\r\n\t[2] J. V. Moloney, A. C. Newell. Nonlinear Optics. Westview Press, Oxford, 2004.
\r\n\t[3] M. Kauranen, A. V. Zayats. Nonlinear Plasmonics. Nature Photonics, vol. 6, 2012, pp. 737-748.
\r\n\t[4] P. Dombi, Z. Pápa, J. Vogelsang et al. Strong-field nano-optics. Reviews of Modern Physics, vol. 92, 2020, pp. 025003-1 – 025003-66.
\r\n\t[5] N. C. Panoiu, W. E. I. Sha, D.Y. Lei, G.-C. Li. Nonlinear optics in plasmonic nanostructures. Journal of Optics, 20, 2018, pp. 1-36.
\r\n\t[6] A. Krasnok, A. Alu. Active nanophotonics. Proceedings of IEEE, vol. 108, 2020, pp. 628-654.
\r\n\t[7] M. Lapine, I.V. Shadrivov, Yu. S. Kivshar. Colloquium: Nonlinear metamaterials. Reviews of Modern Physics, vol. 86, 2014, pp. 1093-1123.
\r\n\t[8] Iam Choon Khoo. Nonlinear optics, active plasmonics and metamaterials with liquid crystals. Progress in Quantum Electronics, vol. 38, 2014, pp. 77- 117.
\r\n\t
The mankind has relied on different sources of energy during its economic development throughout the centuries. Whereas coal has been the main energy source in the nineteenth century, oil was in twentieth one. The possible scenarios for remediation of greenhouse effect due to carbon dioxide released by energy production and industry are rendered to minimization of emissions and its recycling. The latter is accomplished by the production of energy sources and chemicals of practical importance from carbon dioxide.
The emission minimization consists in two approaches: replacement of the fossil fuels by renewable ones (solar, wind energies, biomass, etc.) or improvement of energy efficiency in all human activities in different ways. The distribution of energy sources for the European Union for the year 2016 is shown in Figure 1. One can see that the share of renewables is bigger than the powerful nuclear energy with a leading role in energy production. The biggest part (more than 60%) of the renewable energy sources is assigned to the biomass and waste utilization.
Production of primary energy, EU-28, 2016 (% of total, based on tons of oil equivalent). Source: Eurostat (nrg_100a) and (nrg_107a) [1].
One of the ways to cope with the problem of carbon dioxide emissions is to close the carbon cycle using renewable fuels from presently grown biomass, by recycling the released carbon dioxide by the present vegetation by photosynthesis. This is the philosophy of biomass utilization as energy source. The most spread biofuels in the present period are biogas, produced by anaerobic digestion of organic waste, bioethanol, produced from cereals and/or lignocellulosic residues and biodiesel, produced by trans-esterification of lipids with methanol or ethanol.
In this review, we shall concentrate ourselves to the application of biogas as renewable energy source and also as a feedstock for the production of chemicals and other fuels.
Biogas is produced by anaerobic digestion of organic matter of natural origin [2, 3, 4]. The main advantage of this process consists in the combined environmental and energy effect.
Biogas consists mainly of methane, carbon dioxide, and traces of hydrogen sulfide and mercaptanes, as well as residual amounts of oxygen and nitrogen. Small amounts of ethane and hydrogen are possible too. Biogas is obtained by anaerobic digestion of organic waste of biologic origin. The most exploited ones are of agricultural origin (manure, poultry litter, hay, and straw) [5], from food industry, stillage from ethanol production [6], landfill gas, activated sludge from wastewater treatment plants, etc. One of the simplest and the mostly spread flow sheets for biogas production and utilization is shown in Figure 2 [7].
Illustration of biogas cycle, formation, and applications. Scheme taken from [7].
The main fuel in the scheme, shown in Figure 2, is biogas, utilized for energy (thermal one and electricity) or fuel for transport. The carbon dioxide released after combustion is absorbed by the vegetation by photosynthesis, thus closing the carbon cycle. The residual sludge from the digester is rich of organic nitrogen, and therefore, it is suitable for fertilizing the soil.
In the past, biogas has been widely spread as an energy source in the households in the countries of Africa and Asia. Although quite primitive as design, the anaerobic digesters have solved the problems with autonomous energy supply for many households in India, Pakistan, Indo-China, etc.
Later, biogas became very important and essential share as energy source for the countries in Western Europe and Northern America. Besides heating, biogas is now more frequently used for the production of electricity and transport fuel in many municipalities. It is already added to the pipelines for natural gas distribution of household purposes.
A new trend in biogas production and utilization is the so-called biorefinery concept. This concept not only presumes the use of renewable biomass as energy source but also combines it with the production of chemicals, such as plastics, solvents, and synthetic fuels [8]. An example for this is the Danish Bioethanol Concept presented by Zafar [9]. It comprises the ethanol production from lignocellulosic biomass with biogas production of the stillage and cellulose waste. The residual cellulose waste is additionally recycled after wet-oxidation for additional conversion into biogas. A detailed review on biogas applications is published recently by Sawyerr et al. [10].
The variety of anaerobic digesters for biogas production is very broad: from the very primitive pits to most sophisticated bioreactors, such as the floating drum reactor, the upflow anaerobic sludge blanket (UASB) reactor [11, 12, 13], and multistage bioreactor with separated compartments [14, 15]. The choice for anaerobic digester depends on the origin of substrate, and the intermediates are converted during the consecutive steps of hydrolysis, acidification, acetogenesis, and final methanation. In case an accumulation of fatty acids takes place, the reactor with separated compartments is preferable. The most exploited digester for biogas production from domestic waste, activated sludge, and manure is the UASB reactor.
The mostly used substrates for biogas production are the manure from cattle, pigs, and poultry litter. This application competes with the traditional use of manure for soil fertilization. When the amounts of manure prevail the demand for fertilization, biogas production is welcome because double problem is solved: on the one hand, the waste is destroyed and removed, and on the other hand, renewable energy is produced saving money and contributing for carbon cycle closing. That is why attention is paid to the utilization of cattle dung, lignocellulose waste, waste from food and beverage processing, activated sludge from wastewater treatment plants, and household solid waste with landfill gas use. The waste treatment is associated with energy production and reduction of the energy demand of the main enterprise.
