Experimental conditions.
\r\n\tNotably, the book encourages academic scholars and researchers to contribute to the modern concepts of CSR. Fundamentally, it speaks for well-developed literature for entrepreneurs and managers, thus assisting them in the decision-making process.
\r\n\tFurthermore, this book is of great value to policymakers, practitioners, and corporations, thus contributing to various disciplines (e.g., social science and management).
\r\n\tThese proposed themes encourage future researchers and professionals to share their ideas, concepts and work concerning these subject domains. All these suggested topics had recommended under the rubrics of CSR. Perhaps, all the professionals, researchers, and scholars are welcome to submit their piece of work, in particular to the suggested topics.
\r\n\tIndeed, the recommended topics include the following but are not limited to these only.
\r\n\t• Corporate Governance and Sustainability
\r\n\t• Green Innovation and CSR
\r\n\t• Social Entrepreneurship
\r\n\t• Green Economy and Social and Environmental Sustainability
\r\n\t• Sustainable Development and Industrialization
Particles suspended in the air can constitute a potential risk for human health and ecosystems (Pope and Dockery, 2006), specially the finest fraction. Although PM10 (particles with a maximum diameter of 10 μm) have been included in European directives for a longer time (Directive 1999/30/EC) air quality objectives for finer particles have been just very recently established. For particles with a mean diameter lower than 2.5 μm (PM2.5) the UE Directive 2008/50/EC has set a 25 μm/m3 threshold for the annual mean concentration.
\n\t\t\tAlthough the term aerosol includes the particles and the gas in which they are suspended, commonly both terms, particles and aerosols, refer to particles in the atmosphere. A variety of inorganic and organic chemical compounds can be present in the particulate phase. The organic fraction can account for a 20 - 90 % of the finest fraction, according to some authors, such as (Kanakidou et al., 2005) and, therefore, the knowledge of this fraction is important to prevent human health risks. Both inorganic and organic aerosols can be directly emitted (primary aerosols) or can be formed in the atmosphere as a consequence of multiple physical and chemical processes (secondary aerosols). The presence of secondary organic aerosols (SOA) is specially relevant in urban areas (Zhang et al., 2007).
\n\t\t\tSOA is mainly produced from the oxidation of volatile organic compounds (VOCs), whose products present a sufficiently low volatility to partition into the particle phase according to the gas-particle partitioning theory (Odum et al., 1996) and then nucleate and grow to form organic particles. Presently, SOA is thought to be mainly constituted by polymers, formed through particle phase heterogeneous reactions (Kalberer et al., 2004). Other main components include organic nitrates, such as peroxynitrates and peroxyacylnitrates (Camredon et al., 2007; Kroll and Seinfeld, 2008), and carboxylic acids (Barsanti and Pankow, 2006). In spite of the fact that SOA formation has been the focus of many recent studies, some aspects continue to be not well understood. Simulation chambers represent an ideal vehicle to evaluate SOA formation potential by emitting selected VOCs in the presence of an oxidant under controlled conditions. Many studies in chambers have contributed to increase the knowledge of the oxidation processes of individual organic gases or simple mixes of them. VOCs related to anthropogenic emissions, such as substituted aromatics (trimethylbenzenes, xylenes and toluene) and alkanes contained in gasolines, are potential SOA precursors in city areas, and they have been thoroughly studied in chamber experiments. Also VOCs related to biogenic emissions, such as isoprene and terpenes (limonene and pinenes) have been widely studied in chambers, as their contribution to global SOA formation is notorious (Claeys et al., 2004; Kleindienst et al., 2006; Leungsakul et al., 2005). OH-initiated is the most common oxidation pathway (Healy et al., 2008; Hu et al., 2007; Lim and Ziemann, 2005; Song et al., 2005; Weitkamp et al., 2007) and thus most of the studies in chambers have been focused on the reaction of the previously mentioned VOCs with this radical.
\n\t\t\tRecent publications suggest, however, that more complex VOCs mixtures should be used in chamber experiments in order to achieve a more realistic picture of the oxidative processes taking place in real polluted atmospheres (Hallquist et al., 2009). In this chapter SOA formation from a mixture of 1,3,5-TMB (1,3,5-trimethylbenzene), toluene, o-xylene and octane in the presence of an oxidant (nitrous acid, HONO) is evaluated at a 20% of relative humidity. For this purpose, a comprehensive gas phase chemistry and aerosol characterization is presented.
\n\t\tThe experiment was carried out in the EUPHORE facility located in CEAM (Valencia, Spain), a half-spherical Teflon outdoor chamber that allows the transmission of more than 80% of sunlight. Figure 1 illustrates de chamber when it is closed (left side of the picture), when it is being opened (central picture) and opened to sunlight (right side of the figure). The EUPHORE facility has been described in detail somewhere else (Becker, 1996; Volkamer et al., 2001).
\n\t\t\tEUPHORE Photoreactor: closed (left side of the figure), while opening (middle of the figure), and opened to sunlight (right side of the figure).
Several analytical equipments provided information of some physical variables (temperature, radiation, humidity, pressure) and chemical concentration of many inorganic and organic gas compounds. Multiple measurement techniques, such as Gas Chromatography coupled with Mass Spectrometer (GC-MS), Fourier Transform Infrared Spectrometry (FTIR), High Pressure Liquid Chromatography (HPLC), Gas Chromatography (GC-ECD and GC-FID/PID), Absorptive Sampling Solid Phase Microextraction (SPME) were used to monitor the gas concentration of reactants and products.
\n\t\t\tRegarding the particle phase, aerosol concentration was monitored in an on-line way with a TEOM (Tappered Element Oscillating Monitor) and a SMPS (Scanning Mobility Particle Sizer). This latter provides also information about the diameter particle distribution by classifying the aerosol particles by their electrical mobility. Also, three low volume samplings were taken during the experiment and one high volume once the chamber was closed, in order to analyze aerosol composition via gas chromatography and ion chromatography.
\n\t\t\tThe experiment described in this chapter was performed on June, 17th, 2008, as a part of the campaign performed by the authors in 2008 described in recent publications (Vivanco et al., 2010). Experimental conditions are summarized in Table 1. A mixture of volatile organic compounds and HONO was introduced into the chamber.
\n\t\t\t\n\t\t\t\t\t\t | Time | \n\t\t\t\t\t\t\n\t\t\t\t\t\t | Co n centration (ppb) | \n\t\t\t\t\t
Parents VOCs intro | \n\t\t\t\t\t\t7:11 | \n\t\t\t\t\t\t1,3,5-TMB | \n\t\t\t\t\t\t151 | \n\t\t\t\t\t
HONO introduction | \n\t\t\t\t\t\t8:01 | \n\t\t\t\t\t\tToluene | \n\t\t\t\t\t\t99 | \n\t\t\t\t\t
Water introduction | \n\t\t\t\t\t\t8:48 | \n\t\t\t\t\t\to-xylene | \n\t\t\t\t\t\t17 | \n\t\t\t\t\t
Opening | \n\t\t\t\t\t\t10:33 | \n\t\t\t\t\t\tOctane | \n\t\t\t\t\t\t80 | \n\t\t\t\t\t
Closure | \n\t\t\t\t\t\t15:23 | \n\t\t\t\t\t\tHONO | \n\t\t\t\t\t\t98 | \n\t\t\t\t\t
\n\t\t\t\t\t\t | \n\t\t\t\t\t\t | Relative Humidity | \n\t\t\t\t\t\t20 % | \n\t\t\t\t\t
Experimental conditions.
After the parent VOCs the oxidant was introduced. Also, humidity conditions were prepared by introducing pulverized water into the chamber. Then, the chamber was opened to the sunlight.
\n\t\tIn this section, a study about the atmospheric photochemical reactions is done, focusing on the oxidation pathways of the parent VOCs. These pathways consist in multiple oxidation steps which lead to the formation of multiple compounds. A very useful source of knowledge for atmospheric oxidation pathways is the Master Chemical Mechansim, developed by the University of Leeds (Jenkin et al., 2003; Saunders et al., 2002). The latest version of this mechanism, MCM v3.1 (Bloss et al., 2005), takes into account most of the kinetic and mechanistic data avaliable to date.
\n\t\t\tThe atmospheric oxidation of a certain compound is conditioned by its own structure and by the nature of the initial oxidant. Nitrous acid (HONO) was used as the oxidant compound and therefore, the major initial oxidant is the OH radical, formed by HONO photolysis. The reaction of the aromatic VOCs emitted in this experiment with the OH radical have been previously studied by several authors (Atkinson and Arey, 2003; Bloss et al., 2005; Hamilton et al., 2005; Huang et al., 2006; Johnson et al., 2004; Wagner et al., 2002). Two main reaction pathways can be identified in the oxidation of toluene, o-xylene or 1,3,5-TMB with OH: H-abstraction and OH-addition. The H-abstraction is considered as the minor route and leads to the formation of aromatic aldehydes. The OH-addition can occur in three differet ways: through the phenolic, the epoxy-oxy and the peroxy-bicyclic routes. The phenolic and epoxy-oxy routes lead to the formation of phenolic and epoxyde compounds respectively, while the peroxy-bicyclic route produces the opening of the aromatic rings and the formation of oxygenated products, which may lead to the formation of SOA if their volatility is low enough. This last route is considered as the major oxidation pathway according to the reactions included in the MCM v.3.1. A scheme of the oxidation pathways for toluene, o-xylene and 1,3,5-TMB is presented in figures 2a, 2b and 2c.
\n\t\t\tToluene oxidation pathways scheme (MCM v.3.1).
O-xylene oxidation pathways scheme (MCM v.3.1).
TMB oxidation pathways scheme (MCM v.3.1).
In the case of octane, as for the rest of alkanes, the main oxidation pathway is the H-abstraction (Jordan et al., 2008; Lim and Ziemann, 2005). Figure 3 shows the main products formed during the octane oxidation, based on the reactions included in the MCM v.3.1:
\n\t\t\tOctane oxidation pathway scheme (based on MCM v3.1).
Once the chamber is opened to the sunlight, the oxidation of the mixture of VOCs starts by reacting with the OH radical, formed from the photolysis of HONO:
\n\t\t\tOH radical is responsible for the initial oxidation of the VOCs by both OH-addition and H-abstraction. Although not presented in Figure 3 and 4, an intermediate acyl peroxy radical is formed (RO2), which may undergo several instantaneous reactions to form the resulting oxidation products.
\n\t\t\t\n\t\t\t\tFigure 4 illustrates a scheme of the overall processes expected to take place inside the chamber. Once the light enters the chamber new gas products and particles are formed due to oxidation processes occurring in both gas and particle phases.
\n\t\t\tIllustration of processes expected to take place during the experiment.
Time series showing HONO, toluene (TOL), o-xylene (OXYL), 1,3,5-TMB and octane (OCT) concentration.
Time series showing the concentration of the initial reactants (the mixture of VOCs and HONO) are shown in Figure 5. The inmediate and pronounced decay of HONO concentration is clearly observed when light enters the chamber (green line).
\n\t\t\tAlso, a very strong concentration decrease is observed for 1,3,5-TMB (blue line). This fact is related to the highest reactivity of this compound with the OH radical, compared to the other three organic gases. Table 2 includes the OH-reactivity constant for the four gases.
\n\t\t\tCOMPOUND | \n\t\t\t\t\t\tkOH (10 12 molecs/cm 3 .s) | \n\t\t\t\t\t
Toluene | \n\t\t\t\t\t\t5.74 | \n\t\t\t\t\t
o-xylene | \n\t\t\t\t\t\t13.6 | \n\t\t\t\t\t
Octane | \n\t\t\t\t\t\t8.61 | \n\t\t\t\t\t
1,3,5-TMB | \n\t\t\t\t\t\t56.7 | \n\t\t\t\t\t
OH-reactivity constants for each parent VOC at 25º C (as given by MCM 3.1).
Ozone is a major product from the oxidation proccesses. In a clean atmosphere, there is a photoequilibrium between NO, NO2 and O3 and therefore no net ozone is produced (Atkinson, 2000):
\n\t\t\tHowever, in the presence of VOCs, this equilibrium is broken due to reactions of NO with RO2 and HO2 radicals formed during the oxidation of VOCs:
\n\t\t\tconsuming NO but not ozone and, therefore, leading to a net production of ozone, a well known atmospheric pollutant. Figure 6 shows the increasing ozone concentration and the strong decrease of 1,3,5-TMB concentration produced when the chamber is opened. This sudden growth of ozone concentration is clearly related to the broken equilibrium described above.
\n\t\t\tTime series showing ozone and 1,3,5-TMB concentration.
Besides ozone, a great variety of products were also identified during the experiment. Figure 7 shows the temporal evolution of the major products concentration. The parent VOCs and HONO have been also included in the figure in order to give a complete picture of the formation and decay times during the whole experiment.
\n\t\t\tMajor products identified during the experiment (parent VOCs and HONO also included).
Peroxyacetyl nitrate (PAN) is one of main products formed inside the chamber. This nitrate is produced through the reaction of an acyl peroxy radical (RO2) with NO2:
\n\t\t\tand has a medium lifetime of 30 minutes, being thermal decomposition its major loss proccess at lower altitudes (Talukdar et al., 1995). PAN can partition to the particle phase and it has been previously identified as an important SOA constituent (Bonn et al., 2004; Johnson et al., 2004).
\n\t\t\tMethylglyoxal (2-oxopropanal) is a well known product from toluene, o-xylene and 1,3,5-TMB oxidation (Healy et al., 2008; Jang and Kamens, 2001; Volkamer et al., 2001). This dialdehyde can further react to form smaller compounds such as methanol, formadehyde, acetic acid and it can also produce PAN. In addition, methylglyoxal can partition into the particle phase. It has been reported that it can undergo accretion reactions (non-oxidative oligomer formation) to form hemiacetals due to the hydration of its aldehyde groups (Barsanti and Pankow, 2005; Loeffler et al., 2006). As a consequence of these proccesses, methylglyoxal presents an intermediate product concentration profile, with a clearly visible maximum peak.
