Figure 3) [30].
\nThe coping range index (CRI) of dengue disease vulnerability.
A study of Research Center for Climate Change—Universitas Indonesia 2013–2014 reported that in almost all districts/municipalities under study (in 17 out of 20 regencies/cities) indicated a very serious vulnerability condition of very high coping range index (CRI) (red = 5) since 2005. Very high CRI was found in 75% of regencies/cities in West Sumatra province (City of Padang in 2005, 2007, 2008, 2009, and 2012; Padang Pariaman Regency in 2008, 2011, and 2012; and City of Padang Panjang in 2007 and 2008), all of regencies/cities in Bali province (City of Denpasar in 2006, 2009, and 2010; Jembrana Regency in 2007; City of Badung in 2007, 2009, and 2010), 80% of regencies/cities in East Java province (City of Surabaya in 2007, 2008, 2009, 2011, and 2012; Malang Regency in 2007, 2008, 2009, 2011, and 2012; City of Pasuruan in 2007, 2008, 2009, 2010, and 2011; Sumenep Regency in 2007, 2008, 2009, 2011, and 2012), all of cities in Jakarta province (City of Central Jakarta in 2005, 2006, 2007, 2008, 2009, and 2012; City of North Jakarta in the year 2006–2012), half of cities in Banten province (City of Tangerang in 2007–2012), all of regencies/cities in Central Kalimantan province (City of Palangkaraya in 2006, 2008, and 2012; Kotawaringin Barat Regency in 2005–2008 and in 2012; Kotawaringin Timur Regency in 2008, 2010, and 2011; Barito Utara Regency in 2008). High CRI (brown = 4) was also happened more often before and following the years of the very high CRIs occurrences in the regencies/cities [30]. Thus, this concluded that dengue fever is in the level of seriously vulnerable to people living in the regencies/cities under study in Indonesia. Figures 4 and 5 show the dengue fever vulnerability among cities/districts in 2012 in the provinces of Jakarta/Banten, Bali, Central Kalimantan, and East Java.
\nMap of CRI of dengue fever vulnerability in Jakarta/Banten and West Sumatra in 2012.
Map of CRI of dengue fever vulnerability in Bali, Central Kalimantan, and East Java in 2012.
Dengue emerged as a public health burden and has become increasingly important, with progressively longer and more cyclical epidemics of dengue including cases of dengue with alarm signs and severe dengue. In Indonesia, although some programs and control efforts have been performed, both the incidence and case fatality rate are still high and not showing significant changes. There are still some challenges that need to be handled, such as surveillance system, availability adequate laboratory, community knowledge, awareness, and involvement against dengue, many new cases reported from new city or district, high mobility of dengue fever’s carrier, density of community in the city/district central, access to health centers, and the availability of drugs and vaccines.
\nSurveillance for this vector-borne viral disease remains largely passive and based on the hospital report which is the estimation of real cases still underreported. It was also reported that many health centers and clinics were without adequate laboratory support. This will lead increasing of referral activities to hospitals with the consequences of time spent and transportation challenges in rural areas. Some studies found about one-third adult population with sufficient knowledge about dengue fever and its fast spreading to other people. However, only about 17% of them aware and clearly know the way for prevention [31, 32]. In addition, the high number of dengue fever incidence can also be caused by increasing Aedes aegypti mosquito breeding places, mosquito habitat, more effective mode of transmission, more frequent dengue fever course, shorten dengue fever symptoms, access for dengue fever treatment. Home conditions such as governance and the layout of goods at home can also affect the high number of dengue fever incidence.
\nIndonesia is a country with a vast region, varied geographic and biodiversity, populated density, and characteristics of various populations. In the last decade, several new administration districts developed with the newly reporting and recording management systems. This will lead underreporting of dengue fever both from the passive surveillance and the number of real cases estimation. The increasing number of people and the area of dengue fever spread in Indonesia is due to the high population mobility, the development of urban areas, climate change, increasing population density, and changes in population distribution. Climate change causes changes in rainfall, temperature, humidity, and air direction thus affecting the breeding of Aedes aegypti mosquitoes.