Crude glycerol is the main residue from biodiesel production. The amount of this waste product is about 10% from the produced fuel. The poor quality of this glycerol, containing water, potassium hydroxide, and some methanol makes it non-suitable for market purposes even after purification. One alternative utilization of this residual glycerol is in its direct conversion into biogas, thus supplying the biodiesel plant with energy simultaneously. However, as a very simple and digestible substrate, glycerol yields large amounts of organic acids as intermediates, leading to strong inhibition of methanogenic bacteria [16, 17, 18]. That is why glycerol must be used as substrate for biogas production very cautiously with the addition of small amounts, thus making this process with little practical use. It is reported, however, that small additions of glycerol to other basic substrates, i.e. manure, can boost biogas production, as reported by Robra et al. [19] and Astals et al. [20].
Food industry is also a good source for biogas production.
Traditional biogas contains approximately 60% (vol.) methane, almost 40% carbon dioxide, small amounts of ethane and hydrogen (less than 0.5% together), hydrogen sulfide and mercaptanes (some ppm), humidity, and traces of oxygen. Its net energy capacity is ca. 24 MJ/nm3 at methane content of 60% (vol.). The first and most direct use of biogas is for heating purposes for maintenance of the equipment and the farm, where the animal dung is treated. The same applies for its use for domestic purposes, besides heating, e.g., cooking and lighting, as firstly used in Asian and African countries.
Another more sophisticated use of the biogas heating capacity is its utilization as heat energy in beverage and ethanol production. There the stillage remaining after distillation is recycled for biogas production. The resulting biogas is combusted for boiler heating and for energy for operation of distillation columns. Thus, the problems with the treatment of the residual stillage are solved by conversion into biogas, thus mitigating the problems with energy supply and spending. Calculations show that in some cases, stillage utilization as biogas can cover almost the whole energy demand for heating the distillation process. Besides these straightforward applications, biogas is also injected into the grid for natural gas supply for domestic use [21, 22]. For this purpose, a preliminary scrubbing of the carbon dioxide and sulfur compounds is necessary.
Biogas is suitable for generation of electric power in combination with heat recovery. Usually the gas is combusted in engines with internal combustion coupled to turbine. The released heat (being around 60% of the utilized energy) is used for heating purposes for maintenance of the anaerobic digester or for household needs. This method is widely applied for the treatment of activated sludge, a residue from municipal wastewater treatment plants [23, 24].
Electricity production by gas turbines can be applied by biogas as a fuel, thus replacing the natural gas for small-scale applications (or power within 25–100 kW).
The use of biogas as a fuel for civil transport and road vehicles instead of natural gas is already spread in Western Europe and the United States [25]. There are many vehicles in Sweden operating on biogas in the urban public transport [26].
Another very attractive application of biogas for electricity production is its use in fuel cells. The specialized cells for these purposes are described briefly by O’Hayre et al. [27]. Prior to biogas feed, carbon dioxide and sulfur compounds must be removed by scrubbing to avoid corrosion and catalyst poisoning and to rise the gas energy capacity. A sketch of such a fuel cell is shown in Figure 3, cf. [28].
Principal sketch of methane-driven fuel cell, from [28].
The classic process for methane-driven fuel cells is to convert catalytically by steam reforming methane into a mixture of carbon monoxide and hydrogen and to use the latter in a traditional hydrogen/oxygen fuel cell to generate electricity. The advantages of fuel cell applications with methane as a fuel compared to the traditional heat power stations consist in their higher efficiency, clean waste gases (containing almost only carbon dioxide), and higher efficiency at low loads than the gas turbine equipment [29]. Moreover, the released heat can be utilized for different purposes; the main one is to maintain the temperature regime in the fuel cell. There are many practical applications of these methods. It is already widely commercialized. A disadvantage of this method is the necessity of consequent reactions of steam reforming and carbon monoxide removal as well as the operation at high temperatures (about 750°C), being harmful for the metal parts of the equipment [30, 31]. Higher temperatures are preferred to avoid coke deposition on the catalyst [31].
There are new efforts to lower the operation temperature to 500°C in order to keep the equipment durability [32, 33]. Another improvement of the technology is to use the mixture of carbon monoxide and hydrogen as a fuel simultaneously, thus simplifying the whole process, but applying new catalytic process.
The most attractive option is to convert methane (biogas, respectively) into electricity in one step, thus avoiding the steam reforming and carbon dioxide removal. There are some new studies showing direct catalytic oxidation of methane in the anodic space of solid oxide fuel cells (SOFCs), with direct activation of the C-H bonds in the methane molecule [28, 34, 35, 36]. A platinum catalyst was used for this purpose at low temperatures, e.g., 80°C. However, the catalyst deactivates, and the process is limited by methane diffusion in the anodic space. As a result, the power density is still low for practical use.
Besides as a fuel, biogas could be used as a feedstock for synthetic organic fuel production. There are studies claiming for biogas recovery as fuels applying catalytic auto-reforming. Another approach is the dry reforming consisting in converting the equimolar mixture of methane and carbon dioxide into synthesis gas (an equimolar mixture of carbon monoxide and hydrogen).
Afterward, this synthesis gas is converted into a mixture of light hydrocarbons by the catalytic Fischer-Tropsch process. The resulting Fischer-Tropsch process yields liquid hydrocarbon fuels (methanol and dimethyl ether). The intrinsically high-energy density of these fuels and their transportability make them highly desirable. Such synthetic fuels do not contain any sulfur. In addition, methanol (arguably the “simplest” synthetic carbonaceous fuel) is a candidate both as a hydrogen source for a fuel cell vehicle and indeed as a transport fuel, and dimethyl ether is viewed as a “superclean” diesel fuel [36]. It is well known that methanol is a starting material in chemical industry. It is a liquid at room temperature and has much easier storage and transport capabilities than alternatives such as methane and hydrogen. Methanol is used as solvent, gasoline additive, and a chemical feedstock for production of biodiesel and other chemicals of high value. Therefore, the wide application of methanol motivates its large-scale production, which is ever increasing.
