Reported degradation rates for iridium-based catalysts in long-term electrolyzer tests.
\r\n\tFinally, I want to emphasize that, in this book, I expect to have excellent contributons on the subjects other than muscle systems, so that the book will be widely read by people interested in non-muscle motile systems as well as by muscle researchers.
",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:null,priceUsd:null,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"862ba53997da17b644b918fe44e97d4a",bookSignature:"Emeritus Prof. Haruo Sugi",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/7021.jpg",keywords:"Musculo-skeletal system, Cardio-vascular system, Porter myosins, Cellular transport, Motile systems, cell division, Contractile ring formation, Mitotic apparatus, Ciliary Movement, Flagellar Movement, Amoeboid movement, Novel motile systems",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"August 13th 2018",dateEndSecondStepPublish:"September 3rd 2018",dateEndThirdStepPublish:"November 2nd 2018",dateEndFourthStepPublish:"January 21st 2019",dateEndFifthStepPublish:"March 22nd 2019",remainingDaysToSecondStep:"3 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"140827",title:"Emeritus Prof.",name:"Haruo",middleName:null,surname:"Sugi",slug:"haruo-sugi",fullName:"Haruo Sugi",profilePictureURL:"https://mts.intechopen.com/storage/users/140827/images/system/140827.jpg",biography:"Haruo Sugi was appointed instructor in the Depertment of Physiology of the University of Tokyoin 1962, and worked at Columbia University and the National Instututes of Health, USA, from 1965 to 1967. He was a professor and chairman of the Department of Physiology, Teikyo University Medical School from 1973 to 2004, when he became emeritus professor. Professor Sugi organized international symposia on muscle contraction seven times, each followed by publication of proceedings. He also edited 4 books. From 1995 to 2005, Sugi was Cairman of the Muscle Commission in the International Union of Physiological Sciences (IUPS).",institutionString:"Teikyo University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Tokyo",institutionURL:null,country:{name:"Japan"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"6",title:"Biochemistry, Genetics and Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"220812",firstName:"Lada",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/220812/images/6021_n.jpg",email:"lada@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"2631",title:"Current Basic and Pathological Approaches to the Function of Muscle Cells and Tissues",subtitle:"From Molecules to Humans",isOpenForSubmission:!1,hash:"34fa138dc948d7121e2915ac84ea30cf",slug:"current-basic-and-pathological-approaches-to-the-function-of-muscle-cells-and-tissues-from-molecules-to-humans",bookSignature:"Haruo Sugi",coverURL:"https://cdn.intechopen.com/books/images_new/2631.jpg",editedByType:"Edited by",editors:[{id:"140827",title:"Emeritus Prof.",name:"Haruo",surname:"Sugi",slug:"haruo-sugi",fullName:"Haruo Sugi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6694",title:"New Trends in Ion Exchange Studies",subtitle:null,isOpenForSubmission:!1,hash:"3de8c8b090fd8faa7c11ec5b387c486a",slug:"new-trends-in-ion-exchange-studies",bookSignature:"Selcan Karakuş",coverURL:"https://cdn.intechopen.com/books/images_new/6694.jpg",editedByType:"Edited by",editors:[{id:"206110",title:"Dr.",name:"Selcan",surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"62151",title:"Proton Exchange Membrane Water Electrolysis as a Promising Technology for Hydrogen Production and Energy Storage",doi:"10.5772/intechopen.78339",slug:"proton-exchange-membrane-water-electrolysis-as-a-promising-technology-for-hydrogen-production-and-en",body:'\nEighty-five percent of the energy consumed globally is provided by fossil fuels, namely coal, oil, and natural gas [1]. Fossil fuels come from finite resources which will eventually become scarce and difficult to explore. Thus, fossil fuels are considered nonrenewable energy sources [2]. Furthermore, consuming fossil fuels produces greenhouse gases and other byproducts, causing climate change and air pollution. The growing demand for energy requires a rapid shift from fossil fuels to renewable energy sources, such as wind, solar, biomass, hydropower, and geothermal energy [3]. In this context, hydrogen was proposed as a promising candidate for a secondary source of energy as early as 1973 [4]. Being a potential energy carrier in the future, hydrogen plays an important role in the path toward a low-carbon energy structure that is environmentally friendly [5, 6, 7, 8, 9, 10].