\nThe last and most important thing of the challenges is community participation. The participation of the community to participate consistently to keep the environment from dengue is still difficult. Various breakthroughs by government such as 3 M plus (draining, covering, burying or utilizing/recycling and all forms of prevention, such as to apply powder of larvae-killers in water tanks, to use mosquito repellents, to keep fish predators to consume mosquito larvae, etc.) movement, Jumantik (volunteer or student who periodically monitor Aedes larvae on water storages at home) and so have long been circulated. But people who forget and bored easily become a problem. For example, after some time, there was no extraordinary incident, the community considered it safe and careless, consequently when the case exploded, people just reacted [33].
\nAmong other challenges, passive surveillance systems tend to underestimate the burden of communicable diseases such as dengue. By utilizing the data from the Indonesian surveillance system and associated health system parameters, a study to estimate the proportion of dengue was conducted by Delphi panel in 2017. The iterative estimation was generated by calculating the expansion factors (EF), the ratio of total and reported cases during the presentation of medical and epidemiological data and subsequent discussions. The data revealed that from all of symptomatic Indonesian dengue episodes, 57.8% enter healthcare facilities to seek treatment but only 39.3% of them are diagnosed as dengue. Furthermore, only 20.3% of them are subsequently reported in the surveillance system. Public sector found dominating occurrence of hospitalizations and followed by private sector for ambulatory episodes (∼55%). Therefore, estimations gave an overall EF of 5.00; hospitalized EF of 1.66; and ambulatory EF of 34.01 which, when combined with passive surveillance data, equates to an annual average (2006–2015) of 612,005 dengue cases, and 183,297 hospitalizations (Figure 6.). The findings are lower than those similar estimations published elsewhere, perhaps due to case definitions, local clinical perceptions, and treatment-seeking behavior [34].
\nEstimated annual number of dengue cases and hospitalizations in Indonesia following adjustment of surveillance reports with EFs, and their 95% confidence intervals (CIs), 2006–2015.
The goal of WHO Global Strategy is to reduce the burden of dengue. Its specific objectives are: (1) to reduce dengue mortality by at least 50% by 2020, (2) to reduce dengue morbidity by at least 25% by 2020, and (3) to estimate true burden of the disease by 2015 (the year 2010 is used as the baseline). The implementing strategy is expected to pave the way for reducing dengue morbidity and mortality nationwide through strengthening local and national capabilities, as well as regional coordination. National Dengue Control Program in Indonesia is currently implementing WHO Global Strategy 2012–2020 that promotes coordination and collaboration among multisectoral partners, an integrated vector management approach and sustained control measures at all levels. Dengue is an ecological disease, therefore coordination and collaboration by all sectors within the government, communities, civil societies, private sectors, and media need to be strengthened. All sectors should harmonize the prevention, surveillance (entomological and epidemiological), and case management with the existing health systems, in order to make the program sustainable, cost-effective, and ecologically sound.
\nIt has long been believed that preventing and reducing dengue virus transmission was very depended upon vectors control (Aedes sp.) or interrupt the human-vector contact. Activities to control transmission should target Ae. aegypti (the main vector) in the habitats of its adult stages as well as the immature. The high death toll from dengue fever demands people to stay alert to possible outbreaks of this disease in their neighborhoods [35]. Therefore, it is important for the community to collectively jointly create a healthy environment free of larvae to suppress the incidence of dengue disease. The prevention and control programs need to be undertaken with specific commitments from stakeholders from the top to the bottom levels. Currently, the Ministry of Health has launched a program of Nest Mosquito Eradication Program (PSN) through 3 M plus way.
\nGiven the wide area in the tropical temperature, high population density in urban area, and various geographic and biodiversity, putting Indonesia as a natural potential for the habitat of dengue viruses. The number of dengue fever cases reported dramatically increases since it was firstly found in 1968 and spread out almost in 80% cities and districts in Indonesia in 2016. Many of those cities and districts were very vulnerable and putting million people at risk to the disease in 2012. Some challenges are still heading in the front of the prevention and control implementation actions. However, keeping spirit for struggling to combat dengue fever in Indonesia along with full commitment and involvement of community are urgently needed as well as to revitalize dengue disease eradication programs at every stage with close monitoring implementation.
\nIn addition, technical guidance and increased skills of health officers are indispensable. Socialization of a hands-on program activities in particular and increased capacity and active participation of community on the action could be a joint action in preventing the increase in dengue disease associated to climate change.
\nThe author declares no competing financial interests.