However, presently, the dominant technology of methanol is a two-step catalytic process, which is too expensive. A large number of industrial-scale chemical manufacturing processes are currently operated worldwide on the basis of strongly endothermic chemical reactions. The steam reforming of hydrocarbons to yield syngas and hydrogen is a classic example:
The above, highly endothermic reaction is used worldwide for the high-volume production of “merchant hydrogen” in the gas, food, and fertilizer industries, i.e., other portions of energy have to be spent with the consequent air pollution by carbon dioxide.
At present, a relevant technology for methanol production resides in the transformation of CO2 and CH4 to molecules having industrial added values. Among such technologies, a great attention is focused on the production of synthesis gas (gaseous mixture of CO and H2) that constitutes a versatile building block for subsequent production of methanol or chemical intermediates in petrochemical industries. Methanol is still produced on a world scale from synthesis gas, which is combination of varying amounts of H2, CO, and CO2 (at 200–300°C, 50–100 bar), which is itself product of steam reforming of methane (SRM; at ca. 800°C over Ni-based catalyst), followed by further conversion processes such as Fischer-Tropsch (FT) synthesis. This two-step process incurs high energy and capital demands. Additionally, this process gives many other light and heavy weight co-products along with the methanol product. Therefore, additional energy and cost in the conventional methanol plants are directed to the separation of these coproducts from methanol prior to the final deposition of product.
The direct synthesis of methanol from syngas requires a H2/CO ratio of about 2 [37, 38]. Since the syngas produced by dry reforming of methane (DRM) is too poor of H2 (H2/CO ≤ 1) to be fed to a FT synthesis unit, the bi-reforming of methane (BRM), combining DRM with steam reforming of methane (SRM) (H2/CO = 3) and the utilization of the most important two greenhouse gases CH4 and CO2 with water, may yield a syngas with ratio close to 2, the so-called “metgas”:
To date, only one plant with the combination of steam and dry reforming has been recently demonstrated by the Japan Oil, Gas, and Metals National Cooperation. No other industrial technology for DRM has been developed because the selection and design of suitable reforming catalyst remain an important challenge. Ni-based catalysts are the most attractive candidates for large-scale industrial applications due to their high activity in DRM and SRM [39, 40, 41, 42, 43], low cost, and wide availability compared to noble metals. However, they are sensitive to deactivation caused by the metal particles sintering and carbon formation at high reaction temperature of reforming processes. Development of selective and coke-resistance modified Ni-based reforming catalysts is a key challenge for successful application of bi-reforming for methanol production. Modifying Ni catalysts with suitable promoters and supported on reducible metal oxide carriers will give the opportunity to develop active and stable catalysts for bi-reforming of methane.
A “super-dry” CH4 reforming reaction for enhanced CO production from CH4 and CO2 was developed [44]. Ni/MgAl2O4 was used as a CH4 reforming catalyst, Fe2O3/MgAl2O4 was used as a solid oxygen carrier, and CaO/Al2O3 was used as a CO2 sorbent. The isothermal coupling of these three different processes resulted in a higher CO production than conventional dry reforming by avoiding back reactions with water. Equation (3) shows the global reaction of this two-step process, in which CO and H2O are inherently separated because of the two-step process configuration:
It is important to note that despite the apparently higher endothermic effect of the super-dry reforming process than conventional DRM (Eq. 1), the required heat input per mole CO2 converted is much lower (110 kJ/mol CO2 compared to 247 kJ/mol CO2). Finally, given the availability of a renewable source of H2, applications are possible where CO and H2 can be combined in different ratios for the formation of chemicals or fuels [45, 46]. Indeed, an efficient and separate production of high purity CO and H2 would further establish the role of syngas as a versatile and flexible platform mixture.
All these methods and techniques are applicable when biogas is available. Some other applications are described briefly below.
First of all, biogas must be purified for sulfur compounds prior to its use [47]. Afterward, methane and carbon dioxide have to be separated by membrane processes using gas-liquid systems [48] or swing pressure adsorption [49]. Once methane and carbon dioxide are separated, each of them has its own route for further application. Besides the already mentioned applications as a fuel for transport and energy purposes, dry reforming and steam reforming to obtain synthesis gas, the purified methane can be converted into light hydrocarbons, e.g., ethane and ethylene by advanced methods, like the so-called VYJ process [50, 51, 52, 53]. By this method, methane is converted in one step into ethylene by catalytic or electrocatalytic reaction [54, 55, 56].
High yields up to 88% in total are attained [50]. The rest of nonreacted methane is trapped in molecular sieves and recycled to the reactor [50, 53, 54]. In this way, the use of methane reaches 97% with an ethylene yield of 85% [50].
As ethylene is a basic feedstock for the mostly spread polymerizations and many value-added chemicals, it is clear that this way of biogas utilization is quite promising one.
The usual criteria for the feasibility of an anaerobic digestion technology are the type of digester, the operation temperature, the necessary retention time of the substrate in the reactor, the substrate acidity (the initial pH value), and the presence of certain chemicals in the inlet slurry.
However, the most important one is energy demand for the biogas formation and the energy potential of the produced biogas.
There are two typical temperature ranges for biogas production: mesophilic one (at 30–35°C) and thermophilic one (at 55–60°C). Different genera of methanogenic microorganisms are capable to accomplish the processes in those two cases. The advantages of the thermophilic regime are in the higher production rate and the lack of pathogens in the outlet slurry. However, the energy input for maintenance of this regime is higher than for the mesophilic one.
The question of the energy demand for any industrial process is of crucial importance for its economic reliability. The same applies to biogas production.
There are some methodologies for the estimation of the feasibility of biogas production [57, 58]. They all involve the demand of heat for temperature maintenance and electricity for mechanical operations (stirring, pumping, and transport) and comparison to the energy yield after anaerobic digestion.
Generally, the operations for a certain flowsheet are separated into production processes and support ones. The production processes in the considered case are the reception of the substrate and its storage, pre-treatment of feed (dilution, pH adjustment, acid hydrolysis, etc.), and anaerobic digestion with biogas production. The removal of the digestate and its storage and processing are also included. This set of processes is called as Level 1 [57].