\n\t\t\tSome other simple carbonyl products such as acetone, formaldehyde and acetaldehyde were also identified. In the case of formaldehyde, it can be produced from the oxidation of aromatic VOCs products (glyoxal, methylglyoxal, 2,3-butanedione or (5H)-2-furanone). Acetaldehyde can be mainly formed from the reaction of 3-octanone (an octane oxidation product) with OH radical. Acetone, however, is mainly formed from the ozonolysis of 3-methyl-4-oxo-2-pentenal, an o-xylene oxidation product. Ozonolysis reaction rates are very low (for a given compound, O3-reactivity constants are generally several orders of magnitude lower than OH-reactivity constants), so little quantities of acetone are produced in the experiment, as it can be seen in Figure 7.
\n\t\t\tFormic and acetic acids can be formed in the chamber from the aqueous phase oxidation of their respectives aldehydes (Chebbi and Carlier, 1996) and, in the case of acetaldehyde, also from the oxidation of aromatic VOCs oxidation products such as methylglyoxal, 2,3-butanedione and 3-methyl-4-oxo-2-pentenal. It has also been reported that formaldehyde reaction with hydroperoxyde radicals HO2 can be a significant source of formic acid in the gas phase (Khwaja, 1995). However, the most remarkable aspect about the formic acid is that, as it can be seen in Figure 7, it starts to be formed before the opening of the chamber. The formation of this acid coincides with the introduction of water in the chamber, suggesting that there is an additional formic acid formation way that does not include a photochemical activation.
\n\t\t\tIn addition to the products presented in Figure 7, some other compounds in much lower concentrations were identified (Figure 8).
\n\t\t\tTime series showing the concentration of some trace products.
1,2,4-TMB and ethyl-methylbenzene (also known as ethyl-toluene) entered the chamber with the parent VOCs mixture in trace concentrations, while the presence of benzaldehyde in the chamber means that the H-abstraction pathway takes place at least for toluene, as benzaldehyde is its corresponding aromaldehyde. This is in concordance with the relative branching ratios predicted by MCM v.3.1 for the three gases, as toluene has the highest one (7 %) for the H-Abstraction route.
\n\t\t\tGlyoxal is a ring opening oxidation product from toluene and o-xylene (Volkamer et al., 2001). In the same way as methylglyoxal, this compound presents a high water solubility and can partition into the particle phase and form oligomers (Hastings et al., 2005; Hu et al., 2007; Volkamer et al., 2007). This fact could explain the low glyoxal gas phase concentration found in the experiment.
\n\t\t\tThe small concentrations of acrolein, 2-butanone (butanone), propanal and pentanal measured through the experiment indicate that those are minor oxidation products from the parent VOCs.
\n\t\tThe objective of the experiment was to determine the secondary organic formation from the mixture of the selected VOCs. As no aerosol was emitted all the aerosols recorded in the chamber have a secondary origin. Not only organic particles can be formed, but also some inorganic salts can be potential products of the reactant system. To identify these salts, ionic chromatography was applied. Figure 9 shows nitrates and sulfates contribution for the four samplings taken during the experiment (left side of the figure), as well as the characterization of the resulting organic mass (right side of the figure).
\n\t\t\tInorganic (left side) and organic (right side) filter characterization. The sampling time of each filter is presented in the x axis (time zero represents the opening of the chamber).
It can be seen that the inorganic contribution to the total aerosol mass is very low during the experiment. The small sulfate amount is similar to that found in blank filters. Nitrates can be formed due to the heterogeneous reaction of NO2 with the water drops sticked on the chamber walls, driving to HNO3 formation and, eventually, nitrates. Only a minimum quantity of the organic mass (about 60 – 90 μg in the first three filters and about 250 μg in the fourth) was identified, in a similar way to previous studies (Hamilton et al., 2005; Sato et al., 2007). Most of the acids identified were already detected in previous studies (Baltensperger et al., 2005; Hamilton et al., 2005; Jang and Kamens, 2001; Sato et al., 2007).
\n\t\t\tTime series showing aerosol concentration measured with the TEOM (shaded blue area) and some other gases concentration.
Aerosol concentration measured with TEOM is presented in Figure 10 (dark blue area). Particles start to be formed once the chamber is opened. Inorganic contribution estimated from the filters was discounted from the total aerosol concentration in order to take an idea of the organic content (SOA, light blue area in Figure 10). The particles formed before the opening of the chamber correspond to small drops of water that are introduced into the chamber to create the 20% of relative humidity conditions. Scale for gases is presented in the right y-axis (ppb) while particle concentration is presented in the left one, in μg/m3.
\n\t\t\tWhile other gas products such as ozone present a continuously increasing behaviour, particles are mainly formed during the first hour of the experiment. The initial formed particles present a small diameter and start growing by coagulation processes due to collisions between them (Kulmala et al., 2004).
\n\t\t\tThe results provided by SMPS regarding particle size are presented in Figure 11. They reveal a growth of the aerosols. It is important to notice that the formation of detectable particles (> 17 nm) starts approximately ten minutes after the opening of the chamber (purple band at 10:42). Because of the detection limit of SMPS, no smaller particles can be detected and therefore initial particle formation due to nucleation can not be monitored. For this reason, this analysis focuses on the particle growth once the first particles are formed.
\n\t\t\tParticle size distribution provided by SMPS.
During the first hour after the opening of the chamber (left side of the figure) a quick growth in the particle diameter (Dp) takes place, coupled with a decrease in the number of particles, expressed as particles density (particles/cm3), which falls down from its maximum value (9E+5 particles/cm3). After this first hour, the particle diameter growth turns slower (right side of the figure). Coagulation and condensation of gas phase oxidation products can be the reason for this increase of the mean particle diameter (Sadezky et al., 2006). This increase in the mean particle diameter can be also inferred from Figure 12, where the temporal evolution of some selected diameters is presented.
\n\t\t\tEvolution of some selected Dp (nm) with time.
The smallest particles are formed in high quantities at the beginning of the experiment (in the figure, Diagram 33.4 nm and 51.4 nm) and then their concentration falls, while higher particles appear gradually, but in lower concentrations.
\n\t\tIn this chapter, a study focused on SOA formation from a mixture of anthropogenic VOCs is presented. 1,3,5-TMB resulted to be the most reactive VOC and therefore the initial steps of the photooxidation in the chamber are governed by its degradation. During the experiment, several organic compounds were measured and identified as products from specific oxidation pathways, some of them also known as relevant SOA constituents (PAN, methylglyoxal). The influence of the mixture of VOCs in ozone formation is also corroborated by a progressive concentration increase of this compound in the chamber.
\n\t\t\tRegarding the aerosol phase, maximum concentration is reached during the first hour after the opening of the chamber, indicating the formation of particles via nucleation of the condensed oxidation products. After this initial formation, the aerosol particles evolve and growth, possibly by coagulation processes and by the uptake to the particle phase of further oxidation products.
\n\t\t\tThe chemical characterization revealed the presence of several carboxylic acids, but only a minor fraction of the total mass collected was identified. This limitation constitutes a common problem in chamber studies, as a consequence of current analytical techniques. Therefore, a more complete organic characterization represents a challenge and a necessity to better understand organic aerosols formation.
\n\t\tThe experiment presented in this chapter is a part of the project CGL2008-02260/CLI, financed by the Spanish Ministry of Science and Innovation. Also this study has been financed by the Spanish Ministry of Environment and Rural and Marine Affairs. We gratefully acknowledge the EUPHORE team in CEAM (Valencia, Spain) and Miguel Sánchez from CIEMAT for the inorganic analysis.
\n\t\tOne of the key objectives of contemporary material science and engineering is to develop new types of effective cement and concrete, which ensure a synthesis of long-lasting artificial conglomerates with high physical, mechanical characteristics and performance. It is well known that concrete is a proven and reliable building material, which is used all over the world in many types of buildings. Special concretes are used for constructing contemporary high-rise buildings and their structural elements, which are expected to have high performance in the service environment, particularly in urban conditions. However, rather high cement contents (400–500 kg/m3) and low water-cement ratios in such concretes can result in crack formations due to thermal stresses and shrinkage deformations, thereby lowering the durability of these structures.
It is known that thermal stresses in concrete depend on the exothermic nature of cement hydration and temperature gradient between the core and surface of structural elements [1]. The temperature gradients result in deformations, which, due to space limitations, can lead to compressive stresses in one part of the structure and stretching in another part. If these stresses exceed the limit of stretching strength, then cracks will appear and expand over the structure’s surface. The possibility of forecasting and controlling heat evolution in concrete during hardening allows avoiding the formation of temperature cracks [2]. This explains the necessity of an enhanced study of the concrete’s hardening processes at the early stages, depending on a set of recipe and technological factors.
One of the methods of avoiding the thermal crack formation in concrete structures is the use of cements with active mineral additives, such as fly ash and silica fume. These materials result in an increase in strength due to pozzolanic reaction, reduction in heat evolution during cement hydration and improvement in the concrete durability [3, 4, 5]. As before-mentioned, Portland cement remains the main cementitious material in concrete for creating such high-strength concretes, which, however, has certain disadvantages in its production, including high energy consumption and adverse environmental effects. In this respect, the development of technologies and research projects aimed at shortening greenhouse gas emissions and reducing energy consumption becomes essential [6].
From this point of view, alkaline cements developed by the scientific school of Prof. Glukhovsky in Ukraine are one of the most advanced materials. These are represented by five types in accordance with the national standard of Ukraine. The important characteristic of such cements is the possibility of using up to 90% of industrial wastes as the raw material while ensuring not only the strength and durability that are normally obtained with traditional Portland cements but also that is commonly associated with high-strength cements. Such cement systems allow a reduction in energy consumption during cement production, decrease the pollution of the environment and protect natural resources.
The prospects of using alkaline slag cement as one of the types of alkali cement in concretes have been confirmed by more than 50 years of research experience in this area [7, 8, 9]. Its use has been found to produce concretes with low heat evolution, high early strength, better dimensional stability and long-term durability. However, the alkaline slag Portland cement has not been widely investigated as part of the system of cements described earlier.
In order to ensure the long-term durability of concretes based on alkali slag cement, an investigation was carried in which the development of its early structure formation was studied in terms of heat of hydration, deformation and crack formation. The mix compositions were decided based on information available in the existing literature on its technical and technological properties, with the slag content varying from 50 to 100% of the total binder content and a variable content of alkali component in the cement.
Table 1 reports the composition of cement mixes investigated in this chapter. The alkaline slag Portland cement (ASPC) used in this research was manufactured with the ground granulated blast-furnace slag (GGBS) content varying from 50 to 88% and the remainder consisting of Portland cement (CEM I). Another set of experiments was carried out with ground Portland cement clinker used to replace CEM I at a GGBS content of 50%. A third set of mixes was termed alkaline slag cement (ASC), which consisted of 100% GGBS content and alkaline activator materials (see the section on materials for details of the alkaline materials used), in accordance with reference [10]. CEM II/A-S 42.5 (PC) was used as a control composition. For all 11 mixes, the water-to-cement ratio was 0.5 and the sand-to-cement ratio was 3.
Reference* | Composition of cement, % | Chemicals % by weight of cement** | W/C | ||||
---|---|---|---|---|---|---|---|
GGBS | CEM I | Portland cement clinker | Na2SiO3**5H2O | Na2CO3 | LST | ||
SPSi3C0 | 50 | 50 | — | 3 | — | 0.8 | 0.5 |
SPSi0C2.5 | 50 | 50 | — | — | 2.5 | ||
SCSi3C0 | 50 | — | 50 | 3 | — | ||
SCSi0C2.5 | 50 | — | 50 | — | 2.5 | ||
SPSi3.5C0 | 69 | 31 | — | 3.5 | — | ||
SPSi0C3 | 69 | 31 | — | — | 3 | ||
SPSi0C4 | 88 | 12 | — | — | 4 | ||
SSi7C0 | 100 | — | — | 7 | — | ||
SSi0C5.5 | 100 | — | — | — | 5.5 | ||
SSi2C5 | 100 | — | — | 2 | 5 | ||
PC | CEM II/A-S 42.5 |
Experimental variables and mix compositions.
References for cementitious materials are based on the following notations: first the cementing materials, then the silicate content, followed by the carbonate content. PC stands for the CEM II/A-S control.
The content of chemicals taken over 100% of the composition of cement.
Details of the full set compositions of concrete mixes investigated are given in Table 2. The nine compositions of concrete mixes were as follows: cement – 400 kg/m3, sand – 680 kg/m3, aggregate fraction 5 to 10 mm – 360 kg/m3 and fraction 10 to 20 mm – 790 kg/m3. Changing composition of cement in concrete mixes was an experimental variable factor.
Reference | Composition of cement, % | Chemicals % by weight of cement | Cement kg/m3 | Aggregate fraction, kg/m3 | Sand, kg/m3 | ||||
---|---|---|---|---|---|---|---|---|---|
GGBS | CEM I | Na2SiO3*5H2O | Na2CO3 | LST | 5–10 mm | 10–20 mm | |||
SPSi3C0 | 50 | 50 | 3 | — | 0.8 | 400 | 360 | 790 | 680 |
SPSi0C2.5 | 50 | 50 | — | 2.5 | |||||
SPSi3.5C0 | 69 | 31 | 3.5 | — | |||||
SPSi0C3 | 69 | 31 | — | 3 | |||||
SPSi0C4 | 88 | 12 | — | 4 | |||||
SSi7C0 | 100 | — | 7 | — | |||||
SSi0C5.5 | 100 | — | — | 5.5 | |||||
SSi2C5 | 100 | — | 2 | 5 | |||||
PC | CEM II/A-S 42,5 |
Compositions of concrete mixes.
In both ASPC and ASC, granulated blast-furnace slag was used (basicity module Мb = 1.1, 95% of glass phase). CEM I and Portland cement clinker were used as the components of ASPC. The control mix consisted of 100% CEM II/A-S 42.5. The chemical composition of cement components is reported in Table 3.