\nCurrently, the steam reforming process is the most economical way of producing hydrogen. In fact, as much as 96% of hydrogen is made from hydrocarbon fuels [5], which neither address the dependence on finite resources nor reduce the amount of carbon from the energy structure. An alternative way of producing hydrogen is the power-to-gas strategy where intermittent energy resources are transferred and stored as hydrogen (Figure 1). Here, hydrogen is mainly produced from water electrolysis where water is split into hydrogen and oxygen by supplying electrical energy:
\nSchematic diagram of power-to-gas strategy.
In an electrolyzer, the above reaction is separated by an electrolyte (either in liquid or solid form) into two half reactions. The hydrogen evolution reaction (HER) occurs at the cathode:
\nWhile the oxygen evolution reaction (OER) occurs at the anode:
\nWater electrolysis technologies are classified into three categories based on the applied electrolyte: alkaline water electrolysis, proton exchange membrane (PEM) water electrolysis, and solid oxide water electrolysis [11]. PEM water electrolysis systems provide several advantages over the other two electrolysis technologies, such as higher rate of hydrogen production, more compact design, and greater energy efficiency [12, 13, 14, 15]. Compared to alkaline electrolysis, the solid electrolyte membrane in PEM electrolysis reduces the hydrogen crossover significantly and thus allows for high-pressure operation. In addition, as required by the role of electrolytic hydrogen production in renewable energy storage, dynamic response of PEM water electrolysis is superior to alkaline electrolysis or solid oxide electrolysis. The large quantity of liquid electrolyte in alkaline electrolysis requires the proper temperature to be maintained and could raise issues for a cold start. On the other hand, solid oxide electrolysis operated in a temperature range of 500–700°C is more suitable for constant operation than a dynamic response where the heat-up step could be slow.
\nThe produced hydrogen can have several pathways to different applications (Figure 1). It can be utilized for hydrogen fueling stations to power fuel cell vehicles or feed the combined heat and power (CHP) units for household uses. Moreover, the electrolytic hydrogen can be used as chemical feedstock in methanation after combining with CO2 stream from biogas or flue gas to produce renewable natural gas. Further, the generated hydrogen can also be consumed as a raw material by hydrogen users such as oil refining and semiconductor industry. Finally, the hydrogen can be transferred to electricity when the grid demand is high.
\nHydrogen can also be produced from biomass via pyrolysis or gasification. Wood, agricultural crops and its byproducts, organic waste, animal waste, waste from food processing, and so on are all sources of biomass. Biomass pyrolysis is basically [9]:
\nEmploying catalysts, such as Ni-based catalysts, can enhance the yield of hydrogen from biomass pyrolysis. Moreover, hydrogen production can be improved by introducing steam reforming and water-gas shift reaction to the pyrolysis [9]. For the gasification process, biomass is pyrolyzed at higher temperatures producing mostly gaseous products [9]:
\nIt is beneficial that biomass pyrolysis and gasification can be operated in small scale and at remote locations, which reduces the cost of hydrogen transportation and storage and improves the availability of hydrogen to end consumers [16]. In addition, pyrolysis and gasification can consume a wide range of biomass feedstocks [16]. Therefore, biomass is recognized as a major renewable and sustainable energy source to replace fossil fuel.
\nCurrently, hydrogen storage in high-pressure vessel is the most widely used method [7]. However, hydrogen is pressurized up to 700 bar for practical purposes such as the refueling time at a hydrogen station or the driving range for a fuel cell vehicle [17]. Hydrogen compression to 700 bar consumes a lot of energy that makes the volumetric energy density decrease from 10 to 5.6 MJ/L, much lower than gasoline (34 MJ/L) [6, 17]. Therefore, solid-state storage is usually coupled with high-pressure hydrogen vessels. For example, hydrogen can be stored in the interstitial sites of metal hydride crystals [17]. This method achieves higher volumetric energy density at room temperature than liquid hydrogen and consumes less operating energy for storage. Thus, metal hydride cartridge is suitable for portable application due to the convenience of refill/replace [7, 18]. In addition, with appropriate hydrogen refill and release properties at room temperature, metallic hydrides are good for stationary energy storage [17]. One drawback of solid-state storage is that metallic hydrides contain heavy transition metals, which reduce the gravimetric energy density of the device [19].