Once biogas is produced, it could be used for direct heat and/or electricity production and supplied to customers or for own use (Level 2). More sophisticated operations, such as gas cleaning, upgrading (i.e., removal of carbon dioxide), and compressing the upgraded gas, are required if the gas will be distributed by the gas distribution grid or for some chemical applications.
The methodologies for energy demand evaluation consist in the inventory of all such processes and auxiliary ones with their energy demand per unit production (i.e., amount of produced biogas with certain energy potential). Then, the overall energy demand is compared to the biogas yield with its energy potential, and the percentage of the energy input to the overall yield is a measure for feasibility of the studied technology.
The structures of the energy demand for different flow sheets and the weight of different subprocesses depend on the substrate properties (particles size, chemical structure and content, moisture, and total solid content) and the amount to be treated, the digester construction and design.
Berglund and Borjesson [58] proposed a methodology based on the life-cycle perspective including the energy required for the production of the substrates (including crop growth, harvesting, transport, etc.). The energy efficiency is defined by the ratio of the energy input to the energy yield of the produced biogas. It was found that the energy input corresponds mainly to 15–40% of the energy content of the produced biogas. The subprocesses of extensive handling of raw materials may lead to considerably increase the energy input and thus to undermine the feasibility of the entire technology.
In case the gas will be used as a feedstock for other chemical applications (e.g., dry reforming and steam reforming), the operational costs of the processes at Levels 1 and 2 have to be compared to the operational costs for the chemical processes and the prices of the produced chemicals or other final products.
The main disadvantage of biomass produced fuels is the inevitable release of CO2 in the atmosphere after combustion. Therefore, big efforts are made in the recent years for remediation of this adverse effect of greenhouse gas. The best way to cope with this problem is the natural assimilation by the vegetation by photosynthesis, but it is not sufficient due to the very large emissions from industrial sources, energy production, transport, and household. That is why many other methods are proposed and studied in the recent years.
One of them is the direct use of pure carbon dioxide as a solvent in supercritical extraction in the pharmaceutical industry. However, this application is limited and cannot be a substantial solution of the problem. There are many efforts to recycle carbon dioxide to produce different organic chemicals: formic acid, methanol, dimethyl-ether, poly-carbonates, acrylic acid, etc. [59, 60]. All of these methods are applicable for the residual carbon dioxide after separation from biogas. Therefore, not only methane but also carbon dioxide in biogas is valuable source of energy and value-added product.
The data presented here illustrate one of the very important biorefinery approaches to produce simultaneous energy and value-added chemicals from biomass, thus reducing the demand of fossil fuels and resulting in overloading of atmosphere by greenhouse gases. The same applies to the water and soil pollution, since those resulting from biomass processing are nature compatible and facilitate the formation of close energy and material cycle. One of the ways to do it is biogas production from such waste.
At the end, we can say that biogas extends its area of application leading simultaneously to protect the environment by waste treatment, natural gas, and fossil fuel saving, as well as to replace, at least partially, the oil as a feedstock for organic value-added products.
This work was supported by the Bulgarian Ministry of Education and Science under the National Research Program Eplus: Low Carbon Energy for the Transport and Households, grant agreement D01-214/2018.
The authors declare no conflict of interest.
Edited by Jan Oxholm Gordeladze, ISBN 978-953-51-3020-8, Print ISBN 978-953-51-3019-2, 336 pages,
\nPublisher: IntechOpen
\nChapters published March 22, 2017 under CC BY 3.0 license
\nDOI: 10.5772/61430
\nEdited Volume
This book serves as a comprehensive survey of the impact of vitamin K2 on cellular functions and organ systems, indicating that vitamin K2 plays an important role in the differentiation/preservation of various cell phenotypes and as a stimulator and/or mediator of interorgan cross talk. Vitamin K2 binds to the transcription factor SXR/PXR, thus acting like a hormone (very much in the same manner as vitamin A and vitamin D). Therefore, vitamin K2 affects a multitude of organ systems, and it is reckoned to be one positive factor in bringing about "longevity" to the human body, e.g., supporting the functions/health of different organ systems, as well as correcting the functioning or even "curing" ailments striking several organs in our body.
\\n\\nChapter 1 Introductory Chapter: Vitamin K2 by Jan Oxholm Gordeladze
\\n\\nChapter 2 Vitamin K, SXR, and GGCX by Kotaro Azuma and Satoshi Inoue
\\n\\nChapter 3 Vitamin K2 Rich Food Products by Muhammad Yasin, Masood Sadiq Butt and Aurang Zeb
\\n\\nChapter 4 Menaquinones, Bacteria, and Foods: Vitamin K2 in the Diet by Barbara Walther and Magali Chollet
\\n\\nChapter 5 The Impact of Vitamin K2 on Energy Metabolism by Mona Møller, Serena Tonstad, Tone Bathen and Jan Oxholm Gordeladze
\\n\\nChapter 6 Vitamin K2 and Bone Health by Niels Erik Frandsen and Jan Oxholm Gordeladze
\\n\\nChapter 7 Vitamin K2 and its Impact on Tooth Epigenetics by Jan Oxholm Gordeladze, Maria A. Landin, Gaute Floer Johnsen, Håvard Jostein Haugen and Harald Osmundsen
\\n\\nChapter 8 Anti-Inflammatory Actions of Vitamin K by Stephen J. Hodges, Andrew A. Pitsillides, Lars M. Ytrebø and Robin Soper
\\n\\nChapter 9 Vitamin K2: Implications for Cardiovascular Health in the Context of Plant-Based Diets, with Applications for Prostate Health by Michael S. Donaldson
\\n\\nChapter 11 Vitamin K2 Facilitating Inter-Organ Cross-Talk by Jan O. Gordeladze, Håvard J. Haugen, Gaute Floer Johnsen and Mona Møller
\\n\\nChapter 13 Medicinal Chemistry of Vitamin K Derivatives and Metabolites by Shinya Fujii and Hiroyuki Kagechika
\\n"}]'},components:[{type:"htmlEditorComponent",content:'This book serves as a comprehensive survey of the impact of vitamin K2 on cellular functions and organ systems, indicating that vitamin K2 plays an important role in the differentiation/preservation of various cell phenotypes and as a stimulator and/or mediator of interorgan cross talk. Vitamin K2 binds to the transcription factor SXR/PXR, thus acting like a hormone (very much in the same manner as vitamin A and vitamin D). Therefore, vitamin K2 affects a multitude of organ systems, and it is reckoned to be one positive factor in bringing about "longevity" to the human body, e.g., supporting the functions/health of different organ systems, as well as correcting the functioning or even "curing" ailments striking several organs in our body.