Components | Content of oxides, % | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | MnO | Nа2O | SO3 | K2O | TiO2 | |
GGBS | 35.84 | 11.32 | 0.39 | 38.79 | 8.66 | 0.50 | 0.23 | 1.58 | 0.60 | 0.96 |
Portland cement clinker | 22.06 | 5.49 | 2.98 | 64.95 | 1.83 | 0.06 | 0.22 | 0.6 | 0.52 | 0.29 |
CEM I | 21.5 | 6.9 | 2.74 | 63.6 | 1.7 | 0.08 | 0.18 | 1.7 | 0.51 | 0.35 |
CEM II/A-S | 21.7 | 5.8 | 3.3 | 59.0 | 2.4 | 0.88 | 0.45 | 2.6 | 0.40 | 0.2 |
The chemical composition of cement components.
The alkaline components used in ASPCs were sodium carbonate (Na2CO3) and sodium metasilicate pentahydrate (Na2SiO3*5Н2O). The ASPC was produced as an “all in one” product (dry mix of all components), along with sodium lignosulfonate (LST) admixture to ensure setting time and strength. To assist inter-grinding of slag and clinker, etylhidrosyloksan polymer was used, which prevented absorption of moisture by cement and maintained the properties of cement.
The grinding of ASC was done to obtain a fineness characterized by a specific surface area of 470 m2/kg. For Portland cement clinker, the fineness, characterized by the specific surface of 430 m2/kg, was ensured with the use of the grinder and the air-jet sieve shown in Figure 1.
Laboratory grinder and air-jet sieve for collecting ground PC clinker.
Paste specimens weighing about 5 g were made from 5φ × 5 cm test cylinders, and then, they were wrapped in polythene sheets at 7 and 28 days of curing. The curing temperature was 20 (± 2)°C. After curing, the specimens were put into bottles filled with pure isopropanol in order to stop their hydration. Then, the specimens were filtered from the isopropanol and dried in the desiccators in a vacuum. Part of the dried samples was ground in an agate mortar. Particles passing a 63-μm sieve were used for X-ray diffraction. The X-ray diffraction analysis was conducted using an X-ray diffractometer (Bruker D2 Phaser Benchtop) with Cu Ka1 radiation and a 2Ɵ scanning range of 7–60°. The XRD scans were performed at a 0.05° interval per second.
The chemical reactions involved in cement hydration are globally exothermal, and the associated heat output can be obtained either numerically or experimentally. Numerical prediction of the heat of hydration of cement requires a knowledge of its chemical composition, which in turn can be used for calculating the percentages of the clinker components C3S, C2S, C4AF and C3A according to Bogue’s formula or similar [11, 12]. The heat generation potential of each of these components has been thoroughly studied in the past, and so currently several well-known models exist [12, 13]. However, for composite cements, numerical predictions of any of these models often fail due to the complex chemical interactions that can occur [14]. Therefore, heat of hydration of alkaline cements is determined using experimental tests based on the isothermal calorimeter method. In this test, an eight-channel isothermal calorimeter TAM Air was used, and tests were carried out at a temperature of 20 (± 2)°C and using pastes made of 0.4 water-cementitious material ratio. The heat of hydration of cement was determined during 7 days of hardening.
The method for studying chemical shrinkage of cement pastes is normally done according to ASTM C1608 [15]. It consists of a flask that contains the paste, on top of which a capillary is connected and filled with water (Figure 2). The water level is monitored using a webcam connected to a laptop. A few drops of oil with a red colorant are added to the water in the capillary to avoid evaporation of the water. The colored oil drops are also used as tracers in the image analysis of the pictures of the capillary taken with the webcam. The flasks are immersed in a thermostatic water bath and maintained at 20°C. Chemical shrinkage of cement is investigated within 28 days of curing.
Setup developed for the measure of chemical shrinkage (left) and the device used to measure the change in volume by means of dilatometry (right).
The test was carried out according to BS EN 196-1:2005. Compressive strength of mortars specimens was determined by three prismatic specimens 40 × 40 mm in cross section and 160 mm in length after hardening at temperature 20 (± 2)°C and humidity 95 (± 5)% at the age of 2, 7 and 28 days for each mix. Steam room with temperature and humidity controlled is used for curing the various specimens of mortars. The mortar specimens were cured immediately after casting, demolded the next day and cured at room temperature until compressive strength test. The compressive strength result represents the average of three tests with an error deviation of less than 7%.
The compressive strength of the concrete specimens was determined by crushing three cubes of 100 mm size after hardening at temperature 20 (± 2)°C and humidity 95 (± 5)% at the age of 7, 14 and 28 days for each mix. The test was carried out according to BS EN 12390–3:2009. Constant rate of loading of specimens was within the range 0.4 MPa/s (N/mm2·s).
The drying shrinkage tests were carried out following the procedures in ISO 1920-8-2009 [16]. Gauge studs of stainless steel were placed at the end surfaces of the specimens, with each partially embedded the sample for 15 mm and the line joining them coinciding with the main axis of the sample. Shrinkage deformations were evaluated using concrete specimens with size 75 × 75 × 280 mm, which were demolded 24 h after casting and moist cured at temperature 20 (± 2)°C and humidity 95 (± 5)% until the age of 2 days. After the moist curing period, the specimens were stored at a temperature of approximately 20 (± 2)°C and relative humidity of 60 (± 5)% until the completion of the test. The first measurement of drying shrinkage of concrete specimens was done at the age of 48 (± 0.25) h.
The creep tests were carried out following the procedures in ISO 1920-9-2009 [17]. Creep deformations were evaluated using concrete specimens of cylinders with size 100 × 100 × 400 mm, which were demolded 24 h after casting, and moist cured at temperature 20 (± 2)°C and humidity 95 (± 5)% until the age of 7 days. After the moist curing period, the specimens were stored at a temperature of approximately 20 (± 2)°C and relative humidity of 60 (± 5)% until the completion of the test. The first measurement of creep deformation of concrete occurred at the age of 14 days.
The investigations with the use of CEM I were carried out in order to evaluate the possibility of substituting clinker additive for CEM I in the composition of alkaline cements. The system “slag – CEM I - alkaline component” was considered, which included 50–100% of slag during the type change and the loss of alkaline component and CEM I (Table 4). It has been demonstrated that the substitution of Portland cement clinker for CEM I in the composition of alkali cement does not deteriorate the key properties of the binders. Depending on the slag and CEM I contents when using sodium carbonate within the limits of 2.5–5%, the cement is characterized by the beginning of setting at ≥55 minutes, and the strength of 9.2–19.7 MPa after 2 days and 40–46 MPa after 28 days. When using the sodium metasilicate, the beginning of setting is extended, and the cement strength is increased at an early age within the whole range of the slag component content. At the same time, the use of the combination of sodium metasilicate pentahydrate with sodium carbonate ash as alkali components allows to extend the beginning of setting and to increase the cement strength.
Reference* | Composition of cement, % | Initial setting time, min | Strength, MPa, at different ages in days | |||||||
---|---|---|---|---|---|---|---|---|---|---|
GGBS | CEM I | Portland cement clinker | Na2SiO3*5H2O | Na2CO3 | LST | 2 | 7 | 28 | ||
SPSi3C0 | 50 | 50 | — | 3 | — | 0.8 | 60 | 19.7 | 35.7 | 45.8 |
SPSi0C2.5 | 50 | 50 | — | — | 2.5 | 55 | 18.2 | 33.2 | 44.5 | |
SCSi3C0 | 50 | — | 50 | 3 | — | 65 | 20.1 | 34.9 | 46.1 | |
SCSi0C2.5 | 50 | — | 50 | — | 2.5 | 55 | 18.0 | 33.8 | 43.2 | |
SPSi3.5C0 | 69 | 31 | — | 3.5 | — | 70 | 15.4 | 33.0 | 45.3 | |
SPSi0C3 | 69 | 31 | — | — | 3 | 60 | 14.1 | 32.5 | 42.4 | |
SPSi0C4 | 88 | 12 | — | — | 4 | 65 | 12.5 | 29.4 | 41.8 | |
SSi7C0 | 100 | — | — | 7 | — | 60 | 11.8 | 31.6 | 43.7 | |
SSi0C5.5 | 100 | — | — | — | 5.5 | 60 | 9.2 | 28.1 | 39.8 | |
SSi2C5 | 100 | — | — | 2 | 5 | 65 | 11.5 | 32.9 | 43.9 | |
PC | CEM II/A-S 42.5 | 115 | 19.4 | 34.2 | 43.1 |
Setting time and strength of alkaline cement and CEM II/A-S.
References for cementitious materials are based on the following notations: first the cementing materials, then the silicate content, followed by the carbonate content. PC stands for the CEM II/A-S control.
It is possible to assert that with the increase of the slag component content, the alkaline cement strength decreases at the early hardening stages as compared with the PC. However, after 7 days of hardening, the strength indices are raised to the level of PC.
So, the compositions of alkaline cement with the range of slag content (50–100%) and CEM I (12–50%) are obtained, which comply with the requirements [10] in accordance with the investigated properties and are related to class 42.5 cements.
The thermodynamic calculations [18] show that the basicity of hydration products and the hydration heat depend on the output Portland cement phases. The decrease of the number of Са2+ ions and the ratios of СаО/SiO2 and СаО/Al2O3 in the calcium silicate and aluminate groups reduce the importance of hydration heat effects. These thermodynamic provisions are confirmed by the experimental investigations of alkaline cements (Figures 3 and 4). For example, the high basicity of PC facilitates the formation of Са(ОН)2, ettringite and highly basic calcium silicate hydrates at the initial hardening stages (Figure 3). Their formation is accompanied by significant heat effects - the value of hydration heat reaches 400 J/g (Figure 4). At the same time, the lowering of the dispersed phase basicity in alkaline cements at the expense of СаО facilitates the increase of forming the low basic silicate hydrates in the composition of hydration products. The heat of their formation is lower as compared with the heat of highly basic silicate hydrates, which makes up 200–350 J/g. In this respect, the hydration heat of alkaline cements is lower as compared with the hydration heat of PC.
XRD patterns of alkaline cement and CEM II/A-S after 7-day hydration.
Influence of alkaline cement and CEM II/A-S on the hydration rate (a) and released heat of hydration (b).
The intensity and completeness of heat of hydration during hydration of binders reduce progressively with the decrease of СаО content at the expense of Portland cement (Figure 4). The value of the first exo-effect varies from 1.4 mW/g for PC to 0.6 mW/g for ASC. The duration of induction period increases from 10 h for PC to 60 h for ASC.
The substitution of sodium carbonate with sodium metasilicate and the mixture of soda with sodium metasilicate was investigated in order to evaluate the impact of alkaline component nature on the value of specific heat of hydration. It has been demonstrated that alkaline cement (sodium carbonate in the amount of 5.5% has been added to its composition) is characterized with the lowest specific heat of hydration indices. The specific heat of hydration is 210 J/g after 7 days, while for another two compositions, the specific heat of hydrations is 230–240 J/g.
The continuous cooling transformation investigations conducted helped specify that irrespective of slag content, nature and quantity of alkaline component, the alkaline cement is characterized with low specific heat of hydration indices, while high strength indices are achieved both at the early hardening stages and in the standard age of 28 days.
The volumetric changes in the cement stone gel, which depend on the system mineralogical composition, cement grinding fineness, conditions and time of hardening, are the key reasons for chemical shrinkage of the binding systems. The shrinkage value at the micro-level depends, first of all, on the ratio of crystalline and gel phases in hydration products of the binders on the density of these compounds. The results of chemical shrinkage are represented in Figure 5.
Chemical shrinkage of alkaline cement and CEM II/A-S.
It is shown that the chemical shrinkage of the PC pastes is higher as compared with the alkaline cements. For example, PC composition pastes are characterized by shrinkage within the limits of 0.82 mL/g after 28 days of hardening. When using the alkaline cement SSi0C5.5 composition, the shrinkage deformations decrease down to 0.41 mL/g. The deformations decrease with the increase of slag content and the relevant increase of alkaline composition in the cement. For example, the shrinkage deformations are equal to 0.65 mL/g in the system, with 50% slag and 2.5% sodium carbonate content. The shrinkage deformations decrease down to 0.40–0.43 mL/g with the increase of slag content up to 88–100% and the relevant increase of alkaline component in the cement. At the same time, the substitution of sodium carbonate with sodium metasilicate in the cement composition reduces shrinkage deformations of the binders down to 0.38 mL/g.
Therefore, the use of alkaline cement systems facilitates the decrease of chemical shrinkage indices by 15–65% as compared with the PC-based system.
The heavy concrete composition (see Section 2), which includes the binder in an amount of 400 kg/m3, was used to determine the effect of cement composition on the compressive strength of concrete.
The investigation results (Table 5) show that with the increase of slag content in the cement, and the concrete strength is reduced by 5–15% in the early stage. However, after 14 days of hardening, the concrete strength, based on alkaline cement within the whole range of the slag component content (50–100%), reaches or becomes equal to the strength of concrete with PC. After 28 days of hardening the concrete strength, based on alkaline cement, equals 48.8–51.4 MPa.
Reference | Composition of cement, % | W/C | Concrete strength, MPa, at different ages in days | ||||||
---|---|---|---|---|---|---|---|---|---|
GGBS | CEM | Na2SiO3*5H2O | Na2CO3 | LST | 7 | 14 | 28 | ||
SPSi3C0 | 50 | 50 | 3 | — | 0.8 | 0.41 | 35.1 | 41.4 | 51.4 |
SPSi0C2.5 | 50 | 50 | — | 2.5 | 0.41 | 36.5 | 41.5 | 48.2 | |
SPSi3.5C0 | 69 | 31 | 3.5 | — | 0.41 | 34.7 | 42.3 | 49.5 | |
SPSi0C3 | 69 | 31 | — | 3 | 0.41 | 33.6 | 40.9 | 48.4 | |
SPSi0C4 | 88 | 12 | — | 4 | 0.40 | 31.7 | 41.3 | 49.8 | |
SSi7C0 | 100 | — | 7 | — | 0.40 | 30.7 | 39.4 | 47.7 | |
SSi0C5.5 | 100 | — | — | 5.5 | 0.41 | 28.9 | 38.8 | 45.1 | |
SSi2C5 | 100 | — | 2 | 5 | 0.40 | 31.2 | 40.2 | 48.8 | |
PC | CEM II/A-S 42.5 | 0.43 | 34.6 | 41.1 | 47.6 |
Concrete strength.