\nIn summary, hydrogen offers several advantages as an energy carrier: its combustion produces energy and only water that is carbon-free as a byproduct; it can be produced from renewable and sustainable sources; its energy can be distributed quite easily, in accordance with the end user’s requests and with the development of new technologies for transportation and storage; it may be used in both centralized or distributed energy production [7]. In spite of these advantages, hydrogen has failed to be widely used in energy systems due to numerous barriers, including costs of production and storage and the availability of infrastructure [10]. This chapter focuses on the technological challenges of PEM water electrolyzers for hydrogen production.
\nFigure 2 shows the schematic diagram of PEM water electrolysis. The electrolysis process is an endothermic process and electricity is applied as the energy source. The water electrolysis reaction is thermodynamically possible at potentials higher than 1.23 V vs. RHE (reversible hydrogen electrode). The thermoneutral potential at which the cell can operate adiabatically is 1.48 V vs. RHE. Typical PEM water electrolysis devices operate at potential well over 1.48 V vs. RHE and heat is generated by the reaction [15]. The PEM water electrolysis system, similar to proton exchange membrane fuel cell (PEMFC), anode and cathode is separated by a solid polymer electrolyte (Nafion) of thickness below 0.2 mm. At the anode, water is oxidized to produce oxygen, electrons, and protons. The protons are transported across the electrolyte membrane to be reduced to hydrogen. The catalyst for water oxidation or oxygen evolution is typically iridium, which can withstand the corrosive environment due to high overpotential on the anode. Water is channeled to the anode by a titanium flow field, and a piece of porous titanium mesh is placed between the anode catalyst layer and the water channel serving as the diffusion layer. The cathode configuration is similar to the PEMFC with Pt-based catalyst and a graphite flow field to transport hydrogen. A piece of carbon paper is used as the gas diffusion layer (GDL) placed between the cathode catalyst and the flow field.
\nSchematic diagram of PEM water electrolysis and the fundamental thermodynamic properties.
The hydrogen production rate of ideal electrolysis is proportional to the charge transferred, according to Faraday’s law. It can be expressed as [20]:
\nwhere Ncell is the total number of cells in the system and Icell is the electric current. ηF is the Faraday efficiency, or current efficiency, and is defined as the ratio of ideal electric charge and the practical charge consumed by the device when a certain amount of hydrogen is generated. ηF is usually about 0.95 [20]. The specific energy consumption E (kWh/Nm3) for a given time interval Δt is:
\nAnother important parameter for PEM water electrolysis is the efficiency:
\nwhere HHV is the higher heating value of hydrogen (39.4 kWh/kg at STP). Since PEM water electrolysis is usually supplied by liquid water, the HHV assumes that all the heat from the water is recovered by restoring the water temperature to the initial ambient state [20].
\nSignificant advances are needed in catalyst and membrane materials as well as the labor-intensive manufacturing process for PEM water electrolysis to be cost-effective for wide-spread application in renewable energy systems [21]. The state-of-the-art anode catalyst in conventional PEMWEs is iridium oxide (IrOx) or mixed oxide with ruthenium [22, 23]. Typical catalysts for commercial electrodes have IrOx loading from 1 to 3 mg cm−2 [24]. This level of catalyst loading is too high to meet the long-term cost targets for energy markets [23, 25, 26]. Furthermore, while using current electrolysis technology, the translation of catalyst development from lab scale to the megawatt scale remains challenging in terms of catalyst cost and stability [25].