IntechOpen Compacts provide a mid-length publishing format which bridges the gap between journal articles, book chapters and monographs, and cover content across all scientific disciplines. Compacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues or broader topics on the research subject.
",metaTitle:"IntechOpen Compacts",metaDescription:"IntechOpen Compacts present a mid-length publishing format which bridges the gap between journal articles, book chapters, and monographs and covers content across all scientific disciplines.",metaKeywords:null,canonicalURL:"/page/compacts",contentRaw:'[{"type":"htmlEditorComponent","content":"Without sacrificing the quality of carefully edited and produced peer-reviewed content, Compacts are published as part of IntechOpen’s book collection but on a faster schedule, typically 4-6 weeks after acceptance. With an average of 132,000 visitors per week, publishing in Compacts not only guarantees high visibility but also facilitates international content sharing. As a fully Open Access publisher, the utilization of a CC BY NC 4.0 license means that other researchers will never have to pay permission fees and can adapt, use, and further build upon the material published in Compacts, eliminating any barriers to the further development of scientific research.
\\n\\nCOMPACTS-SHORT FORM MONOGRAPH
\\n\\nCOST
\\n\\n4,000 GBP Compacts Monograph - Short Form
\\n\\nThe final price will depend on the volume of the publication and includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applicable in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nOptional Services
\\n\\nIntechOpen has collaborated with Enago, through its sister company, Ulatus – one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work seamlessly to readers from across the globe in their own language. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. With a high degree of linguistic and subject expertise, Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book to deliver a superior quality of translation.
\\n\\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation work. For more information or a quote, please visit: https://www.enago.com/intech.
\\n\\nFUNDING
\\n\\nWe feel that financial barriers should never prevent researchers from publishing their research. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\\n\\nBENEFITS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nSee a complete overview and description of the steps involved in the publishing process here.
\\n\\nSEND YOUR PROPOSAL
\\n\\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\\n\\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Without sacrificing the quality of carefully edited and produced peer-reviewed content, Compacts are published as part of IntechOpen’s book collection but on a faster schedule, typically 4-6 weeks after acceptance. With an average of 132,000 visitors per week, publishing in Compacts not only guarantees high visibility but also facilitates international content sharing. As a fully Open Access publisher, the utilization of a CC BY NC 4.0 license means that other researchers will never have to pay permission fees and can adapt, use, and further build upon the material published in Compacts, eliminating any barriers to the further development of scientific research.
\n\nCOMPACTS-SHORT FORM MONOGRAPH
\n\nCOST
\n\n4,000 GBP Compacts Monograph - Short Form
\n\nThe final price will depend on the volume of the publication and includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applicable in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nOptional Services
\n\nIntechOpen has collaborated with Enago, through its sister company, Ulatus – one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work seamlessly to readers from across the globe in their own language. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. With a high degree of linguistic and subject expertise, Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book to deliver a superior quality of translation.
\n\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation work. For more information or a quote, please visit: https://www.enago.com/intech.
\n\nFUNDING
\n\nWe feel that financial barriers should never prevent researchers from publishing their research. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\n\nBENEFITS
\n\nPUBLISHING PROCESS STEPS
\n\nSee a complete overview and description of the steps involved in the publishing process here.