It is worth noting that in accordance with the results obtained, it is possible to identify decreasing early strength of concretes and reduction of specific heat of hydration indices with the increase of slag component in cement composition. Therefore, the increase of slag component is accompanied by improvement of one index (reduction of specific heat of hydration) and deterioration of the other (decrease of the early strength). That is why it is necessary to search the optimal cement type for concrete in structures, by considering the quantitative changes in combination of properties. This can be done by considering an index—Coefficient of constructive heat (Cch) [19]:
where R7(28)—compressive strength at 7 and 28 days; Q7—heat of hydration at 7 days.
Actually, the Cch attests the efficiency of using the binder: The more the strength and the less the heat of hydration, the more are the Cch values and the more the effectiveness of cement use in concrete.
The Cch comparison for the concretes based on alkaline cements after 28 days of hardening (Figure 6) testifies to the effectiveness of slag content in the cement within the range of 50–100%, with which the factor gets the values within the range of 1.4–1.8, while for the PC the factor is 1.2.
Dependence Cch from cement composition.
The thermal stress condition of the concrete was investigated by means of forecasting method using ELCUT software solution [20]. A cast
The following relationship was used for modeling the heat evolution of concrete:
where Q—integral heat evolution of concrete (kJ/m3); τ—time (h); kQ і nQ—dimensionless coefficients determined method Monte Carlo. Eq. (2) was used for modeling of temperature and the resulting stresses in the concrete block.
PC and SSi7C0 compositions (Table 4) of the concrete are selected for simulating temperature distributions along the wall. The simulation results are shown in Figures 7 and 8.
Temperature distribution of modeled concrete block based on PC (a) and SSi7C0 (b).
Internal stresses of modeled concrete blocks based on cement PC (a) and SSi7C0 (b).
The results show that when using PC, the concrete with the maximum heat evolution, the maximum structure’s core temperature is 50°С. At the same time, the core temperature of the structure from SSi7C0 composition of the concrete is 30°С. The temperature gradient between the core and vertical surface varies from 25°С for the concretes with maximum heat evolution to 10°С for the concrete with minimum heat evolution (SSi7C0 composition).
The stress envelopes, which occur under the relevant temperatures, were built on the basis of the calculated temperature fields. The following concrete characteristics were taken into account for building the envelopes: Young’s modulus E = 30 GPa; Poisson’s ratio = 0.3; shear modulus G = 12 GPa.
In accordance with the stress envelopes (Figure 8), the maximum stretching stresses occur at the upper and side block planes; at the same time, the block center is compressed. The concrete (SSi7C0 composition) with the minimum heat evolution allows to reduce twice both stretching and compressing stresses in the concrete block as compared with the similar stresses for concrete with the maximum heat evolution (PC composition). Therefore, the maximum stretching stresses are approximately 4 MPa for SSi7C0 composition of the concrete; at the same time, they are equal to 8.5 MPa for PC composition of the concrete.
The drying shrinkage deformation is the most widespread type of shrinkage, which occurs in the material that is already hardened, and which can cause cracking in concrete, for example, along the prestressed reinforcement, or in the products with a large open surface, and relevantly can deteriorate the quality of structures and their durability. The shrinkage appearance is stipulated, first of all, by water removal from the cement gel, which is not bound by molecular forces with a hard phase [22]. The investigation results of drying shrinkage, as well as mass losses of concrete samples, are shown on the basis of investigated cements in order to determine the concrete deformation condition (Figure 9).
(a) Drying shrinkage and (b) loss of mass of concrete.
It has been identified that the concrete samples, based on the PC and alkaline cements, are characterized by almost the same indices of shrinkage deformation and mass loss after 28 days of hardening. For example, when using SPSi3C0 composition of the concrete, the shrinkage makes up 0.064 mm/m after 28 days of hardening. The shrinkage deformations increase up to 0.072 mm/m with the increase of slag content up to 69% in the cement. However, the shrinkage decreases down to 0.061 mm/m when using the cement with maximum slag content. As a comparison, the shrinkage deformations of concrete, based on the PC, make up 0.065 mm/m.
The creep mechanism of concrete is rather difficult. It is not fully known until now. The most probable creep mechanism can be explained by water removal from С-S-H gel and cracking due to application of loads. Because the cement component of concrete makes a significant impact on the creep, the impact of the composition of alkaline cement on the formation of concrete creep deformation is specified. The results are shown in Figure 10.
Creep deformation of concrete.
It has been demonstrated that after 12 days of loading, the creep deformation indices of the concrete samples, based on the PC and alkaline cement, are almost the same for the concrete of common strength classes. For example, when using PC composition of the concrete, the creep deformation value is 0.046 mm/m. When using alkaline cement compositions of concrete, the creep deformation values are within the range of 0.041–0.06 mm/m.
A combined effect of such factors as thermal stresses and concrete shrinkage is considered during the crack width investigation in the concrete blocks. The inner stresses (4–9 MPa) and shrinkage deformations (0.061–0.072 mm/m) of the concrete are accepted, taking into account the aforementioned results.
The values obtained (Figure 11) testify that the lowest crack width index on the block’s surface is typical for proposed SSi7C0 composition of the concrete, with the lowest heat evolution and shrinkage; such a concrete is capable of having a temporary crack opening at the level of 0.03–0.09 mm under the different reinforcement ratios. At the same time, PC composition of the concrete is capable of crack opening at the level of 0.13–0.24 mm under the same conditions depending on the reinforcement rate.
Simulated crack opening in concrete blocks.
Therefore, the results of concretes obtained, based on the alkaline cement, which has the variable ratio of slag components and the alkali component nature, allow forecasting of their durability. Further, the prospects of widespread use are related to solving ecological problems and reducing energy consumption during production.
On the basis of the investigation carried out and results discussed in this chapter on the use of both alkaline slag Portland cement and alkaline slag cement, and both paste and concrete samples investigated, the following conclusions have been made:
The studies showed that independent of the content of slag, nature and amount of alkaline component, alkaline slag Portland cement and alkaline slag cement are characterized by low rates of heat of hydration and low chemical shrinkage compared to Portland cement, by means of reducing of the dispersed phase basicity in alkaline cements and accordingly increasing formation of the low basic silicate hydrates in the composition of hydration products with achieving high compressive strength at the early hardening stages and after 28 days of hardening.
The investigations studied a compressive strength, drying shrinkage and creep deformation of concrete based on alkaline cement depending on different clinker/slag ratio, type and content of alkaline component in cement. The study indicated that with the increase of slag content in the cement the concrete strength is reduced in the early age. However, after 14 days of hardening, the concrete strength based on alkaline cement, within the whole range of the slag component content (50–100%), reaches or becomes equal to the strength of concrete based on CEM II/A-S. Indicator drying shrinkage and creep deformation of concrete based on alkaline cement are similar indicators of the concrete based on CEM II/A-S.
The study examined temperature distribution, internal stresses and crack opening of modeled concrete blocks based on alkaline cement. It is shown that the use of concrete based on alkaline cement can reduce in twice temperature distribution, both stretching and compressing stresses and reduction of width of crack opening in concrete block compared with concrete based on CEM II/A-S.
Therefore, the obtained investigation results of concretes, based on the alkaline cement, which has the variable ratio of components and the alkaline component nature, allow forecasting of their higher durability, compared with concrete based on CEM II/A-S, according to the heat of evolution and internal stress of concrete at early stages of hardening and their influence on the formation of cracks.
Authors are listed below with their open access chapters linked via author name:
",metaTitle:"IntechOpen authors on the Global Highly Cited Researchers 2018 list",metaDescription:null,metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"New for 2018 (alphabetically by surname).
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nJocelyn Chanussot (chapter to be published soon...)
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nYuekun Lai
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nPrevious years (alphabetically by surname)
\\n\\nAbdul Latif Ahmad 2016-18
\\n\\nKhalil Amine 2017, 2018
\\n\\nEwan Birney 2015-18
\\n\\nFrede Blaabjerg 2015-18
\\n\\nGang Chen 2016-18
\\n\\nJunhong Chen 2017, 2018
\\n\\nZhigang Chen 2016, 2018
\\n\\nMyung-Haing Cho 2016, 2018
\\n\\nMark Connors 2015-18
\\n\\nCyrus Cooper 2017, 2018
\\n\\nLiming Dai 2015-18
\\n\\nWeihua Deng 2017, 2018
\\n\\nVincenzo Fogliano 2017, 2018
\\n\\nRon de Graaf 2014-18
\\n\\nHarald Haas 2017, 2018
\\n\\nFrancisco Herrera 2017, 2018
\\n\\nJaakko Kangasjärvi 2015-18
\\n\\nHamid Reza Karimi 2016-18
\\n\\nJunji Kido 2014-18
\\n\\nJose Luiszamorano 2015-18
\\n\\nYiqi Luo 2016-18
\\n\\nJoachim Maier 2014-18
\\n\\nAndrea Natale 2017, 2018
\\n\\nAlberto Mantovani 2014-18
\\n\\nMarjan Mernik 2017, 2018
\\n\\nSandra Orchard 2014, 2016-18
\\n\\nMohamed Oukka 2016-18
\\n\\nBiswajeet Pradhan 2016-18
\\n\\nDirk Raes 2017, 2018
\\n\\nUlrike Ravens-Sieberer 2016-18
\\n\\nYexiang Tong 2017, 2018
\\n\\nJim Van Os 2015-18
\\n\\nLong Wang 2017, 2018
\\n\\nFei Wei 2016-18
\\n\\nIoannis Xenarios 2017, 2018
\\n\\nQi Xie 2016-18
\\n\\nXin-She Yang 2017, 2018
\\n\\nYulong Yin 2015, 2017, 2018
\\n"}]'},components:[{type:"htmlEditorComponent",content:'New for 2018 (alphabetically by surname).
\n\n\n\n\n\n\n\n\n\nJocelyn Chanussot (chapter to be published soon...)