\nFor Ir- and Ru-based OER catalyst, a balance between activity and stability has been reported [27, 28], which strongly depends on the chemical structure and surface properties of the oxide [23]. The oxide properties, however, are highly sensitive to synthesis conditions. For Ir-based OER catalyst, most synthesis methods involve a calcination step to improve the catalyst stability [29, 30, 31, 32, 33, 34, 35]; however, for this approach, a sacrifice of the OER activity is usually inevitable. Indeed, thermally prepared IrOx shows higher stability but lower activity compared to electrochemically prepared oxide, or hydrous IrOx [30, 31, 35]. The latter is also frequently referred to as amorphous IrOx due to the presence of lower valence Ir (III) oxide [36, 37, 38]. According to reference [39], Ir (III) is the major intermediate species for iridium dissolution. Combining both activity and stability remains a challenge for Ir-based catalysts, and it is the major hurdle that limits the reduction of the anode iridium loading in PEM water electrolysis.
\nThe enhancement of catalyst stability is of equal importance as the reduction of catalyst loading. Long-term operation at high current density up to thousands of hours is particularly challenging with an Ir loading less than 1 mg cm−2. Recent literature has seen a growing number of studies on longer-term electrolysis operation ranging from hundreds to several thousand hours [40, 41, 42, 43, 44, 45, 46, 47] (Table 1). In particular, the best reported stability was on a nanostructured thin film (NSTF) cell, which achieved 5000 hours with a constant current load of 2 A cm−2 and 0.25 mg cm−2 Ir loading [45]. IrOx supported on Ti catalyst with 50 wt% Ir and a low catalyst loading of 0.12 mg cm−2 achieved more than 1000 hours operation at a lower current load of 1 A cm−2 [41]. No supported catalyst, other than titanium supported catalyst has been able to achieve such high catalyst stability. [48]
\nReferences | \nAnode catalyst | \nIr loading, mg cm−2 | \nCathode catalyst | \nPt loading, mg cm−2 | \nElectrode fabrication process | \nActive area | \nTest period, hours | \nOperating temperature, °C | \nOperating current, A cm−2 | \nTest period, hours | \nDegradation rate, μV h−1 | \n
---|---|---|---|---|---|---|---|---|---|---|---|
Grigoriev et al. [40] | \nIr black | \n1.5 | \nPt/Vulcan XC-72 | \n1.0 | \nSpraying | \n25 | \n4000 | \n60 | \n0.5 | \n4000 | \n35.5 | \n
Rozain et al. [41] | \nIrO2/Ti | \n0.12 | \nPt/C, TKK | \n0.25 | \nSpraying | \n25 | \n1000 | \n80 | \n1 | \n1000 | \n27 | \n
Rozain et al. [41] | \nIrO2 | \n0.32/0.1 | \nPt/C, TKK | \n0.25 | \nSpraying | \n25 | \n1000 | \n80 | \n1 | \n1000 | \n110/180* | \n
Siracusano et al. [42] | \nIrO2 | \n0.4 | \nPt/Vulcan XC-72 | \n0.1 | \nSpray-coating | \n5 | \n1000 | \n80 | \n1.0 | \n1000 | \n12 | \n
Rakousky et al. [43] | \nIrO2 and TiO2 | \n2.25 | \nPt/C | \n0.8 | \nCommercial | \n17.64 | \n1150 | \n80 | \n2.0 | \n1150 | \n194 | \n
Lettenmeier et al. [44] | \nIr black | \n1 | \nPt black | \n0.9 | \nCommercial | \n120 | \n400 | \n55–60 | \n2.0 | \n400 | \nNot significant | \n
Lewinski et al. [45] | \nIr-NSTF | \n0.25 | \nPt-NSTF | \n0.25 | \n3 M | \n50 | \n5000 | \n80 | \n2 | \n5000 | \nAverage 6.8 | \n
RSDT Cell-4 | \nIrOx and Nafion | \n0.08 | \nPt/Vulcan XC-72R | \n0.3 | \nRSDT | \n86 | \n4543 | \n80 | \n1.8 | \n4543 | \n36.5–48.7, 11.5 | \n
Wang et al. [46] | \nIr0.7Ru0.3Ox | \n1** | \nPt/C | \n0.4 | \nAir-brush spraying | \n25 | \n400 | \n80 | \n1 | \n400 | \nNot significant | \n
Siracusano et al. [47] | \nIr0.7Ru0.3Ox | \n0.34** | \nPt/Vulcan XC-72 | \n0.1 | \nElectrode fabrication process | \nActive area | \n1.0/3.0 | \n80 | \n1.0/ 3.0 | \n1000 | \n15/23*** | \n
Reported degradation rates for iridium-based catalysts in long-term electrolyzer tests.