\n\nSEND YOUR PROPOSAL
\n\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\n\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5774},{group:"region",caption:"Middle and South America",value:2,count:5239},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15810}],offset:12,limit:12,total:118377},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:19},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:21},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:6},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:25},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5249},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"103",title:"Geography",slug:"geography",parent:{title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"},numberOfBooks:10,numberOfAuthorsAndEditors:293,numberOfWosCitations:96,numberOfCrossrefCitations:75,numberOfDimensionsCitations:165,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"geography",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9381",title:"Geographic Information Systems in Geospatial Intelligence",subtitle:null,isOpenForSubmission:!1,hash:"069b444029eceaad8ff557eca7bd713e",slug:"geographic-information-systems-in-geospatial-intelligence",bookSignature:"Rustam B. Rustamov",coverURL:"https://cdn.intechopen.com/books/images_new/9381.jpg",editedByType:"Edited by",editors:[{id:"59174",title:"Dr.",name:"Rustam B.",middleName:null,surname:"Rustamov",slug:"rustam-b.-rustamov",fullName:"Rustam B. Rustamov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9846",title:"Spatial Variability in Environmental Science",subtitle:"Patterns, Processes, and Analyses",isOpenForSubmission:!1,hash:"cfa4fa7b982bbff46ffbe6fbdbffbdf1",slug:"spatial-variability-in-environmental-science-patterns-processes-and-analyses",bookSignature:"John P. Tiefenbacher and Davod Poreh",coverURL:"https://cdn.intechopen.com/books/images_new/9846.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",middleName:null,surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9246",title:"Satellites Missions and Technologies for Geosciences",subtitle:null,isOpenForSubmission:!1,hash:"f23d04613b089dae40f81342c3e7c7f4",slug:"satellites-missions-and-technologies-for-geosciences",bookSignature:"Vladislav Demyanov and Jonathan Becedas",coverURL:"https://cdn.intechopen.com/books/images_new/9246.jpg",editedByType:"Edited by",editors:[{id:"154597",title:"Prof.",name:"Vladislav",middleName:null,surname:"Demyanov",slug:"vladislav-demyanov",fullName:"Vladislav Demyanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7304",title:"Geospatial Analyses of Earth Observation (EO) data",subtitle:null,isOpenForSubmission:!1,hash:"e90c7cda0e7f94a6620d6ec83db808ae",slug:"geospatial-analyses-of-earth-observation-eo-data",bookSignature:"Antonio Pepe and Qing Zhao",coverURL:"https://cdn.intechopen.com/books/images_new/7304.jpg",editedByType:"Edited by",editors:[{id:"99269",title:"Dr.",name:"Antonio",middleName:null,surname:"Pepe",slug:"antonio-pepe",fullName:"Antonio Pepe"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7362",title:"Geographic Information Systems and Science",subtitle:null,isOpenForSubmission:!1,hash:"b0ac3aa0063d6a10dd3fe90ff78cddd7",slug:"geographic-information-systems-and-science",bookSignature:"Jorge Rocha and Patrícia Abrantes",coverURL:"https://cdn.intechopen.com/books/images_new/7362.jpg",editedByType:"Edited by",editors:[{id:"145918",title:"Ph.D.",name:"Jorge",middleName:null,surname:"Rocha",slug:"jorge-rocha",fullName:"Jorge Rocha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7262",title:"Spatial Analysis, Modelling and Planning",subtitle:null,isOpenForSubmission:!1,hash:"ed7c7f4193e3951e715569ca454f7077",slug:"spatial-analysis-modelling-and-planning",bookSignature:"Jorge Rocha and José António Tenedório",coverURL:"https://cdn.intechopen.com/books/images_new/7262.jpg",editedByType:"Edited by",editors:[{id:"145918",title:"Ph.D.",name:"Jorge",middleName:null,surname:"Rocha",slug:"jorge-rocha",fullName:"Jorge Rocha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6396",title:"Urban