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nYuekun Lai
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nPrevious years (alphabetically by surname)
\n\nAbdul Latif Ahmad 2016-18
\n\nKhalil Amine 2017, 2018
\n\nEwan Birney 2015-18
\n\nFrede Blaabjerg 2015-18
\n\nGang Chen 2016-18
\n\nJunhong Chen 2017, 2018
\n\nZhigang Chen 2016, 2018
\n\nMyung-Haing Cho 2016, 2018
\n\nMark Connors 2015-18
\n\nCyrus Cooper 2017, 2018
\n\nLiming Dai 2015-18
\n\nWeihua Deng 2017, 2018
\n\nVincenzo Fogliano 2017, 2018
\n\nRon de Graaf 2014-18
\n\nHarald Haas 2017, 2018
\n\nFrancisco Herrera 2017, 2018
\n\nJaakko Kangasjärvi 2015-18
\n\nHamid Reza Karimi 2016-18
\n\nJunji Kido 2014-18
\n\nJose Luiszamorano 2015-18
\n\nYiqi Luo 2016-18
\n\nJoachim Maier 2014-18
\n\nAndrea Natale 2017, 2018
\n\nAlberto Mantovani 2014-18
\n\nMarjan Mernik 2017, 2018
\n\nSandra Orchard 2014, 2016-18
\n\nMohamed Oukka 2016-18
\n\nBiswajeet Pradhan 2016-18
\n\nDirk Raes 2017, 2018
\n\nUlrike Ravens-Sieberer 2016-18
\n\nYexiang Tong 2017, 2018
\n\nJim Van Os 2015-18
\n\nLong Wang 2017, 2018
\n\nFei Wei 2016-18
\n\nIoannis Xenarios 2017, 2018
\n\nQi Xie 2016-18
\n\nXin-She Yang 2017, 2018
\n\nYulong Yin 2015, 2017, 2018
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5911},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12562},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17573}],offset:12,limit:12,total:132971},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"7"},books:[{type:"book",id:"11439",title:"Crisis Management - Principles, Roles and Application",subtitle:null,isOpenForSubmission:!0,hash:"89fd49a084aea68bc39838042bdfce66",slug:null,bookSignature:"Ph.D. Carine J. Yi",coverURL:"https://cdn.intechopen.com/books/images_new/11439.jpg",editedByType:null,editors:[{id:"200332",title:"Ph.D.",name:"Carine",surname:"Yi",slug:"carine-yi",fullName:"Carine Yi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11477",title:"Public Economics - New Perspectives and Uncertainty",subtitle:null,isOpenForSubmission:!0,hash:"a8e6c515dc924146fbd2712eb4e7d118",slug:null,bookSignature:"Dr. Habtamu Alem",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",editedByType:null,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11601",title:"Econometrics - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"bc8ab49e2cf436c217a49ca8c12a22eb",slug:null,bookSignature:"Dr. Brian Sloboda",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",editedByType:null,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11774",title:"International Law",subtitle:null,isOpenForSubmission:!0,hash:"9e629251ba38b83f6bf406dd93511c61",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11774.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11775",title:"Global Peace and Security",subtitle:null,isOpenForSubmission:!0,hash:"90d8b5fdb1297222c88ab85dd900297a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11775.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11776",title:"Fashion Industry",subtitle:null,isOpenForSubmission:!0,hash:"e8d53d1029a7bccf825aa55d43fecc68",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11776.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12133",title:"Agricultural Value Chain",subtitle:null,isOpenForSubmission:!0,hash:"19892b77680b500f259ea7a506365cdc",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12133.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12134",title:"Sustainable Tourism",subtitle:null,isOpenForSubmission:!0,hash:"bb510c876f827a1df7960a523a4b5db3",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12134.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12138",title:"Online Advertising",subtitle:null,isOpenForSubmission:!0,hash:"d1a7aaa841aba83e7199b564c4991cf1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12138.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12141",title:"Leadership",subtitle:null,isOpenForSubmission:!0,hash:"337caa367d849d1c55b16264bc6d71c5",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12141.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12239",title:"Topics on Globalization",subtitle:null,isOpenForSubmission:!0,hash:"43443244d8385c57f1424d5d37c91788",slug:null,bookSignature:"Prof. Elsadig Musa Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/12239.jpg",editedByType:null,editors:[{id:"268621",title:"Prof.",name:"Elsadig",surname:"Ahmed",slug:"elsadig-ahmed",fullName:"Elsadig Ahmed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:24},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:18},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:124},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:11},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"984",title:"Cardiac Surgery",slug:"cardiac-surgery",parent:{id:"170",title:"Cardiology and Cardiovascular Medicine",slug:"cardiology-and-cardiovascular-medicine"},numberOfBooks:6,numberOfSeries:0,numberOfAuthorsAndEditors:154,numberOfWosCitations:62,numberOfCrossrefCitations:52,numberOfDimensionsCitations:104,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"984",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9060",title:"The Current Perspectives on Coronary Artery Bypass Grafting",subtitle:null,isOpenForSubmission:!1,hash:"cedc3547eae8f66f9440cc35216d7963",slug:"the-current-perspectives-on-coronary-artery-bypass-grafting",bookSignature:"Takashi Murashita",coverURL:"https://cdn.intechopen.com/books/images_new/9060.jpg",editedByType:"Edited by",editors:[{id:"192448",title:"Dr.",name:"Takashi",middleName:null,surname:"Murashita",slug:"takashi-murashita",fullName:"Takashi Murashita"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8819",title:"Cardiac Surgery Procedures",subtitle:null,isOpenForSubmission:!1,hash:"3d84cc6e6750d835e4b86578dfdbbdd9",slug:"cardiac-surgery-procedures",bookSignature:"Andrea Montalto, Antonio Loforte and Cristiano Amarelli",coverURL:"https://cdn.intechopen.com/books/images_new/8819.jpg",editedByType:"Edited by",editors:[{id:"222866",title:"Dr.",name:"Andrea",middleName:null,surname:"Montalto",slug:"andrea-montalto",fullName:"Andrea Montalto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8218",title:"Aortic Stenosis",subtitle:"Current Perspectives",isOpenForSubmission:!1,hash:"d9a81a576f7026e76fa6d29c27b308a6",slug:"aortic-stenosis-current-perspectives",bookSignature:"Peter Magnusson",coverURL:"https://cdn.intechopen.com/books/images_new/8218.jpg",editedByType:"Edited by",editors:[{id:"188088",title:"Dr.",name:"Peter",middleName:null,surname:"Magnusson",slug:"peter-magnusson",fullName:"Peter Magnusson"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6558",title:"Heart Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"fa6adc2ed66fd8de1500ed382fd80f7a",slug:"heart-transplantation",bookSignature:"Antonio Loforte, Andrea Montalto and Cristiano Amarelli",coverURL:"https://cdn.intechopen.com/books/images_new/6558.jpg",editedByType:"Edited by",editors:[{id:"42172",title:"Dr.",name:"Antonio",middleName:null,surname:"Loforte",slug:"antonio-loforte",fullName:"Antonio Loforte"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6556",title:"Advanced Concepts in Endocarditis",subtitle:null,isOpenForSubmission:!1,hash:"2bbeca8acf93c99a265e3a81166a2833",slug:"advanced-concepts-in-endocarditis",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/6556.jpg",editedByType:"Edited by",editors:[{id:"64343",title:"Dr.",name:"Michael S.",middleName:null,surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3542",title:"Artery Bypass",subtitle:null,isOpenForSubmission:!1,hash:"6b48ec67e1291ca98f3aded6a9af92ca",slug:"artery-bypass",bookSignature:"Wilbert S. Aronow",coverURL:"https://cdn.intechopen.com/books/images_new/3542.jpg",editedByType:"Edited by",editors:[{id:"164597",title:"Dr.",name:"Wilbert S.",middleName:null,surname:"Aronow",slug:"wilbert-s.-aronow",fullName:"Wilbert S. Aronow"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:6,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"43500",doi:"10.5772/54723",title:"Pharmacology of Arterial Grafts for Coronary Artery Bypass Surgery",slug:"pharmacology-of-arterial-grafts-for-coronary-artery-bypass-surgery",totalDownloads:2976,totalCrossrefCites:9,totalDimensionsCites:19,abstract:null,book:{id:"3542",slug:"artery-bypass",title:"Artery Bypass",fullTitle:"Artery Bypass"},signatures:"Oguzhan Yildiz, Melik Seyrek and Husamettin Gul",authors:[{id:"164299",title:"Prof.",name:"Oguzhan",middleName:null,surname:"Yıldız",slug:"oguzhan-yildiz",fullName:"Oguzhan Yıldız"},{id:"164968",title:"Dr.",name:"Melik",middleName:null,surname:"Seyrek",slug:"melik-seyrek",fullName:"Melik Seyrek"},{id:"164969",title:"Dr.",name:"Husamettin",middleName:null,surname:"Gul",slug:"husamettin-gul",fullName:"Husamettin Gul"}]},{id:"43514",doi:"10.5772/54418",title:"The Role of The Angiosome Model in Treatment of Critical Limb Ischemia",slug:"the-role-of-the-angiosome-model-in-treatment-of-critical-limb-ischemia",totalDownloads:3760,totalCrossrefCites:5,totalDimensionsCites:11,abstract:null,book:{id:"3542",slug:"artery-bypass",title:"Artery Bypass",fullTitle:"Artery Bypass"},signatures:"Kim Houlind and Johnny Christensen",authors:[{id:"165363",title:"Associate Prof.",name:"Kim",middleName:null,surname:"Houlind",slug:"kim-houlind",fullName:"Kim Houlind"},{id:"167383",title:"Dr.",name:"Johnny",middleName:null,surname:"Christensen",slug:"johnny-christensen",fullName:"Johnny Christensen"}]},{id:"43476",doi:"10.5772/54509",title:"Impact of Ischemia on Cellular Metabolism",slug:"impact-of-ischemia-on-cellular-metabolism",totalDownloads:2729,totalCrossrefCites:5,totalDimensionsCites:9,abstract:null,book:{id:"3542",slug:"artery-bypass",title:"Artery Bypass",fullTitle:"Artery Bypass"},signatures:"Maximilien Gourdin and Philippe Dubois",authors:[{id:"164978",title:"Prof.",name:"Philippe",middleName:"E",surname:"Dubois",slug:"philippe-dubois",fullName:"Philippe Dubois"},{id:"164982",title:"Dr.",name:"Maximilien",middleName:null,surname:"Gourdin",slug:"maximilien-gourdin",fullName:"Maximilien Gourdin"}]},{id:"61397",doi:"10.5772/intechopen.76844",title:"The Ethics in Repeat Heart Valve Replacement Surgery",slug:"the-ethics-in-repeat-heart-valve-replacement-surgery",totalDownloads:1154,totalCrossrefCites:3,totalDimensionsCites:6,abstract:"The treatment of patients with intravenous drug use (IVDU) has evolved to include a wide range of medications, psychiatric rehabilitation, and surgical interventions, especially for life-threatening complications such as infective endocarditis (IE). These interventions remain at the discretion of physicians, particularly surgeons, whose treatment decisions are influenced by several medical factors, unfortunately not without bias. The stigma associated with substance use disorder is prevalent, which leads to significant biases, even in the healthcare system. This bias is heightened when IVDU patients require repeat valve replacement surgeries for IE due to continued drug use. Patients who receive a valve replacement and continue to use illicit drugs intravenously often return to their medical providers, months to a few years later, with a reinfection of their bioprosthetic valve; such patients require additional surgeries which are at the center of many ethical discussions due to high mortality rates, for many complex medical and social reasons, associated with continuous chemical dependency after surgical interventions. This chapter examines the ethics of repeat heart valve replacement surgery for patients who are struggling with addiction. Considerations of justice, the fiduciary therapeutic relationship, and guiding ethical principles justify medically beneficial repeat heart valve replacement surgeries for IVDU patient populations.",book:{id:"6556",slug:"advanced-concepts-in-endocarditis",title:"Advanced Concepts in Endocarditis",fullTitle:"Advanced Concepts in Endocarditis"},signatures:"Julie M. Aultman, Emanuela Peshel, Cyril Harfouche and Michael S.\nFirstenberg",authors:[{id:"64343",title:"Dr.",name:"Michael S.",middleName:null,surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"},{id:"227150",title:"Ms.",name:"Emanuela",middleName:null,surname:"Peshel",slug:"emanuela-peshel",fullName:"Emanuela Peshel"},{id:"229719",title:"Dr.",name:"Julie",middleName:"M.",surname:"Aultman",slug:"julie-aultman",fullName:"Julie Aultman"},{id:"232060",title:"Mr.",name:"Cyril",middleName:null,surname:"Harfouche",slug:"cyril-harfouche",fullName:"Cyril Harfouche"}]},{id:"43498",doi:"10.5772/54928",title:"Treatment of Coronary Artery Bypass Graft Failure",slug:"treatment-of-coronary-artery-bypass-graft-failure",totalDownloads:4781,totalCrossrefCites:3,totalDimensionsCites:5,abstract:null,book:{id:"3542",slug:"artery-bypass",title:"Artery Bypass",fullTitle:"Artery Bypass"},signatures:"M.A. Beijk and R.E. Harskamp",authors:[{id:"164896",title:"Dr.",name:"Marcel",middleName:"A.",surname:"Beijk",slug:"marcel-beijk",fullName:"Marcel Beijk"},{id:"165094",title:"Dr.",name:"Ralf",middleName:null,surname:"Harskamp",slug:"ralf-harskamp",fullName:"Ralf Harskamp"}]}],mostDownloadedChaptersLast30Days:[{id:"80213",title:"Evolution of Heart Transplantation Surgical Techniques",slug:"evolution-of-heart-transplantation-surgical-techniques",totalDownloads:222,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Organ transplantation has kindled the human imagination since the beginning of time. Prehistorically, transplantation appeared as mythological stories: from creatures with body parts from different species, the heart transplant between two Chinese soldiers by Pien Ch’iao, to the leg transplant by physician Saints Cosmas and Damian. By 19th century, the transplantation concept become possible by extensive contributions from scientists and clinicians whose works had taken generations. Although Alexis Carrel is known as the founding father of experimental organ transplantation, many legendary names had contributed to the experimental works of heart transplantation, including Guthrie, Mann, and Demikhov. The major contribution to experimental heart transplantation before the clinical era were made by a team lead by Richard Lower and Norman Shumway at Stanford University in the early 1960s. They played the vital role in developing experimental and clinical heart transplantation as it is known today. Using Shumway biatrial technique Christiaan Barnard started a new era of clinical heart transplantation, by performing the first in man human-to-human heart transplantation in 1967. The techniques of heart transplant have evolved since the first heart transplant. This chapter will summarize the techniques that have been used in clinical heart transplantation.",book:{id:"11236",slug:null,title:"Heart Transplantation - New Insights in Therapeutic Strategies",fullTitle:"Heart Transplantation - New Insights in Therapeutic Strategies"},signatures:"Samuel Jacob, Anthony N. Pham and Si M. Pham",authors:null},{id:"70032",title:"Coronary Artery Bypass Grafting: Surgical Anastomosis: Tips and Tricks",slug:"coronary-artery-bypass-grafting-surgical-anastomosis-tips-and-tricks",totalDownloads:1310,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"The definite feature of coronary artery disease is the focal narrowing in the vascular endothelium, and this leads to the decrease in the flow of blood to the myocardium. Atherosclerotic plaque is the main lesion. These patients can present with chest pain (angina or myocardial infarction) and need further workup noninvasively and invasively for the management. The main reasons for myocardial revascularization can be: (1) relief from symptoms of myocardial ischemia; (2) reduce the risks of future mortality; (3) to treat or prevent morbidities such as myocardial infarction, arrhythmias, or heart failure. Coronary artery bypass grafting (CABG) is the surgical technique of cardiac revascularization. In 1910, Dr. Alexis Carrel described a series of canine experiments in which he devised means to treat CAD by creating a “complementary circulation” for the diseased native coronary arteries. No clinical translation occurred at the time, but he was awarded the Nobel Prize in Medicine. Experimental refinements of coronary arterial revascularization, including the use of internal thoracic artery (ITA) grafts, were later reported by Murray and colleagues, Demikhov, and Goetz and colleagues in the 1950s and early 1960s. Dr. Rene Favaloro performed his first coronary bypass operation in May 1967 with an interposed saphenous vein graft (SVG) and shortly thereafter used aortocoronary bypasses sutured proximally to the ascending aorta. The stenosed segment is bypassed using an arterial or venous graft. Left internal thoracic artery is the most commonly used artery, and long saphenous vein is the most commonly used vein for the coronary artery grafting to reestablish the blood flow to the compromised myocardium. This can be performed with or without the help of cardiopulmonary bypass machine and also with or without arresting the heart. These techniques are called as on-pump beating or on-pump arrested and off-pump beating coronary artery bypass grafting surgery. Distal and proximal anastomoses are usually performed in an end-to-side manner, but in the case of doing sequential grafting, side-to-side anastomosis is also performed proximal to the end-to-side anastomosis. In this chapter we are going to discuss the coronary artery bypass grafting tips and tricks in details.",book:{id:"9060",slug:"the-current-perspectives-on-coronary-artery-bypass-grafting",title:"The Current Perspectives on Coronary Artery Bypass Grafting",fullTitle:"The Current Perspectives on Coronary Artery Bypass Grafting"},signatures:"Mohd. Shahbaaz Khan",authors:[{id:"278633",title:"Dr.",name:"Mohd. Shahbaaz",middleName:null,surname:"Khan",slug:"mohd.