\n\nChapter 1 Introductory Chapter: Vitamin K2 by Jan Oxholm Gordeladze
\n\nChapter 2 Vitamin K, SXR, and GGCX by Kotaro Azuma and Satoshi Inoue
\n\nChapter 3 Vitamin K2 Rich Food Products by Muhammad Yasin, Masood Sadiq Butt and Aurang Zeb
\n\nChapter 4 Menaquinones, Bacteria, and Foods: Vitamin K2 in the Diet by Barbara Walther and Magali Chollet
\n\nChapter 5 The Impact of Vitamin K2 on Energy Metabolism by Mona Møller, Serena Tonstad, Tone Bathen and Jan Oxholm Gordeladze
\n\nChapter 6 Vitamin K2 and Bone Health by Niels Erik Frandsen and Jan Oxholm Gordeladze
\n\nChapter 7 Vitamin K2 and its Impact on Tooth Epigenetics by Jan Oxholm Gordeladze, Maria A. Landin, Gaute Floer Johnsen, Håvard Jostein Haugen and Harald Osmundsen
\n\nChapter 8 Anti-Inflammatory Actions of Vitamin K by Stephen J. Hodges, Andrew A. Pitsillides, Lars M. Ytrebø and Robin Soper
\n\nChapter 9 Vitamin K2: Implications for Cardiovascular Health in the Context of Plant-Based Diets, with Applications for Prostate Health by Michael S. Donaldson
\n\nChapter 11 Vitamin K2 Facilitating Inter-Organ Cross-Talk by Jan O. Gordeladze, Håvard J. Haugen, Gaute Floer Johnsen and Mona Møller
\n\nChapter 13 Medicinal Chemistry of Vitamin K Derivatives and Metabolites by Shinya Fujii and Hiroyuki Kagechika
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5706},{group:"region",caption:"Middle and South America",value:2,count:5174},{group:"region",caption:"Africa",value:3,count:1690},{group:"region",caption:"Asia",value:4,count:10249},{group:"region",caption:"Australia and Oceania",value:5,count:889},{group:"region",caption:"Europe",value:6,count:15658}],offset:12,limit:12,total:117458},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"23"},books:[{type:"book",id:"9538",title:"Demographic Analysis - Selected Concepts, Tools, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"f335c5d0a39e8631d8627546e14ce61f",slug:null,bookSignature:"Ph.D. Andrzej Klimczuk",coverURL:"https://cdn.intechopen.com/books/images_new/9538.jpg",editedByType:null,editors:[{id:"320017",title:"Ph.D.",name:"Andrzej",surname:"Klimczuk",slug:"andrzej-klimczuk",fullName:"Andrzej Klimczuk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse - an Interdisciplinary Approach",subtitle:null,isOpenForSubmission:!0,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:null,bookSignature:"Dr. Ersi Abaci Kalfoglou and Dr. Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:null,editors:[{id:"68678",title:"Dr.",name:"Ersi Abaci",surname:"Kalfoglou",slug:"ersi-abaci-kalfoglou",fullName:"Ersi Abaci Kalfoglou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10660",title:"Heritage",subtitle:null,isOpenForSubmission:!0,hash:"14096773aa1e3635ec6ceec6dd5b47a4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10660.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10811",title:"Urban Transition - Perspectives on Urban Systems and Environments",subtitle:null,isOpenForSubmission:!0,hash:"4885cfa30ba6184b0da9f575aee65998",slug:null,bookSignature:"Ph.D. Marita Wallhagen and Dr. Mathias Cehlin",coverURL:"https://cdn.intechopen.com/books/images_new/10811.jpg",editedByType:null,editors:[{id:"337569",title:"Ph.D.",name:"Marita",surname:"Wallhagen",slug:"marita-wallhagen",fullName:"Marita Wallhagen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10911",title:"Higher Education",subtitle:null,isOpenForSubmission:!0,hash:"c76f86ebdc949d57e4a7bdbec100e66b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10913",title:"Indigenous Populations",subtitle:null,isOpenForSubmission:!0,hash:"c5e8cd4e3ec004d0479494ca190db4cb",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10913.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Racism",subtitle:null,isOpenForSubmission:!0,hash:"0737383fcc202641f59e4a5df02eb509",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:11},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:14},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:16},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:51},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:5},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:8},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5156},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"6934",title:"Psycho-Social Aspects of Human Sexuality and Ethics",subtitle:null,isOpenForSubmission:!1,hash:"44731b106aa0d1ab5c64a7394483c7d5",slug:"psycho-social-aspects-of-human-sexuality-and-ethics",bookSignature:"Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/6934.jpg",editedByType:"Edited by",editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",middleName:null,surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10062",title:"Forecasting in Mathematics",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"9a3ad05fef0502040d2a238ad22487c0",slug:"forecasting-in-mathematics-recent-advances-new-perspectives-and-applications",bookSignature:"Abdo Abou Jaoude",coverURL:"https://cdn.intechopen.com/books/images_new/10062.jpg",editedByType:"Edited by",editors:[{id:"248271",title:"Dr.",name:"Abdo",middleName:null,surname:"Abou Jaoude",slug:"abdo-abou-jaoude",fullName:"Abdo Abou Jaoude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editedByType:"Edited by",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10075",title:"Nonlinear Optics",subtitle:"From Solitons to Similaritons",isOpenForSubmission:!1,hash:"b034b2a060292c8511359aec0db1002c",slug:"nonlinear-optics-from-solitons-to-similaritons",bookSignature:"İlkay