Agglomeration",subtitle:null,isOpenForSubmission:!1,hash:"da1643c7ce5482ec846a188d34ce2839",slug:"urban-agglomeration",bookSignature:"Mustafa Ergen",coverURL:"https://cdn.intechopen.com/books/images_new/6396.jpg",editedByType:"Edited by",editors:[{id:"166961",title:"Dr.Ing.",name:"Mustafa",middleName:null,surname:"Ergen",slug:"mustafa-ergen",fullName:"Mustafa Ergen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5241",title:"Applications of Spatial Statistics",subtitle:null,isOpenForSubmission:!1,hash:"acc5941907640ecc7a3e350c5fe3df19",slug:"applications-of-spatial-statistics",bookSignature:"Ming-Chih Hung",coverURL:"https://cdn.intechopen.com/books/images_new/5241.jpg",editedByType:"Edited by",editors:[{id:"184413",title:"Dr.",name:"Ming",middleName:"Chih",surname:"Hung",slug:"ming-hung",fullName:"Ming Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3727",title:"Land Applications of Radar Remote Sensing",subtitle:null,isOpenForSubmission:!1,hash:"26e11b6e4cce4e245e6e28b281563139",slug:"land-applications-of-radar-remote-sensing",bookSignature:"Francesco Holecz, Paolo Pasquali, Nada Milisavljevic and Damien Closson",coverURL:"https://cdn.intechopen.com/books/images_new/3727.jpg",editedByType:"Edited by",editors:[{id:"13897",title:"Dr.",name:"Damien",middleName:null,surname:"Closson",slug:"damien-closson",fullName:"Damien Closson"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2325",title:"Cartography",subtitle:"A Tool for Spatial Analysis",isOpenForSubmission:!1,hash:"3dca82349b9c5a9106966b58dfb803b3",slug:"cartography-a-tool-for-spatial-analysis",bookSignature:"Carlos Bateira",coverURL:"https://cdn.intechopen.com/books/images_new/2325.jpg",editedByType:"Edited by",editors:[{id:"131405",title:"Dr.",name:"Carlos",middleName:null,surname:"Bateira",slug:"carlos-bateira",fullName:"Carlos Bateira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:10,mostCitedChapters:[{id:"57824",doi:"10.5772/intechopen.72047",title:"Waste in the City: Challenges and Opportunities for Urban Agglomerations",slug:"waste-in-the-city-challenges-and-opportunities-for-urban-agglomerations",totalDownloads:1901,totalCrossrefCites:5,totalDimensionsCites:15,book:{slug:"urban-agglomeration",title:"Urban Agglomeration",fullTitle:"Urban Agglomeration"},signatures:"Jutta Gutberlet",authors:[{id:"188532",title:"Prof.",name:"Jutta",middleName:null,surname:"Gutberlet",slug:"jutta-gutberlet",fullName:"Jutta Gutberlet"}]},{id:"58196",doi:"10.5772/intechopen.72191",title:"The Multivariated Effect of City Cooperation in Land Use Planning and Decision-Making Processes: A European Analysis",slug:"the-multivariated-effect-of-city-cooperation-in-land-use-planning-and-decision-making-processes-a-eu",totalDownloads:547,totalCrossrefCites:2,totalDimensionsCites:11,book:{slug:"urban-agglomeration",title:"Urban Agglomeration",fullTitle:"Urban Agglomeration"},signatures:"Luís Carlos Loures, Rui Alexandre Castanho, José Manuel Naranjo\nGómez, Ana Vulevic, José Cabezas and Luis Fernández-Pozo",authors:[{id:"108118",title:"Dr.",name:"Luis",middleName:null,surname:"Loures",slug:"luis-loures",fullName:"Luis Loures"},{id:"215340",title:"Dr.",name:"Ana",middleName:null,surname:"Vulevic",slug:"ana-vulevic",fullName:"Ana Vulevic"},{id:"215341",title:"Prof.",name:"José",middleName:null,surname:"Cabezas Fernández",slug:"jose-cabezas-fernandez",fullName:"José Cabezas Fernández"},{id:"215342",title:"Prof.",name:"José Manuel",middleName:null,surname:"Naranjo Gómez",slug:"jose-manuel-naranjo-gomez",fullName:"José Manuel Naranjo Gómez"},{id:"222742",title:"Dr.",name:"Luis",middleName:null,surname:"Fernández-Pozo",slug:"luis-fernandez-pozo",fullName:"Luis Fernández-Pozo"},{id:"290571",title:"Dr.",name:"Rui Alexandre",middleName:null,surname:"Castanho",slug:"rui-alexandre-castanho",fullName:"Rui Alexandre Castanho"}]},{id:"46448",doi:"10.5772/58225",title:"Mapping of Ground Deformations with Interferometric Stacking Techniques",slug:"mapping-of-ground-deformations-with-interferometric-stacking-techniques",totalDownloads:3187,totalCrossrefCites:6,totalDimensionsCites:11,book:{slug:"land-applications-of-radar-remote-sensing",title:"Land