-shahbaaz-khan",fullName:"Mohd. Shahbaaz Khan"}]},{id:"65984",title:"Low Flow Low Gradient Severe Aortic Stenosis: Diagnosis and Treatment",slug:"low-flow-low-gradient-severe-aortic-stenosis-diagnosis-and-treatment",totalDownloads:2189,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Approximately 40% of patients with aortic stenosis (AS) show discordant Doppler-echocardiographic parameters with aortic valve area (AVA) <1 cm2 and/or index iAVA <0.6 cm2/m2 (consistent with severe AS) and the mean gradient (MG) <40 mmHg, consistent with mild/moderate AS. Accurate diagnosis of true severe low flow low gradient AS versus pseudo-severe aortic stenosis is important for prognosis and optimal timing for intervention. Doppler echocardiography using intravenous low dose dobutamine challenge is widely used for differentiating pseudo-severe from true severe aortic stenosis. However, relying on echocardiography alone may have limitations in accurate diagnosis. Reliable diagnosis using echocardiography is dependent on multiple factors like the angle of interrogation of the aortic jet, the assumption that the LVOT area is circular in cross section, optimal echo windows, the presence of underlying subclinical coronary artery disease prior to dobutamine challenge etc. In this chapter, we describe non-invasive and invasive strategies to assess the aortic valve using dobutamine stress. Direct measurement of gradients across the aortic valve while estimating the change in cardiac output and aortic valve area with increments of dobutamine infusion dose is complementary, safe and useful when conventional echocardiography techniques are inconclusive. Finally, the chapter describes effective strategies of treatment for low gradient severe aortic stenosis, including the role for diagnostic balloon valvuloplasty, in the era of transcatheter valve replacement (TAVR).",book:{id:"8218",slug:"aortic-stenosis-current-perspectives",title:"Aortic Stenosis",fullTitle:"Aortic Stenosis - Current Perspectives"},signatures:"Faeez Mohamad Ali, Vindhya Wilson and Rajesh Nair",authors:[{id:"280651",title:"Dr.",name:"Rajesh",middleName:null,surname:"Nair",slug:"rajesh-nair",fullName:"Rajesh Nair"},{id:"280829",title:"Dr.",name:"Faeez",middleName:null,surname:"Mohamad Ali",slug:"faeez-mohamad-ali",fullName:"Faeez Mohamad Ali"},{id:"290351",title:"Dr.",name:"Vindhya",middleName:null,surname:"Wilson",slug:"vindhya-wilson",fullName:"Vindhya Wilson"}]},{id:"59547",title:"Left Ventricular Assist Device Infections",slug:"left-ventricular-assist-device-infections",totalDownloads:1448,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Left ventricular assist device (LVAD) infections are important causes of morbidity and mortality in patients who receive these mechanical circulatory supports as a bridge to transplantation (BTT) or as destination therapy (DT) (for individuals who are not candidates for cardiac transplant). Infections are more common among persons who received pulsatile flow LVADs as opposed to newer continuous flow (CF) devices. Other risk factors for infection include obesity, renal failure, depression and immunosuppression. An LVAD infection increases the risk of infections in persons who undergo cardiac transplantation. Infections include percutaneous site, driveline, pump pocket and pump/cannula infections; sepsis, bacteremia, mediastinitis and endocarditis. Diagnosis is achieved by monitoring LVAD flow parameters and observing typical clinical and laboratory manifestations of infection. Imaging such as PET-CT or SPECT-CT imaging can be helpful to establish a diagnosis of pump pocket infection. Echocardiography may aid in detecting native valve endocarditis and thrombus associated with the LVAD. The most common pathogens include Staphylococcus, Corynebacterium, Enterococcus, Pseudomonas and Candida spp. Treatment requires targeted antimicrobials plus surgical debridement of infected tissue and device components. In cases of pump/cannula/LVAD endocarditis, especially if fungal pathogens or Mycobacterium chimaera are involved, LVAD removal/reimplantation vs. transplant is necessary, combined with extended antimicrobial therapy.",book:{id:"6556",slug:"advanced-concepts-in-endocarditis",title:"Advanced Concepts in Endocarditis",fullTitle:"Advanced Concepts in Endocarditis"},signatures:"Marion J. Skalweit",authors:[{id:"186717",title:"Associate Prof.",name:"Marion",middleName:null,surname:"Skalweit",slug:"marion-skalweit",fullName:"Marion Skalweit"}]},{id:"60658",title:"Humoral Rejection in Cardiac Transplantation: Management of Antibody-Mediated Rejection",slug:"humoral-rejection-in-cardiac-transplantation-management-of-antibody-mediated-rejection",totalDownloads:1072,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"After a successful heart transplantation, fundamental keys to achieve good results in the long term are to establish immunosuppressive therapy in the postoperative period in an appropriate manner and to ensure continuity of follow-ups. Despite the fact that these stages are maintained perfectly, patients may face one or more rejection episodes. T-cell-mediated acute cellular rejection of the cardiac allograft has well-established treatment algorithms, whereas antibody-mediated rejection (AMR) is challenging to diagnose, and its treatment varies between centers. Investigators reported that AMR is among the most important factors to improving long-term outcomes. Improved understanding of the roles of acute and chronic AMR has evolved in recent years following a major progress in the technical ability to detect and quantify recipient antihuman leukocyte antigen (HLA) antibody production. Recently, a study of the immunobiology of B cells and plasma cells that pertains to allograft rejection and tolerance has emerged. There are some questions regarding the classification of AMR, the diagnostic approaches, and the treatment strategies for managing. In this chapter, we are discuss the effector mechanisms that are used by antibodies to eliminate antigens and clinical experience about AMR and its treatment with a discussion about the latest articles.",book:{id:"6558",slug:"heart-transplantation",title:"Heart Transplantation",fullTitle:"Heart Transplantation"},signatures:"Umit Kervan, Dogan Emre Sert and Nesrin Turan",authors:[{id:"227772",title:"Prof.",name:"Umit",middleName:null,surname:"Kervan",slug:"umit-kervan",fullName:"Umit Kervan"},{id:"243592",title:"Dr.",name:"Dogan Emre",middleName:null,surname:"Sert",slug:"dogan-emre-sert",fullName:"Dogan Emre Sert"},{id:"243593",title:"Dr.",name:"Nesrin",middleName:null,surname:"Turan",slug:"nesrin-turan",fullName:"Nesrin Turan"}]}],onlineFirstChaptersFilter:{topicId:"984",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81437",title:"Pediatric Heart Transplantation",slug:"pediatric-heart-transplantation",totalDownloads:13,totalDimensionsCites:0,doi:"10.5772/intechopen.104518",abstract:"Despite advances in medical management, patients submitted for heart transplantation procedures still are at risk to development of complications. This chapter will discuss some specific topics of pediatric heart transplantation, focusing on perioperative care: (i) recipient management, (ii) donor evaluation, (iii) immunosuppression, (iv) early postoperative management, (v) complications, and (vi) conclusions.",book:{id:"11236",title:"Heart Transplantation - New Insights in Therapeutic Strategies",coverURL:"https://cdn.intechopen.com/books/images_new/11236.jpg"},signatures:"Estela Azeka"},{id:"81451",title:"Donor Assessment and Management for Heart Transplantation",slug:"donor-assessment-and-management-for-heart-transplantation",totalDownloads:13,totalDimensionsCites:0,doi:"10.5772/intechopen.104504",abstract:"For many years, heart transplantation has been an established procedure for patients with end-stage heart failure using the so-called “Standard Criteria” for an optimal heart donor. However, annually listed patients for heart transplantation greatly increased worldwide, and the use of extended criteria donor hearts has been utilized as many as possible in many countries. In this chapter, firstly, pathophysiology of brain death is explained. Secondly, donor assessment and issues of extended criteria donors are introduced. Then, donor management to maximize the heart graft availability, and the Japanese donor assessment and evaluation system and its outcome are reviewed.",book:{id:"11236",title:"Heart Transplantation - New Insights in Therapeutic Strategies",coverURL:"https://cdn.intechopen.com/books/images_new/11236.jpg"},signatures:"Norihide Fukushima"},{id:"81057",title:"Induction Therapy in the Current Immunosuppressive Therapy",slug:"induction-therapy-in-the-current-immunosuppressive-therapy",totalDownloads:13,totalDimensionsCites:0,doi:"10.5772/intechopen.103746",abstract:"The current immunosuppressive therapy including calcineurin inhibitors, mycophenolate mofetil, and steroids, has substantially suppress rejections and improved clinical outcomes in heart transplant (HTx) recipients. Nevertheless, the management of drug-related nephrotoxicity, fatal acute cellular rejection (ACR), antibody-mediated rejection and infections remains challenging. Although previous some studies suggested that perioperative induction immunosuppressive therapy may be effective for the suppressing ACR and deterioration of renal function, increased incidence of infection and malignancy was concerned in recipients with induction immunosuppressive therapy. The international society of heart and lung transplantation (ISHLT) guidelines for the care of heart transplant recipients do not recommend routine use of induction immunosuppressive therapy, except for the patients with high risk of acute rejection or renal dysfunction, however, appropriate therapeutic regimen and indication of induction immunosuppressive therapy remains unclear in HTx recipients. We review current evidence of induction immunosuppressive therapy in HTx recipients, and discuss the appropriate therapeutic regimen and indication of induction therapy.",book:{id:"11236",title:"Heart Transplantation - New Insights in Therapeutic Strategies",coverURL:"https://cdn.intechopen.com/books/images_new/11236.jpg"},signatures:"Takuya Watanabe, Yasumasa Tsukamoto, Hiroki Mochizuki, Masaya Shimojima, Tasuku Hada, Satsuki Fukushima, Tomoyuki Fujita and Osamu Seguchi"},{id:"80305",title:"Hepatic and Endocrine Aspects of Heart Transplantation",slug:"hepatic-and-endocrine-aspects-of-heart-transplantation",totalDownloads:13,totalDimensionsCites:0,doi:"10.5772/intechopen.102418",abstract:"End-organ dysfunction is a progression that can often develop in patients with end-stage heart failure. Hepatic abnormalities in advanced systolic heart failure may affect several aspects of the liver function. Hepatic function is dependent on age, nutrition, previous hepatic diseases, and drugs. The hepatic dysfunction can have metabolic, synthetic, and vascular consequences, which strongly influence the short- and long-term results of the transplantation. In this chapter, the diagnostic and treatment modalities of the transplanted patient will be discussed. On the other hand, endocrine abnormalities, particularly thyroid dysfunction, are also frequently detected in patients on the waiting list. Endocrine supplementation during donor management after brain death is crucial. Inappropriate management of central diabetes insipidus, hyperglycemia, or adrenal insufficiency can lead to circulatory failure and graft dysfunction during procurement. Thyroid dysfunction in donors and recipients is conversely discussed.",book:{id:"11236",title:"Heart Transplantation - New Insights in Therapeutic Strategies",coverURL:"https://cdn.intechopen.com/books/images_new/11236.jpg"},signatures:"Andrea Székely, András Szabó and Balázs Szécsi"},{id:"79970",title:"The Role of Large Impella Devices in Temporary Mechanical Circulatory Support for Patients Undergoing Heart Transplantation",slug:"the-role-of-large-impella-devices-in-temporary-mechanical-circulatory-support-for-patients-undergoin",totalDownloads:13,totalDimensionsCites:0,doi:"10.5772/intechopen.101680",abstract:"Large microaxial pump systems (Impella 5.0, or Impella 5.5; i.e., Impella 5+) (Abiomed Inc., Danvers, MA, USA) have gained increasing levels of attendance as valuable tools of mechanical circulatory support (MCS). Patients undergoing heart transplantation (HTX) often need temporary MCS in the perioperative course, either as a preoperative bridge or occasionally in the early post-transplant period. Here we present our experience using Impella 5+ support for patients designated to undergo HTX, describe technical aspects of implantation and removal, and further analyze factors influencing the overall patient outcome. Significant factors are discussed in front of the background of contemporary international literature, and current scientific questions are highlighted.",book:{id:"11236",title:"Heart Transplantation - New Insights in Therapeutic Strategies",coverURL:"https://cdn.intechopen.com/books/images_new/11236.jpg"},signatures:"Yukiharu Sugimura, Sebastian Bauer, Moritz Benjamin Immohr, Arash Mehdiani, Hug Aubin, Ralf Westenfeld, Udo Boeken, Artur Lichtenberg and Payam Akhyari"},{id:"80721",title:"Gene Therapy for Cardiac Transplantation",slug:"gene-therapy-for-cardiac-transplantation",totalDownloads:64,totalDimensionsCites:0,doi:"10.5772/intechopen.102865",abstract:"Gene therapy is an advanced treatment approach that alters the genetic composition of cells to confer therapeutic protein or RNA expression to the target organ. It has been successfully introduced into clinical practice for the treatment of various diseases. Cardiac transplantation stands to benefit from applications of gene therapy to prevent the onset of post-transplantation complications, such as primary graft dysfunction, cardiac allograft vasculopathy, and rejection. Additionally, gene therapy can be used to minimize or potentially eliminate the need for immunosuppression post-transplantation. Several animal models and delivery strategies have been developed over the years with the goal of achieving robust gene expression in the heart. However, a method for doing this has yet to be successfully translated into clinical practice. The recent advances in ex vivo perfusion for organ preservation provide potential ways to overcome several barriers to achieving gene therapy for cardiac transplantation into clinical practice. Optimizing the selection of the gene-carrying vector for gene delivery and selection of the therapeutic gene to be conferred is also crucial for being able to implement gene therapy in cardiac transplantation. Here, we discuss the history and current state of research on gene therapy for cardiac transplantation.",book:{id:"11236",title:"Heart Transplantation - New Insights in Therapeutic Strategies",coverURL:"https://cdn.intechopen.com/books/images_new/11236.jpg"},signatures:"Michelle Mendiola Pla, Yuting Chiang, Jun-Neng Roan and Dawn E. Bowles"}],onlineFirstChaptersTotal:13},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:288,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,annualVolume:11418,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,annualVolume:11419,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,annualVolume:11420,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,annualVolume:11421,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,annualVolume:11422,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,annualVolume:11423,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:4,paginationItems:[{id:"11445",title:"Multi-Agent Technologies and Machine