Bakırtaş and Nalan Antar",coverURL:"https://cdn.intechopen.com/books/images_new/10075.jpg",editedByType:"Edited by",editors:[{id:"186388",title:"Prof.",name:"İlkay",middleName:null,surname:"Bakırtaş",slug:"ilkay-bakirtas",fullName:"İlkay Bakırtaş"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10116",title:"Nano- and Microencapsulation",subtitle:"Techniques and Applications",isOpenForSubmission:!1,hash:"8d92c5999718734b36a0cc3a6af7c7f6",slug:"nano-and-microencapsulation-techniques-and-applications",bookSignature:"Nedal Abu-Thabit",coverURL:"https://cdn.intechopen.com/books/images_new/10116.jpg",editedByType:"Edited by",editors:[{id:"308436",title:"Associate Prof.",name:"Nedal",middleName:null,surname:"Abu-Thabit",slug:"nedal-abu-thabit",fullName:"Nedal Abu-Thabit"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9881",title:"Perovskite and Piezoelectric Materials",subtitle:null,isOpenForSubmission:!1,hash:"8fa0e0f48567bbc50fbb3bfdde6f9a0b",slug:"perovskite-and-piezoelectric-materials",bookSignature:"Someshwar Pola, Neeraj Panwar and Indrani Coondoo",coverURL:"https://cdn.intechopen.com/books/images_new/9881.jpg",editedByType:"Edited by",editors:[{id:"177037",title:"Dr.",name:"Someshwar",middleName:null,surname:"Pola",slug:"someshwar-pola",fullName:"Someshwar Pola"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9394",title:"Genotoxicity and Mutagenicity",subtitle:"Mechanisms and Test Methods",isOpenForSubmission:!1,hash:"9ee7e597358dbbfb5e33d0beb76e6fff",slug:"genotoxicity-and-mutagenicity-mechanisms-and-test-methods",bookSignature:"Sonia Soloneski and Marcelo L. Larramendy",coverURL:"https://cdn.intechopen.com/books/images_new/9394.jpg",editedByType:"Edited by",editors:[{id:"14863",title:"Dr.",name:"Sonia",middleName:null,surname:"Soloneski",slug:"sonia-soloneski",fullName:"Sonia Soloneski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"96",title:"Theory of Computation",slug:"theory-of-computation",parent:{title:"Computer and Information Science",slug:"computer-and-information-science"},numberOfBooks:8,numberOfAuthorsAndEditors:140,numberOfWosCitations:202,numberOfCrossrefCitations:141,numberOfDimensionsCitations:266,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"theory-of-computation",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"3069",title:"Emerging Applications of Cellular Automata",subtitle:null,isOpenForSubmission:!1,hash:"e6a086431e9729115dea24eb62e0ef29",slug:"emerging-applications-of-cellular-automata",bookSignature:"Alejandro Salcido",coverURL:"https://cdn.intechopen.com/books/images_new/3069.jpg",editedByType:"Edited by",editors:[{id:"1120",title:"Dr.",name:"Alejandro",middleName:null,surname:"Salcido",slug:"alejandro-salcido",fullName:"Alejandro Salcido"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2185",title:"Petri Nets",subtitle:"Manufacturing and Computer Science",isOpenForSubmission:!1,hash:"cd35e0811ba40522bbb37a6ad2390bc4",slug:"petri-nets-manufacturing-and-computer-science",bookSignature:"Pawel Pawlewski",coverURL:"https://cdn.intechopen.com/books/images_new/2185.jpg",editedByType:"Edited by",editors:[{id:"4487",title:"Dr.",name:"Pawel",middleName:null,surname:"Pawlewski",slug:"pawel-pawlewski",fullName:"Pawel Pawlewski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1865",title:"Grid Computing",subtitle:"Technology and Applications, Widespread Coverage and New Horizons",isOpenForSubmission:!1,hash:"2150a7cc66612ed7623e9da28de72763",slug:"grid-computing-technology-and-applications-widespread-coverage-and-new-horizons",bookSignature:"Soha Maad",coverURL:"https://cdn.intechopen.com/books/images_new/1865.jpg",editedByType:"Edited by",editors:[{id:"7692",title:"Dr.",name:"Soha",middleName:null,surname:"Maad",slug:"soha-maad",fullName:"Soha Maad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"65",title:"Advances in Grid Computing",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"advances-in-grid-computing",bookSignature:"Zoran Constantinescu",coverURL:"https://cdn.intechopen.com/books/images_new/65.jpg",editedByType:"Edited by",editors:[{id:"17194",title:"Dr.",name:"Zoran",middleName:null,surname:"Constantinescu",slug:"zoran-constantinescu",fullName:"Zoran Constantinescu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4460",title:"Advances in Petri Net",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"eb16f30c8c97de6bf750fde5e04363ae",slug:"advances-in-petri-net-theory-and-applications",bookSignature:"Tauseef Aized",coverURL:"https://cdn.intechopen.com/books/images_new/4460.jpg",editedByType:"Edited by",editors:[{id:"10867",title:"Prof.",name:"Tauseef",middleName:".",surname:"Aized",slug:"tauseef-aized",fullName:"Tauseef Aized"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3780",title:"Petri Nets",subtitle:"Applications",isOpenForSubmission:!1,hash:"b1f80da4d06e2b7b4076e74797319265",slug:"petri-nets-applications",bookSignature:"Pawel Pawlewski",coverURL:"https://cdn.intechopen.com/books/images_new/3780.jpg",editedByType:"Edited by",editors:[{id:"4487",title:"Dr.",name:"Pawel",middleName:null,surname:"Pawlewski",slug:"pawel-pawlewski",fullName:"Pawel Pawlewski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5329",title:"Cognitive Maps",subtitle:null,isOpenForSubmission:!1,hash:"95e2c75f734f41a231480f0272fed2ed",slug:"cognitive-maps",bookSignature:"Karl Perusich",coverURL:"https://cdn.intechopen.com/books/images_new/5329.jpg",editedByType:"Edited