Applications of Radar Remote Sensing",fullTitle:"Land Applications of Radar Remote Sensing"},signatures:"Paolo Pasquali, Alessio Cantone, Paolo Riccardi, Marco Defilippi,\nFumitaka Ogushi, Stefano Gagliano and Masayuki Tamura",authors:[{id:"168247",title:"Dr.",name:"Paolo",middleName:null,surname:"Pasquali",slug:"paolo-pasquali",fullName:"Paolo Pasquali"},{id:"168811",title:"Mr.",name:"Paolo",middleName:null,surname:"Riccardi",slug:"paolo-riccardi",fullName:"Paolo Riccardi"},{id:"168812",title:"Mr.",name:"Alessio",middleName:null,surname:"Cantone",slug:"alessio-cantone",fullName:"Alessio Cantone"},{id:"168813",title:"Mr.",name:"Marco",middleName:null,surname:"Defilippi",slug:"marco-defilippi",fullName:"Marco Defilippi"},{id:"168814",title:"Mr.",name:"Fumitaka",middleName:null,surname:"Ogushi",slug:"fumitaka-ogushi",fullName:"Fumitaka Ogushi"},{id:"168815",title:"Mr.",name:"Stefano",middleName:null,surname:"Gagliano",slug:"stefano-gagliano",fullName:"Stefano Gagliano"},{id:"170671",title:"Prof.",name:"Masayuki",middleName:null,surname:"Tamura",slug:"masayuki-tamura",fullName:"Masayuki Tamura"}]}],mostDownloadedChaptersLast30Days:[{id:"57824",title:"Waste in the City: Challenges and Opportunities for Urban Agglomerations",slug:"waste-in-the-city-challenges-and-opportunities-for-urban-agglomerations",totalDownloads:1897,totalCrossrefCites:5,totalDimensionsCites:15,book:{slug:"urban-agglomeration",title:"Urban Agglomeration",fullTitle:"Urban Agglomeration"},signatures:"Jutta Gutberlet",authors:[{id:"188532",title:"Prof.",name:"Jutta",middleName:null,surname:"Gutberlet",slug:"jutta-gutberlet",fullName:"Jutta Gutberlet"}]},{id:"70189",title:"GNSS High-Rate Data and the Efficiency of Ionospheric Scintillation Indices",slug:"gnss-high-rate-data-and-the-efficiency-of-ionospheric-scintillation-indices",totalDownloads:295,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"satellites-missions-and-technologies-for-geosciences",title:"Satellites Missions and Technologies for Geosciences",fullTitle:"Satellites Missions and Technologies for Geosciences"},signatures:"Vladislav V. Demyanov, Maria A. Sergeeva and Anna S. Yasyukevich",authors:[{id:"154597",title:"Prof.",name:"Vladislav",middleName:null,surname:"Demyanov",slug:"vladislav-demyanov",fullName:"Vladislav Demyanov"},{id:"299487",title:"Dr.",name:"Maria",middleName:null,surname:"Sergeeva",slug:"maria-sergeeva",fullName:"Maria Sergeeva"},{id:"307343",title:"Dr.",name:"Anna",middleName:null,surname:"Yasyukevich",slug:"anna-yasyukevich",fullName:"Anna Yasyukevich"}]},{id:"73592",title:"A Review of the Machine Learning in GIS for Megacities Application",slug:"a-review-of-the-machine-learning-in-gis-for-megacities-application",totalDownloads:253,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"geographic-information-systems-in-geospatial-intelligence",title:"Geographic Information Systems in Geospatial Intelligence",fullTitle:"Geographic Information Systems in Geospatial Intelligence"},signatures:"Nasim Tohidi and Rustam B. Rustamov",authors:[{id:"59174",title:"Dr.",name:"Rustam B.",middleName:null,surname:"Rustamov",slug:"rustam-b.-rustamov",fullName:"Rustam B. Rustamov"},{id:"317547",title:"Dr.",name:"Nasim",middleName:null,surname:"Tohidi",slug:"nasim-tohidi",fullName:"Nasim Tohidi"}]},{id:"52704",title:"Comparison of Spatial Interpolation Techniques Using Visualization and Quantitative Assessment",slug:"comparison-of-spatial-interpolation-techniques-using-visualization-and-quantitative-assessment",totalDownloads:2497,totalCrossrefCites:4,totalDimensionsCites:8,book:{slug:"applications-of-spatial-statistics",title:"Applications of Spatial Statistics",fullTitle:"Applications of Spatial Statistics"},signatures:"Yi-Hwa (Eva) Wu and Ming-Chih Hung",authors:[{id:"181853",title:"Dr.",name:"Yi-Hwa",middleName:null,surname:"Wu",slug:"yi-hwa-wu",fullName:"Yi-Hwa Wu"}]},{id:"69962",title:"Nanosatellites and Applications to Commercial and Scientific Missions",slug:"nanosatellites-and-applications-to-commercial-and-scientific-missions",totalDownloads:748,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"satellites-missions-and-technologies-for-geosciences",title:"Satellites