Degradation rate at 0.32 and 0.1 mg cm−2 Ir loading, respectively.
Loading of Ir and Ru combined.
Degradation rate at 1.0 and 3.0 A cm−2, respectively.
The OER performance of IrOx strongly depends on the chemical structure and surface properties of the oxide [23]. Before discussing the influence of oxide structure on the electrolyzer performance, a thorough understanding of the OER mechanism is needed. The OER on IrOx consists of three steps forming a closed circle (Figure 3) [39, 49, 50]:
\nCircle of oxygen evolution:
Reaction (9) is fast and in pre-equilibrium. Reaction (10) is the rate-determining step (RDS), and the theoretical Tafel slope of this mechanism is 2RT/3F = 40 mV/dec. Since it is noted that Eq. (11) involves two iridium sites, a binuclear mechanism of OER on IrOx is proposed for Eq. (11) [51]. With the aid of density functional theory (DFT) calculations, Steesgra et al. [52] show that the first step of the binuclear mechanism is the oxidation of Ir (IV) – Ir (IV) to Ir (IV) – Ir (V), which is Eq. (10). Therefore, IrO2∙H2O is considered to be the precursor for the binuclear mechanism. The coverage of Ir (V) increases with the anodic potential until the conditions for the binuclear mechanism are satisfied [39] at the onset of OER.
\nIn a series of studies of iridium dissolution [31, 32, 39, 53], it is proposed that the precursor for dissolution are the oxygenated Ir (III) species (Figure 3). The formation and reduction of higher valence Ir (IV) species pass through an Ir (III) intermediate, which is shared in both OER and iridium dissolution. It is concluded in [39] that iridium dissolution has no direct link with OER activity and that they are two pathways sharing an intermediate species, Ir (III). Thus, it is possible to suppress one without alternating the other [39]. Therefore, the ratio of Ir (IV) to Ir (III) on the IrOx surface is a crucial parameter that controls the iridium dissolution and the OER.
\nAmorphous and nano-sized IrOxs have received much attention as promising OER catalysts due to the co-existence of Ir (III) and Ir (IV) oxidation state [35, 36, 37, 38, 54, 55, 56], forming an oxide termed “iridium oxohydroxide.” For example, using X-ray absorption spectroscopy (XAS) and X-ray absorption near edge spectroscopy (XANES), Minguzzi et al. [37, 38] confirms the co-existence of Ir (III) and Ir (IV) at anodic potentials where OER occurs. However, this does not imply that a mixed IrOx state fundamentally leads to high OER activity. In fact, the OER mechanism (Eqs. (9)–(11)) predicts that Ir (III) and Ir (IV) would certainly co-exist as Eqs. (9)–(11) form a loop. The higher OER activity of mixed Ir (III) and Ir (IV) oxides have been attributed to the presence of electrophilic OI− species [57, 58, 59, 60, 61]. Electrophilic OI− is the precursor for the O-O bond formation according to the binuclear mechanism [52]. The oxygen 2p state probed with near-edge X-ray absorption fine structure (NEXAFS) suggests that electrophilic OI− has a lower energy state compared to the OII− species [61]. The weakly bonded OI− is susceptible to nucleophilic attack from the pre-adsorbed water or hydroxyl groups, promoting the formation of O-O bond [58, 59]. Calcination at a high temperature of “dry” IrOx (OII− species) where electrophilic OI− becomes strongly bonded OII− species and thus the OER activity is reduced [36], in agreement with other studies [30, 31, 35, 62]. However, the “dry” IrOx is more stable against dissolution as the Ir (III) species on the surface is reduced [32, 60].