by",editors:[{id:"6071",title:"Dr.",name:"Karl",middleName:null,surname:"Perusich",slug:"karl-perusich",fullName:"Karl Perusich"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5330",title:"Petri Net",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"4ebb7d10fa68cbcab11de39a524f2581",slug:"petri_net_theory_and_applications",bookSignature:"Vedran Kordic",coverURL:"https://cdn.intechopen.com/books/images_new/5330.jpg",editedByType:"Edited by",editors:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:8,mostCitedChapters:[{id:"9201",doi:"10.5772/7497",title:"Modelling and Analysis of Traffic Light Control Systems Using Timed Coloured Petri nets",slug:"modelling-and-analysis-of-traffic-light-control-systems-using-timed-coloured-petri-nets",totalDownloads:4481,totalCrossrefCites:2,totalDimensionsCites:18,book:{slug:"petri-nets-applications",title:"Petri Nets",fullTitle:"Petri Nets Applications"},signatures:"Yi-Sheng Huang and Ta-Hsiang Chung",authors:null},{id:"13946",doi:"10.5772/14594",title:"A GPU Accelerated High Performance Cloud Computing Infrastructure for Grid Computing Based Virtual Environmental Laboratory",slug:"a-gpu-accelerated-high-performance-cloud-computing-infrastructure-for-grid-computing-based-virtual-e",totalDownloads:3804,totalCrossrefCites:12,totalDimensionsCites:16,book:{slug:"advances-in-grid-computing",title:"Advances in Grid Computing",fullTitle:"Advances in Grid Computing"},signatures:"Giulio Giunta, Raffaele Montella, Giuliano Laccetti, Florin Isaila and Francisco Javier García Blas",authors:[{id:"18274",title:"Prof.",name:"Giulio",middleName:null,surname:"Giunta",slug:"giulio-giunta",fullName:"Giulio Giunta"},{id:"20639",title:"Dr.",name:"Raffaele",middleName:null,surname:"Montella",slug:"raffaele-montella",fullName:"Raffaele Montella"},{id:"20858",title:"Dr.",name:"Florin",middleName:null,surname:"Isaila",slug:"florin-isaila",fullName:"Florin Isaila"},{id:"21151",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"García Blas",slug:"francisco-javier-garcia-blas",fullName:"Francisco Javier García Blas"},{id:"28062",title:"Prof.",name:"Giuliano",middleName:null,surname:"Laccetti",slug:"giuliano-laccetti",fullName:"Giuliano Laccetti"}]},{id:"38510",doi:"10.5772/47829",title:"A Petri Net-Based Approach to the Quantification of Data Center Dependability",slug:"a-petri-net-based-approach-to-the-quantification-of-data-center-dependability",totalDownloads:2636,totalCrossrefCites:6,totalDimensionsCites:12,book:{slug:"petri-nets-manufacturing-and-computer-science",title:"Petri Nets",fullTitle:"Petri Nets - Manufacturing and Computer Science"},signatures:"Gustavo Callou, Paulo Maciel, Dietmar Tutsch, Julian Araújo, João Ferreira and Rafael Souza",authors:[{id:"30126",title:"Prof.",name:"Paulo",middleName:"Romero Martins",surname:"Maciel",slug:"paulo-maciel",fullName:"Paulo Maciel"},{id:"121996",title:"Prof.",name:"Gustavo",middleName:null,surname:"Callou",slug:"gustavo-callou",fullName:"Gustavo Callou"},{id:"148639",title:"MSc.",name:"Carlos",middleName:null,surname:"Araujo",slug:"carlos-araujo",fullName:"Carlos Araujo"},{id:"148867",title:"Mr.",name:"João",middleName:null,surname:"Ferreira",slug:"joao-ferreira",fullName:"João Ferreira"},{id:"148871",title:"Prof.",name:"Dietmar",middleName:null,surname:"Tutsch",slug:"dietmar-tutsch",fullName:"Dietmar Tutsch"},{id:"157701",title:"BSc.",name:"Rafael",middleName:null,surname:"Souza",slug:"rafael-souza",fullName:"Rafael Souza"}]}],mostDownloadedChaptersLast30Days:[{id:"38493",title:"Construction and Application of Learning Petri Net",slug:"construction-and-application-of-learning-petri-net",totalDownloads:2691,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"petri-nets-manufacturing-and-computer-science",title:"Petri Nets",fullTitle:"Petri Nets - Manufacturing and Computer Science"},signatures:"Liangbing Feng, Masanao Obayashi, Takashi Kuremoto and Kunikazu Kobayashi",authors:[{id:"14090",title:"Prof.",name:"Masanao",middleName:null,surname:"Obayashi",slug:"masanao-obayashi",fullName:"Masanao Obayashi"},{id:"15895",title:"Assistant Prof.",name:"Takashi",middleName:null,surname:"Kuremoto",slug:"takashi-kuremoto",fullName:"Takashi Kuremoto"},{id:"15896",title:"Dr.",name:"Kunikazu",middleName:null,surname:"Kobayashi",slug:"kunikazu-kobayashi",fullName:"Kunikazu Kobayashi"},{id:"15897",title:"Dr.",name:"Liangbing",middleName:null,surname:"Feng",slug:"liangbing-feng",fullName:"Liangbing Feng"}]},{id:"38516",title:"Timed Petri Nets",slug:"timed-petri-nets",totalDownloads:2973,totalCrossrefCites:0,totalDimensionsCites:10,book:{slug:"petri-nets-manufacturing-and-computer-science",title:"Petri Nets",fullTitle:"Petri Nets - Manufacturing and Computer Science"},signatures:"José Reinaldo Silva and Pedro M. G. del Foyo",authors:[{id:"148751",title:"Dr.",name:"José Reinaldo",middleName:null,surname:"Silva",slug:"jose-reinaldo-silva",fullName:"José Reinaldo Silva"}]},{id:"44535",title:"Cellular Learning Automata and Its Applications",slug:"cellular-learning-automata-and-its-applications",totalDownloads:3250,totalCrossrefCites:3,totalDimensionsCites:5,book:{slug:"emerging-applications-of-cellular-automata",title:"Emerging Applications of Cellular Automata",fullTitle:"Emerging Applications of Cellular Automata"},signatures:"Amir Hosein Fathy Navid and Amir Bagheri Aghababa",authors:[{id:"21372",title:"Dr.",name:"Amir Hosein",middleName:null,surname:"Fathy Navid",slug:"amir-hosein-fathy-navid",fullName:"Amir