Learning",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",hash:"d980826615baa6e33456e2a79064c5e8",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"March 29th 2022",isOpenForSubmission:!0,editors:[{id:"265237",title:"Prof.",name:"Igor",surname:"Sheremet",slug:"igor-sheremet",fullName:"Igor Sheremet"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11446",title:"Industry 4.0 - Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11446.jpg",hash:"be984f45b90c1003798661ef885d8a34",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 12th 2022",isOpenForSubmission:!0,editors:[{id:"303193",title:"Dr.",name:"Meisam",surname:"Gordan",slug:"meisam-gordan",fullName:"Meisam Gordan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11448",title:"Artificial Neural Networks - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11448.jpg",hash:"e57ff97a39cfc6fe68a1ac62b503dbe9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"22866",title:"Dr.",name:"Chi Leung Patrick",surname:"Hui",slug:"chi-leung-patrick-hui",fullName:"Chi Leung Patrick Hui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 14th 2022",isOpenForSubmission:!0,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:18,paginationItems:[{id:"81778",title:"Influence of Mechanical Properties of Biomaterials on the Reconstruction of Biomedical Parts via Additive Manufacturing Techniques: An Overview",doi:"10.5772/intechopen.104465",signatures:"Babatunde Olamide Omiyale, Akeem Abiodun Rasheed, Robinson Omoboyode Akinnusi and Temitope Olumide Olugbade",slug:"influence-of-mechanical-properties-of-biomaterials-on-the-reconstruction-of-biomedical-parts-via-add",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:33,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:31,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81294",title:"Applications of Neural Organoids in Neurodevelopment and Regenerative Medicine",doi:"10.5772/intechopen.104044",signatures:"Jing Gong, Jiahui Kang, Minghui Li, Xiao Liu, Jun Yang and Haiwei Xu",slug:"applications-of-neural-organoids-in-neurodevelopment-and-regenerative-medicine",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81318",title:"Retinal Organoids over the Decade",doi:"10.5772/intechopen.104258",signatures:"Jing Yuan and Zi-Bing Jin",slug:"retinal-organoids-over-the-decade",totalDownloads:41,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},subseriesFiltersForOFChapters:[{caption:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",value:9,count:1,group:"subseries"},{caption:"Bioinformatics and Medical Informatics",value:7,count:13,group:"subseries"}],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:617,paginationItems:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",biography:"Prof. Dr. Yusuf Tutar conducts his research at the Hamidiye Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Division of Biochemistry, University of Health Sciences, Turkey. He is also a faculty member in the Molecular Oncology Program. He obtained his MSc and Ph.D. at Oregon State University and Texas Tech University, respectively. He pursued his postdoctoral studies at Rutgers University Medical School and the National Institutes of Health (NIH/NIDDK), USA. His research focuses on biochemistry, biophysics, genetics, molecular biology, and molecular medicine with specialization in the fields of drug design, protein structure-function, protein folding, prions, microRNA, pseudogenes, molecular cancer, epigenetics, metabolites, proteomics, genomics, protein expression, and characterization by spectroscopic and calorimetric methods.",institutionString:"University of Health Sciences",institution:null},{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",biography:"Hiroyuki Kagechika received his bachelor’s degree and Ph.D. in Pharmaceutical Sciences from the University of Tokyo, Japan, where he served as an associate professor until 2004. He is currently a professor at the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU). From 2010 to 2012, he was the dean of the Graduate School of Biomedical Science. Since 2012, he has served as the vice dean of the Graduate School of Medical and Dental Sciences. He has been the director of the IBB since 2020. Dr. Kagechika’s major research interests are the medicinal chemistry of retinoids, vitamins D/K, and nuclear receptors. He has developed various compounds including a drug for acute promyelocytic leukemia.",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",country:{name:"Japan"}}},{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",biography:"Dr. Rizwan Ahmad is a University Professor and Coordinator, Quality and Development, College of Medicine, Imam Abdulrahman bin Faisal University, Saudi Arabia. Previously, he was Associate Professor of Human Function, Oman Medical College, Oman, and SBS University, Dehradun. Dr. Ahmad completed his education at Aligarh Muslim University, Aligarh. He has published several articles in peer-reviewed journals, chapters, and edited books. His area of specialization is free radical biochemistry and autoimmune diseases.",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",country:{name:"Saudi Arabia"}}},{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",biography:"Farid A. Badria, Ph.D., is the recipient of several awards, including The World Academy of Sciences (TWAS) Prize for Public Understanding of Science; the World Intellectual Property Organization (WIPO) Gold Medal for best invention; Outstanding Arab Scholar, Kuwait; and the Khwarizmi International Award, Iran. He has 250 publications, 12 books, 20 patents, and several marketed pharmaceutical products to his credit. He continues to lead research projects on developing new therapies for liver, skin disorders, and cancer. Dr. Badria was listed among the world’s top 2% of scientists in medicinal and biomolecular chemistry in 2019 and 2020. He is a member of the Arab Development Fund, Kuwait; International Cell Research Organization–United Nations Educational, Scientific and Cultural Organization (ICRO–UNESCO), Chile; and UNESCO Biotechnology France",institutionString:"Mansoura University",institution:{name:"Mansoura University",country:{name:"Egypt"}}},{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",biography:"Dr. Singh received a BPharm (2003) and MPharm (2005) from Panjab University, Chandigarh, India, and a Ph.D. (2013) from Punjab Technical University (PTU), Jalandhar, India. He has more than sixteen years of teaching experience and has supervised numerous postgraduate and Ph.D. students. He has to his credit more than seventy papers in SCI- and SCOPUS-indexed journals, fifty-five conference proceedings, four books, six Best Paper Awards, and five projects from different government agencies. He is currently an editorial board member of eight international journals and a reviewer for more than fifty scientific journals. He received Top Reviewer and Excellent Peer Reviewer Awards from Publons in 2016 and 2017, respectively. He is also on the panel of The International Reviewer for reviewing research proposals for grants from the Royal Society. He also serves as a Publons Academy mentor and Bentham brand ambassador.",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",country:{name:"India"}}},{id:"142388",title:"Dr.",name:"Thiago",middleName:"Gomes",surname:"Gomes Heck",slug:"thiago-gomes-heck",fullName:"Thiago Gomes Heck",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/142388/images/7259_n.jpg",biography:null,institutionString:null,institution:{name:"Universidade Regional do Noroeste do Estado do Rio Grande do Sul",country:{name:"Brazil"}}},{id:"336273",title:"Assistant Prof.",name:"Janja",middleName:null,surname:"Zupan",slug:"janja-zupan",fullName:"Janja Zupan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/336273/images/14853_n.jpeg",biography:"Janja Zupan graduated in 2005 at the Department of Clinical Biochemistry (superviser prof. dr. Janja Marc) in the field of genetics of osteoporosis. Since November 2009 she is working as a Teaching Assistant at the Faculty of Pharmacy, Department of Clinical Biochemistry. In 2011 she completed part of her research and PhD work at Institute of Genetics and Molecular Medicine, University of Edinburgh. She finished her PhD entitled The influence of the proinflammatory cytokines on the RANK/RANKL/OPG in bone tissue of osteoporotic and osteoarthritic patients in 2012. From 2014-2016 she worked at the Institute of Biomedical Sciences, University of Aberdeen as a postdoctoral research fellow on UK Arthritis research project where she gained knowledge in mesenchymal stem cells and regenerative medicine. She returned back to University of Ljubljana, Faculty of Pharmacy in 2016. She is currently leading project entitled Mesenchymal stem cells-the keepers of tissue endogenous regenerative capacity facing up to aging of the musculoskeletal system funded by Slovenian Research Agency.",institutionString:null,institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"357453",title:"Dr.",name:"Radheshyam",middleName:null,surname:"Maurya",slug:"radheshyam-maurya",fullName:"Radheshyam Maurya",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/357453/images/16535_n.jpg",biography:null,institutionString:null,institution:{name:"University of Hyderabad",country:{name:"India"}}},{id:"311457",title:"Dr.",name:"Júlia",middleName:null,surname:"Scherer Santos",slug:"julia-scherer-santos",fullName:"Júlia Scherer Santos",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311457/images/system/311457.jpg",biography:"Dr. Júlia Scherer Santos works in the areas of cosmetology, nanotechnology, pharmaceutical technology, beauty, and aesthetics. Dr. Santos also has experience as a professor of graduate courses. Graduated in Pharmacy, specialization in Cosmetology and Cosmeceuticals applied to aesthetics, specialization in Aesthetic and Cosmetic Health, and a doctorate in Pharmaceutical Nanotechnology. Teaching experience in Pharmacy and Aesthetics and Cosmetics courses. She works mainly on the following subjects: nanotechnology, cosmetology, pharmaceutical technology, aesthetics.",institutionString:"Universidade Federal de Juiz de Fora",institution:{name:"Universidade Federal de Juiz de Fora",country:{name:"Brazil"}}},{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNVJQA4/Profile_Picture_2022-03-07T13:23:04.png",biography:"Dr. Kükürt graduated from Uludağ University in Turkey. He started his academic career as a Research Assistant in the Department of Biochemistry at Kafkas University. In 2019, he completed his Ph.D. program in the Department of Biochemistry at the Institute of Health Sciences. He is currently working at the Department of Biochemistry, Kafkas University. He has 27 published research articles in academic journals, 11 book chapters, and 37 papers. He took part in 10 academic projects. He served as a reviewer for many articles. He still serves as a member of the review board in many academic journals.",institutionString:null,institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"178366",title:"Associate Prof.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",biography:"Volkan Gelen is a Physiology specialist who received his veterinary degree from Kafkas University in 2011. Between 2011-2015, he worked as an assistant at Atatürk University, Faculty of Veterinary Medicine, Department of Physiology. In 2016, he joined Kafkas University, Faculty of Veterinary Medicine, Department of Physiology as an assistant professor. Dr. Gelen has been engaged in various academic activities at Kafkas University since 2016. There he completed 5 projects and has 3 ongoing projects. He has 60 articles published in scientific journals and 20 poster presentations in scientific congresses. His research interests include physiology, endocrine system, cancer, diabetes, cardiovascular system diseases, and isolated organ bath system studies.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"418963",title:"Dr.",name:"Augustine Ododo",middleName:"Augustine",surname:"Osagie",slug:"augustine-ododo-osagie",fullName:"Augustine Ododo Osagie",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/418963/images/16900_n.jpg",biography:"Born into the family of Osagie, a prince of the Benin Kingdom. I am currently an academic in the Department of Medical Biochemistry, University of Benin. Part of the duties are to teach undergraduate students and conduct academic research.",institutionString:null,institution:{name:"University of Benin",country:{name:"Nigeria"}}},{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",biography:"Prof. Shagufta Perveen is a Distinguish Professor in the Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Dr. Perveen has acted as the principal investigator of major research projects funded by the research unit of King Saud University. She has more than ninety original research papers in peer-reviewed journals of international repute to her credit. She is a fellow member of the Royal Society of Chemistry UK and the American Chemical Society of the United States.",institutionString:"King Saud University",institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"49848",title:"Dr.",name:"Wen-Long",middleName:null,surname:"Hu",slug:"wen-long-hu",fullName:"Wen-Long Hu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49848/images/system/49848.jpg",biography:"Wen-Long Hu is Chief of the Division of Acupuncture, Department of Chinese Medicine at Kaohsiung Chang Gung Memorial Hospital, as well as an adjunct associate professor at Fooyin University and Kaohsiung Medical University. Wen-Long is President of Taiwan Traditional Chinese Medicine Medical Association. He has 28 years of experience in clinical practice in laser acupuncture therapy and 34 years in acupuncture. He is an invited speaker for lectures and workshops in laser acupuncture at many symposiums held by medical associations. He owns the patent for herbal preparation and producing, and for the supercritical fluid-treated needle. Dr. Hu has published three books, 12 book chapters, and more than 30 papers in reputed journals, besides serving as an editorial board member of repute.",institutionString:"Kaohsiung Chang Gung Memorial Hospital",institution:{name:"Kaohsiung Chang Gung Memorial Hospital",country:{name:"Taiwan"}}},{id:"298472",title:"Prof.",name:"Andrey V.",middleName:null,surname:"Grechko",slug:"andrey-v.