\nIn addition, the IrOx structure can be modified when a metal oxide support is incorporated with IrOx nanoparticles via the metal/metal oxide support interaction. For example [63], when IrO2 nanoparticles are supported on antimony-doped tin oxide (ATO), the d band vacancy and iridium oxidation decreased due to the interfacial electron charge donation from ATO to iridium, evidenced by the shift of X-ray absorption white line toward lower energy. This is corroborated with the increased Ir-O bonding distances for ATO-supported IrOx from extended X-ray fine structure (EXAFS) analysis, which is consistent with a lower average iridium oxidation state. Such interaction between IrOx and ATO suppressed the growth of higher valent IrOx layer that leads to iridium dissolution, thereby improved catalyst stability [63]. Similar interaction between metal/metal oxide supports was also found for IrO2 supported on TiO2 catalyst where the catalyst stability was enhanced as well [64].
\nMixed bimetallic oxides of iridium and a non-noble metal have been used to optimize the anode catalyst for PEM electrolyzer application [65, 66, 67, 68, 69, 70, 71, 72, 73]. The most apparent benefit of bimetallic oxide is to reduce the iridium loading in the catalyst if the catalyst activity remains comparable or higher compared to pure IrOx. For example, at >10 mol% iridium content in IrO2 + SnO2 mixed oxide the Tafel slope for OER is identical with pure IrO2, suggesting that the surface properties of IrO2 + SnO2 mixed oxide is dominated by IrO2 and behave as pure IrO2 [65]. In particular, iridium content in the 30–90 mol% range shows higher OER performance than pure IrO2 [65].
\nMore importantly, mixed bimetallic oxides modify the electronic or crystal structures of IrOx, which can significantly enhance the OER activity. The bond forming or breaking during OER is governed by the interaction between the O-2p orbital of intermediates with the d orbitals of surface sites of the transition metals [66, 67, 68, 70, 71, 72, 73]. Thus, the OER activity depends on the d-orbital electronic structure of the transitional metals. For example, Sun et al. [73] doped IrOx with copper and obtained enhanced OER activity in acid media at 30–50 mol% concentration. The Cu doping led to an IrO2 lattice distortion due to the CuO6 octahedron’s Jahn-Teller effect and also generated oxygen defects (Figure 4a), which significantly affected the energy distribution of the d-orbitals of Ir sites. The induced partial oxygen defects and the lifted degeneracy of t2g and eg orbitals reduced the energy required for the O-O bond formation, thereby enhanced the OER activity. In another case, Reier et al. [69] prepared Ir-Ni mixed oxide thin film and found a 20-fold enhancement of OER activity compared to pure IrOx thin film. As shown in Figure 4b, the surface Ni elements are leached out during OER and weakened the binding energy of the Ni-depleted oxygen with the lattice, forming oxygen with lower binding energy, and similar to the electrophilic oxygen. This promotes the formation of weakly bonded surface hydroxyls, which govern the overall OER reaction rate and suppress the formation of unreactive divalent = O species on the surface. Furthermore, Tae et al. [70] reported Ir-Co mixed oxide with 5% iridium loading that exhibits excellent OER activity and stability. At anodic potentials, the oxygen vacancy in Co (III) is transferred to Ir (IV) O6 center, leading to the formation of coordinatively unsaturated Ir (VI) O5 structure (Figure 4c), which is highly active for OER.
\n(a) Schematic lattice diagram in the ab plane of IrO2 (left) and substituted by Cu (right). The top row shows Ir-5d orbitals degeneracy of IrO2 (left) and the lift degeneracy and electron redistribution by doping with Cu [
Small particles are usually favorable for higher mass activity due to the high surface area to bulk ratio, which facilitates the reduction of catalyst loading. More importantly, the change of electronic structure is unavoidably accompanied with the change of particle size, as evidenced in the early work on X-ray photoelectron spectroscopy (XPS) [74, 75, 76]. As particle size decreases, the binding energy is shifted to higher levels due to the increase of lattice strain and the coordination reduction [77, 78]. Richter et al. [78] shows that two mechanisms contribute to such an energy shift. The first is the initial state effect caused by the increase of lattice strain as particle size decreases, a result of d-hybridization; the second is the final state relaxation that increases with the decrease of particle size, which results in the stronger screening of the core hole leading to higher binding energy. Small particles show enhanced d-hybridization, which shift the d-band center to lower levels, decreasing the bond strength of the adsorbates during an electrochemical reaction [79].