Hosein Fathy Navid"}]},{id:"6752",title:"The Role of Public Visual Art in Urban Space Recognition",slug:"the-role-of-public-visual-art-in-urban-space-recognition",totalDownloads:7620,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"cognitive-maps",title:"Cognitive Maps",fullTitle:"Cognitive Maps"},signatures:"Anna Januchta-Szostak",authors:null},{id:"36789",title:"Using Grid Computing for Constructing Ternary Covering Arrays",slug:"using-grid-computing-for-constructing-ternary-covering-arrays",totalDownloads:1813,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"grid-computing-technology-and-applications-widespread-coverage-and-new-horizons",title:"Grid Computing",fullTitle:"Grid Computing - Technology and Applications, Widespread Coverage and New Horizons"},signatures:"Himer Avila-George, Jose Torres-Jimenez, Abel Carrión and Vicente Hernández",authors:[{id:"106782",title:"Dr.",name:"Himer",middleName:null,surname:"Avila-George",slug:"himer-avila-george",fullName:"Himer Avila-George"},{id:"138115",title:"Dr.",name:"Jose",middleName:null,surname:"Torres-Jimenez",slug:"jose-torres-jimenez",fullName:"Jose Torres-Jimenez"},{id:"138249",title:"MSc.",name:"Abel",middleName:null,surname:"Carrión",slug:"abel-carrion",fullName:"Abel Carrión"},{id:"138250",title:"Dr.",name:"Vicente",middleName:null,surname:"Hernández",slug:"vicente-hernandez",fullName:"Vicente Hernández"}]},{id:"38495",title:"Petri Nets Models for Analysis and Control of Public Bicycle-Sharing Systems",slug:"petri-nets-models-for-analysis-and-control-of-public-bicycle-sharing-systems",totalDownloads:2315,totalCrossrefCites:5,totalDimensionsCites:8,book:{slug:"petri-nets-manufacturing-and-computer-science",title:"Petri Nets",fullTitle:"Petri Nets - Manufacturing and Computer Science"},signatures:"Karim Labadi, Taha Benarbia, Samir Hamaci and A-Moumen Darcherif",authors:[{id:"11428",title:"Dr.",name:"Karim",middleName:null,surname:"Labadi",slug:"karim-labadi",fullName:"Karim Labadi"},{id:"145768",title:"Mr.",name:"Taha",middleName:null,surname:"Benarbia",slug:"taha-benarbia",fullName:"Taha Benarbia"}]},{id:"38507",title:"Boolean Petri Nets",slug:"boolean-petri-nets",totalDownloads:1571,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"petri-nets-manufacturing-and-computer-science",title:"Petri Nets",fullTitle:"Petri Nets - Manufacturing and Computer Science"},signatures:"Sangita Kansal, Mukti Acharya and Gajendra Pratap Singh",authors:[{id:"142895",title:"Dr.",name:"Gajendra Pratap",middleName:null,surname:"Singh",slug:"gajendra-pratap-singh",fullName:"Gajendra Pratap Singh"},{id:"144997",title:"Dr.",name:"Sangita",middleName:null,surname:"Kansal",slug:"sangita-kansal",fullName:"Sangita Kansal"},{id:"146140",title:"Dr.",name:"Mukti",middleName:null,surname:"Acharya",slug:"mukti-acharya",fullName:"Mukti Acharya"}]},{id:"36787",title:"Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era",slug:"hierarchy-aware-message-passing-in-the-upcoming-many-core-era",totalDownloads:1789,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"grid-computing-technology-and-applications-widespread-coverage-and-new-horizons",title:"Grid Computing",fullTitle:"Grid Computing - Technology and Applications, Widespread Coverage and New Horizons"},signatures:"Carsten Clauss, Simon Pickartz, Stefan Lankes and Thomas Bemmerl",authors:[{id:"108932",title:"Dr.",name:"Carsten",middleName:null,surname:"Clauss",slug:"carsten-clauss",fullName:"Carsten Clauss"},{id:"113718",title:"Dr.",name:"Stefan",middleName:null,surname:"Lankes",slug:"stefan-lankes",fullName:"Stefan Lankes"},{id:"113722",title:"Prof.",name:"Thomas",middleName:null,surname:"Bemmerl",slug:"thomas-bemmerl",fullName:"Thomas Bemmerl"},{id:"137686",title:"BSc.",name:"Simon",middleName:null,surname:"Pickartz",slug:"simon-pickartz",fullName:"Simon Pickartz"}]},{id:"38508",title:"A Forward On-The-Fly Approach in Controller Synthesis of Time Petri Nets",slug:"a-forward-on-the-fly-approach-in-controller-synthesis-of-time-petri-nets",totalDownloads:1099,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"petri-nets-manufacturing-and-computer-science",title:"Petri Nets",fullTitle:"Petri Nets - Manufacturing and Computer Science"},signatures:"Parisa Heidari and Hanifa Boucheneb",authors:[{id:"133716",title:"Prof.",name:"Hanifa",middleName:null,surname:"Boucheneb",slug:"hanifa-boucheneb",fullName:"Hanifa Boucheneb"},{id:"145832",title:"Dr.",name:"Parisa",middleName:null,surname:"Heidari",slug:"parisa-heidari",fullName:"Parisa Heidari"}]},{id:"38504",title:"A Computationally Improved Optimal Solution for Deadlocked Problems of Flexible Manufacturing Systems Using Theory of Regions",slug:"a-computationally-improved-optimal-solution-for-deadlocked-problems-of-flexible-manufacturing-system",totalDownloads:1419,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"petri-nets-manufacturing-and-computer-science",title:"Petri Nets",fullTitle:"Petri Nets - Manufacturing and Computer Science"},signatures:"Yen-Liang Pan",authors:[{id:"142645",title:"Prof.",name:"Yen-Liang",middleName:null,surname:"Pan",slug:"yen-liang-pan",fullName:"Yen-Liang Pan"}]}],onlineFirstChaptersFilter:{topicSlug:"theory-of-computation",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/199879/christiano-pessanha",hash:"",query:{},params:{id:"199879",slug:"christiano-pessanha"},fullPath:"/profiles/199879/christiano-pessanha",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()