-grechko",fullName:"Andrey V. Grechko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/298472/images/system/298472.png",biography:"Andrey Vyacheslavovich Grechko, Ph.D., Professor, is a Corresponding Member of the Russian Academy of Sciences. He graduated from the Semashko Moscow Medical Institute (Semashko National Research Institute of Public Health) with a degree in Medicine (1998), the Clinical Department of Dermatovenerology (2000), and received a second higher education in Psychology (2009). Professor A.V. Grechko held the position of Сhief Physician of the Central Clinical Hospital in Moscow. He worked as a professor at the faculty and was engaged in scientific research at the Medical University. Starting in 2013, he has been the initiator of the creation of the Federal Scientific and Clinical Center for Intensive Care and Rehabilitology, Moscow, Russian Federation, where he also serves as Director since 2015. He has many years of experience in research and teaching in various fields of medicine, is an author/co-author of more than 200 scientific publications, 13 patents, 15 medical books/chapters, including Chapter in Book «Metabolomics», IntechOpen, 2020 «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology».",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",biography:'Natalia Vladimirovna Beloborodova was educated at the Pirogov Russian National Research Medical University, with a degree in pediatrics in 1980, a Ph.D. in 1987, and a specialization in Clinical Microbiology from First Moscow State Medical University in 2004. She has been a Professor since 1996. Currently, she is the Head of the Laboratory of Metabolism, a division of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation. N.V. Beloborodova has many years of clinical experience in the field of intensive care and surgery. She studies infectious complications and sepsis. She initiated a series of interdisciplinary clinical and experimental studies based on the concept of integrating human metabolism and its microbiota. Her scientific achievements are widely known: she is the recipient of the Marie E. Coates Award \\"Best lecturer-scientist\\" Gustafsson Fund, Karolinska Institutes, Stockholm, Sweden, and the International Sepsis Forum Award, Pasteur Institute, Paris, France (2014), etc. Professor N.V. Beloborodova wrote 210 papers, five books, 10 chapters and has edited four books.',institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"354260",title:"Ph.D.",name:"Tércio Elyan",middleName:"Azevedo",surname:"Azevedo Martins",slug:"tercio-elyan-azevedo-martins",fullName:"Tércio Elyan Azevedo Martins",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/354260/images/16241_n.jpg",biography:"Graduated in Pharmacy from the Federal University of Ceará with the modality in Industrial Pharmacy, Specialist in Production and Control of Medicines from the University of São Paulo (USP), Master in Pharmaceuticals and Medicines from the University of São Paulo (USP) and Doctor of Science in the program of Pharmaceuticals and Medicines by the University of São Paulo. Professor at Universidade Paulista (UNIP) in the areas of chemistry, cosmetology and trichology. Assistant Coordinator of the Higher Course in Aesthetic and Cosmetic Technology at Universidade Paulista Campus Chácara Santo Antônio. Experience in the Pharmacy area, with emphasis on Pharmacotechnics, Pharmaceutical Technology, Research and Development of Cosmetics, acting mainly on topics such as cosmetology, antioxidant activity, aesthetics, photoprotection, cyclodextrin and thermal analysis.",institutionString:null,institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"334285",title:"Ph.D. Student",name:"Sameer",middleName:"Kumar",surname:"Jagirdar",slug:"sameer-jagirdar",fullName:"Sameer Jagirdar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334285/images/14691_n.jpg",biography:"I\\'m a graduate student at the center for biosystems science and engineering at the Indian Institute of Science, Bangalore, India. I am interested in studying host-pathogen interactions at the biomaterial interface.",institutionString:null,institution:{name:"Indian Institute of Science Bangalore",country:{name:"India"}}},{id:"329795",title:"Dr.",name:"Mohd Aftab",middleName:"Aftab",surname:"Siddiqui",slug:"mohd-aftab-siddiqui",fullName:"Mohd Aftab Siddiqui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329795/images/15648_n.jpg",biography:"Dr. Mohd Aftab Siddiqui is currently working as Assistant Professor in the Faculty of Pharmacy, Integral University, Lucknow for the last 6 years. He has completed his Doctor in Philosophy (Pharmacology) in 2020 from Integral University, Lucknow. He completed his Bachelor in Pharmacy in 2013 and Master in Pharmacy (Pharmacology) in 2015 from Integral University, Lucknow. He is the gold medalist in Bachelor and Master degree. He qualified GPAT -2013, GPAT -2014, and GPAT 2015. His area of research is Pharmacological screening of herbal drugs/ natural products in liver and cardiac diseases. He has guided many M. Pharm. research projects. He has many national and international publications.",institutionString:"Integral University",institution:null},{id:"255360",title:"Dr.",name:"Usama",middleName:null,surname:"Ahmad",slug:"usama-ahmad",fullName:"Usama Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255360/images/system/255360.png",biography:"Dr. Usama Ahmad holds a specialization in Pharmaceutics from Amity University, Lucknow, India. He received his Ph.D. degree from Integral University. Currently, he’s working as an Assistant Professor of Pharmaceutics in the Faculty of Pharmacy, Integral University. From 2013 to 2014 he worked on a research project funded by SERB-DST, Government of India. He has a rich publication record with more than 32 original articles published in reputed journals, 3 edited books, 5 book chapters, and a number of scientific articles published in ‘Ingredients South Asia Magazine’ and ‘QualPharma Magazine’. He is a member of the American Association for Cancer Research, International Association for the Study of Lung Cancer, and the British Society for Nanomedicine. Dr. Ahmad’s research focus is on the development of nanoformulations to facilitate the delivery of drugs that aim to provide practical solutions to current healthcare problems.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"30568",title:"Prof.",name:"Madhu",middleName:null,surname:"Khullar",slug:"madhu-khullar",fullName:"Madhu Khullar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/30568/images/system/30568.jpg",biography:"Dr. Madhu Khullar is a Professor of Experimental Medicine and Biotechnology at the Post Graduate Institute of Medical Education and Research, Chandigarh, India. She completed her Post Doctorate in hypertension research at the Henry Ford Hospital, Detroit, USA in 1985. She is an editor and reviewer of several international journals, and a fellow and member of several cardiovascular research societies. Dr. Khullar has a keen research interest in genetics of hypertension, and is currently studying pharmacogenetics of hypertension.",institutionString:"Post Graduate Institute of Medical Education and Research",institution:{name:"Post Graduate Institute of Medical Education and Research",country:{name:"India"}}},{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",biography:"Xianquan Zhan received his MD and Ph.D. in Preventive Medicine at West China University of Medical Sciences. He received his post-doctoral training in oncology and cancer proteomics at the Central South University, China, and the University of Tennessee Health Science Center (UTHSC), USA. He worked at UTHSC and the Cleveland Clinic in 2001–2012 and achieved the rank of associate professor at UTHSC. Currently, he is a full professor at Central South University and Shandong First Medical University, and an advisor to MS/PhD students and postdoctoral fellows. He is also a fellow of the Royal Society of Medicine and European Association for Predictive Preventive Personalized Medicine (EPMA), a national representative of EPMA, and a member of the American Society of Clinical Oncology (ASCO) and the American Association for the Advancement of Sciences (AAAS). He is also the editor in chief of International Journal of Chronic Diseases & Therapy, an associate editor of EPMA Journal, Frontiers in Endocrinology, and BMC Medical Genomics, and a guest editor of Mass Spectrometry Reviews, Frontiers in Endocrinology, EPMA Journal, and Oxidative Medicine and Cellular Longevity. He has published more than 148 articles, 28 book chapters, 6 books, and 2 US patents in the field of clinical proteomics and biomarkers.",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",country:{name:"China"}}},{id:"297507",title:"Dr.",name:"Charles",middleName:"Elias",surname:"Assmann",slug:"charles-assmann",fullName:"Charles Assmann",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/297507/images/system/297507.jpg",biography:"Charles Elias Assmann is a biologist from Federal University of Santa Maria (UFSM, Brazil), who spent some time abroad at the Ludwig-Maximilians-Universität München (LMU, Germany). He has Masters Degree in Biochemistry (UFSM), and is currently a PhD student at Biochemistry at the Department of Biochemistry and Molecular Biology of the UFSM. His areas of expertise include: Biochemistry, Molecular Biology, Enzymology, Genetics and Toxicology. He is currently working on the following subjects: Aluminium toxicity, Neuroinflammation, Oxidative stress and Purinergic system. Since 2011 he has presented more than 80 abstracts in scientific proceedings of national and international meetings. Since 2014, he has published more than 20 peer reviewed papers (including 4 reviews, 3 in Portuguese) and 2 book chapters. He has also been a reviewer of international journals and ad hoc reviewer of scientific committees from Brazilian Universities.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",country:{name:"Brazil"}}},{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",biography:"Dr. Margarete Dulce Bagatini is an associate professor at the Federal University of Fronteira Sul/Brazil. She has a degree in Pharmacy and a PhD in Biological Sciences: Toxicological Biochemistry. She is a member of the UFFS Research Advisory Committee\nand a member of the Biovitta Research Institute. She is currently:\nthe leader of the research group: Biological and Clinical Studies\nin Human Pathologies, professor of postgraduate program in\nBiochemistry at UFSC and postgraduate program in Science and Food Technology at\nUFFS. She has experience in the area of pharmacy and clinical analysis, acting mainly\non the following topics: oxidative stress, the purinergic system and human pathologies, being a reviewer of several international journals and books.",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",country:{name:"Brazil"}}},{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226275/images/system/226275.jfif",biography:"Metin Budak, MSc, PhD is an Assistant Professor at Trakya University, Faculty of Medicine. He has been Head of the Molecular Research Lab at Prof. Mirko Tos Ear and Hearing Research Center since 2018. His specializations are biophysics, epigenetics, genetics, and methylation mechanisms. He has published around 25 peer-reviewed papers, 2 book chapters, and 28 abstracts. He is a member of the Clinical Research Ethics Committee and Quantification and Consideration Committee of Medicine Faculty. His research area is the role of methylation during gene transcription, chromatin packages DNA within the cell and DNA repair, replication, recombination, and gene transcription. His research focuses on how the cell overcomes chromatin structure and methylation to allow access to the underlying DNA and enable normal cellular function.",institutionString:"Trakya University",institution:{name:"Trakya University",country:{name:"Turkey"}}},{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",slug:"anca-pantea-stoian",fullName:"Anca Pantea Stoian",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",biography:"Anca Pantea Stoian is a specialist in diabetes, nutrition, and metabolic diseases as well as health food hygiene. She also has competency in general ultrasonography.\n\nShe is an associate professor in the Diabetes, Nutrition and Metabolic Diseases Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania. She has been chief of the Hygiene Department, Faculty of Dentistry, at the same university since 2019. Her interests include micro and macrovascular complications in diabetes and new therapies. Her research activities focus on nutritional intervention in chronic pathology, as well as cardio-renal-metabolic risk assessment, and diabetes in cancer. She is currently engaged in developing new therapies and technological tools for screening, prevention, and patient education in diabetes. \n\nShe is a member of the European Association for the Study of Diabetes, Cardiometabolic Academy, CEDA, Romanian Society of Diabetes, Nutrition and Metabolic Diseases, Romanian Diabetes Federation, and Association for Renal Metabolic and Nutrition studies. She has authored or co-authored 160 papers in national and international peer-reviewed journals.",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",country:{name:"Romania"}}},{id:"279792",title:"Dr.",name:"João",middleName:null,surname:"Cotas",slug:"joao-cotas",fullName:"João Cotas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/279792/images/system/279792.jpg",biography:"Graduate and master in Biology from the University of Coimbra.\n\nI am a research fellow at the Macroalgae Laboratory Unit, in the MARE-UC – Marine and Environmental Sciences Centre of the University of Coimbra. My principal function is the collection, extraction and purification of macroalgae compounds, chemical and bioactive characterization of the compounds and algae extracts and development of new methodologies in marine biotechnology area. \nI am associated in two projects: one consists on discovery of natural compounds for oncobiology. The other project is the about the natural compounds/products for agricultural area.\n\nPublications:\nCotas, J.; Figueirinha, A.; Pereira, L.; Batista, T. 2018. An analysis of the effects of salinity on Fucus ceranoides (Ochrophyta, Phaeophyceae), in the Mondego River (Portugal). Journal of Oceanology and Limnology. in press. DOI: 10.1007/s00343-019-8111-3",institutionString:"Faculty of Sciences and Technology of University of Coimbra",institution:null},{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/279788/images/system/279788.jpg",biography:"Leonel Pereira has an undergraduate degree in Biology, a Ph.D. in Biology (specialty in Cell Biology), and a Habilitation degree in Biosciences (specialization in Biotechnology) from the Faculty of Science and Technology, University of Coimbra, Portugal, where he is currently a professor. In addition to teaching at this university, he is an integrated researcher at the Marine and Environmental Sciences Center (MARE), Portugal. His interests include marine biodiversity (algae), marine biotechnology (algae bioactive compounds), and marine ecology (environmental assessment). Since 2008, he has been the author and editor of the electronic publication MACOI – Portuguese Seaweeds Website (www.seaweeds.uc.pt). He is also a member of the editorial boards of several scientific journals. Dr. Pereira has edited or authored more than 20 books, 100 journal articles, and 45 book chapters. He has given more than 100 lectures and oral communications at various national and international scientific events. He is the coordinator of several national and international research projects. In 1998, he received the Francisco de Holanda Award (Honorable Mention) and, more recently, the Mar Rei D. Carlos award (18th edition). He is also a winner of the 2016 CHOICE Award for an outstanding academic title for his book Edible Seaweeds of the World. In 2020, Dr. Pereira received an Honorable Mention for the Impact of International Publications from the Web of Science",institutionString:"University of Coimbra",institution:{name:"University of Coimbra",country:{name:"Portugal"}}},{id:"61946",title:"Dr.",name:"Carol",middleName:null,surname:"Bernstein",slug:"carol-bernstein",fullName:"Carol Bernstein",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61946/images/system/61946.jpg",biography:"Carol Bernstein received her PhD in Genetics from the University of California (Davis). She was a faculty member at the University of Arizona College of Medicine for 43 years, retiring in 2011. Her research interests focus on DNA damage and its underlying role in sex, aging and in the early steps of initiation and progression to cancer. In her research, she had used organisms including bacteriophage T4, Neurospora crassa, Schizosaccharomyces pombe and mice, as well as human cells and tissues. She authored or co-authored more than 140 scientific publications, including articles in major peer reviewed journals, book chapters, invited reviews and one book.",institutionString:"University of Arizona",institution:{name:"University of Arizona",country:{name:"United States of America"}}},{id:"182258",title:"Dr.",name:"Ademar",middleName:"Pereira",surname:"Serra",slug:"ademar-serra",fullName:"Ademar Serra",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/182258/images/system/182258.jpeg",biography:"Dr. Serra studied Agronomy on Universidade Federal de Mato Grosso do Sul (UFMS) (2005). He received master degree in Agronomy, Crop Science (Soil fertility and plant nutrition) (2007) by Universidade Federal da Grande Dourados (UFGD), and PhD in agronomy (Soil fertility and plant nutrition) (2011) from Universidade Federal da Grande Dourados / Escola Superior de Agricultura Luiz de Queiroz (UFGD/ESALQ-USP). Dr. Serra is currently working at Brazilian Agricultural Research Corporation (EMBRAPA). His research focus is on mineral nutrition of plants, crop science and soil science. Dr. Serra\\'s current projects are soil organic matter, soil phosphorus fractions, compositional nutrient diagnosis (CND) and isometric log ratio (ilr) transformation in compositional data analysis.",institutionString:"Brazilian Agricultural Research Corporation",institution:{name:"Brazilian Agricultural Research Corporation",country:{name:"Brazil"}}}]}},subseries:{item:{id:"9",type:"subseries",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11405,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,series:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343"},editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",slug:"cecilia-cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",slug:"gil-goncalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",slug:"johann-f.-osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",slug:"marco-chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}}]},publishedBooks:{paginationCount:0,paginationItems:[]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/201080",hash:"",query:{},params:{id:"201080"},fullPath:"/profiles/201080",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()