In this book chapter, we review some of the progress made in nanoplasmonics and related optoelectronics phenomena in the field of two-dimensional (2D) materials and the recent 3D Weyl semimetals. We give a brief overview of plasmonics for three-dimensional (3DEG) and two-dimensional electron gases and draw comparisons with graphene, 3D topological insulators, 3D Weyl semimetals, and nanoplasmonics in nanogeometries. We discuss the decay of plasmons into electron-hole pairs and the subsequent thermalization and cooling of the hot carriers. We present our recent results in the fields of plasmonics in different nanostructures made of noble metals, such as Silver, and plasmonics in Dirac systems such as graphene and 3D topological insulators. We show a possibility of dynamically shifting the plasmon resonances in hybrid metal-semiconductor nanostructures. Plasmonics in 3D topological insulator and 3D Weyl semimetals have been least explored in nanoplasmonics although it can provide a variety of interesting physical phenomena involving spin plasmonics and chirality. Due to the inherent large spin-orbit coupling, locked spin-momentum oscillations can exist under special conditions and in the presence of an external laser field. We explore symmetric and antisymmetric modes in a slab of 3D TIs and present their dependences on the thickness of the slab.
Part of the book: Nanoplasmonics