Missions and Technologies for Geosciences",fullTitle:"Satellites Missions and Technologies for Geosciences"},signatures:"Adriano Camps",authors:[{id:"299991",title:"Prof.",name:"Adriano",middleName:null,surname:"Camps",slug:"adriano-camps",fullName:"Adriano Camps"}]},{id:"59382",title:"Land and Infrastructure Development in Peri-Urban Areas: Case Study of Gomti Nagar, Lucknow, India",slug:"land-and-infrastructure-development-in-peri-urban-areas-case-study-of-gomti-nagar-lucknow-india",totalDownloads:1269,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"urban-agglomeration",title:"Urban Agglomeration",fullTitle:"Urban Agglomeration"},signatures:"Kana Ram Godha",authors:[{id:"214103",title:"Mr.",name:"Kana Ram",middleName:null,surname:"Godha",slug:"kana-ram-godha",fullName:"Kana Ram Godha"}]},{id:"67619",title:"Application of Topographic Analyses for Mapping Spatial Patterns of Soil Properties",slug:"application-of-topographic-analyses-for-mapping-spatial-patterns-of-soil-properties",totalDownloads:715,totalCrossrefCites:4,totalDimensionsCites:4,book:{slug:"geospatial-analyses-of-earth-observation-eo-data",title:"Geospatial Analyses of Earth Observation (EO) data",fullTitle:"Geospatial Analyses of Earth Observation (EO) data"},signatures:"Xia Li and Gregory W. McCarty",authors:[{id:"55106",title:"Dr.",name:"Gregory",middleName:null,surname:"McCarty",slug:"gregory-mccarty",fullName:"Gregory McCarty"},{id:"286359",title:"Dr.",name:"Xia",middleName:null,surname:"Li",slug:"xia-li",fullName:"Xia Li"}]},{id:"38308",title:"Open Source Tools, Landscape and Cartography: Studies on the Cultural Heritage at a Territorial Scale",slug:"open-source-tools-landscape-and-cartography-studies-on-the-cultural-heritage-at-a-territorial-scale",totalDownloads:2199,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"cartography-a-tool-for-spatial-analysis",title:"Cartography",fullTitle:"Cartography - A Tool for Spatial Analysis"},signatures:"Pilar Chias and Tomas Abad",authors:[{id:"140533",title:"Prof.",name:"Pilar",middleName:null,surname:"Chias",slug:"pilar-chias",fullName:"Pilar Chias"}]},{id:"63765",title:"Introductory Chapter: Spatial Analysis, Modelling, and Planning",slug:"introductory-chapter-spatial-analysis-modelling-and-planning",totalDownloads:2164,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"spatial-analysis-modelling-and-planning",title:"Spatial Analysis, Modelling and Planning",fullTitle:"Spatial Analysis, Modelling and Planning"},signatures:"José António Tenedório and Jorge Rocha",authors:[{id:"145918",title:"Ph.D.",name:"Jorge",middleName:null,surname:"Rocha",slug:"jorge-rocha",fullName:"Jorge Rocha"},{id:"242032",title:"Dr.",name:"José António",middleName:null,surname:"Tenedório",slug:"jose-antonio-tenedorio",fullName:"José António Tenedório"}]},{id:"70180",title:"The Impact of Space Radiation Environment on Satellites Operation in Near-Earth Space",slug:"the-impact-of-space-radiation-environment-on-satellites-operation-in-near-earth-space",totalDownloads:429,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"satellites-missions-and-technologies-for-geosciences",title:"Satellites Missions and Technologies for Geosciences",fullTitle:"Satellites Missions and Technologies for Geosciences"},signatures:"Victor U. J. Nwankwo, Nnamdi N. Jibiri and Michael T. Kio",authors:[{id:"94563",title:"Dr.",name:"Nnamdi",middleName:null,surname:"Jibiri",slug:"nnamdi-jibiri",fullName:"Nnamdi Jibiri"},{id:"300878",title:"Dr.",name:"Victor",middleName:null,surname:"Nwankwo",slug:"victor-nwankwo",fullName:"Victor Nwankwo"},{id:"310318",title:"Dr.",name:"Michael",middleName:null,surname:"Kio",slug:"michael-kio",fullName:"Michael Kio"}]}],onlineFirstChaptersFilter:{topicSlug:"geography",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/203247/miguel-angel-carrasco-aguilar",hash:"",query:{},params:{id:"203247",slug:"miguel-angel-carrasco-aguilar"},fullPath:"/profiles/203247/miguel-angel-carrasco-aguilar",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()