\nAbbot et al. [34] systematically studied the particle size effect for IrOx in the range of 2 –30 nm. EXAFS analysis reveals that, as the IrOx particle size decreases, the coordination number decreases and the Ir-O bond length increases. The core-level binding energy was thus shifted to higher levels as the particle size decreases, which is in agreement with previous literature [74, 75, 76]. As a result, the iridium-oxygen bonding is weakened as the particle size decreases, leading to higher content of hydroxide, and lower average oxidation state of iridium from Ir (IV) to a combination of Ir (IV) and Ir (III). Based on previous discussions in Section 3.1, surface hydroxide and mixed Ir (IV) and Ir (III) state are favorable for OER. Indeed, Abbot et al. [34] show that the IrOx particles of 2 nm have 10 fold higher OER mass activity and three fold higher turnover frequency compared to the IrOx particles of 30 nm.
\nPerfluorosulfonic acid ionomer provides proton conductivity in the catalyst layer, extends the reaction zone, and improves the catalyst utilization [80, 81]. Ma et al. [82] focused on the effect of ionomer content on the ohmic resistance of PEM electrolyzers with iridium supported on titanium carbide (TiC) as an anode catalyst. Ma et al. [82] showed that increasing the ionomer content from 10 to 40 wt% causes a decrease in PEMWE performance. Using a simple non-linear fit:
\nThe authors derived the ohmic loss contribution in the performance and concluded that higher ohmic resistance is associated with high ionomer content. It is noted that with this non-linear fit method, the obtained ohmic resistance includes contributions from all sources of the membrane electrode assembly (MEA) components, including the ionic resistance. Xu et al. [83] investigated the effect of ionomer content from the voltammetric charge and interfacial resistance perspective. The amount of voltammetric charges in cyclic voltammetry is proportional to the surface active sites [84]. A wider range of ionomer contents, from 5 to 40 wt%, were studied. The highest total charge was achieved at 25 wt% ionomer content, which is in agreement with the optimum PEMWE performance. Based on Butler-Volmer equation, the authors constructed a model to describe the I-V curves and concluded that the optimum ionomer content minimizes the interfacial resistance between the membrane and the electrode.
\nIn a recent study, Bernt and Gasteiger [85] investigated the effect of anode ionomer content by analyzing the voltage loss contribution to the PEMWE performance. The ohmic resistance was found to increase abruptly when the ionomer content is above 20 wt%. This suggests that an electronically insulating film of residual ionomer forms at the electrode/GDL interface when the ionomer volume exceeds the void volume of the catalyst layer, which results in higher contact resistances. Further, such electronic insulation caused higher OER overpotential with >20 wt% ionomer content and thereby decreased the catalyst utilization. After subtracting the voltage losses due to ohmic and kinetic losses, Bernt and Gasteiger [85] attributed to the remaining losses (red diamond) to mass transport (Figure 5). The main path for oxygen removal from the electrode is not permeation but convective transport through the void volume of the anode. Thus, higher ionomer content imposes higher transport resistance for oxygen removal.
\nOverpotentials of PEM electrolyzer MEAs with different anode ionomer content after subtraction of ohmic and kinetics losses. Overpotentials from different sources are represented as different colors. Blue: anode proton conduction resistance; Green: cathode proton conduction resistance; Red: remaining overpotentials due to mass transport loss. Reproduced with permission [
In sum, similar to PEM fuel cell electrodes, the ionomer content is an important parameter for the optimization of PEM electrolyzers. While low ionomer content provides insufficient proton conduction and less accessible surface active sites, high ionomer content induces high interfacial resistance and mass transport loss due to insufficient void volume for oxygen diffusion. PEM electrolyzers are economically beneficial for a large-scale application operating at high current densities (>2 A cm−2) and high pressures (30–45 bar). Thus, optimization of the ionomer content becomes crucial to minimize the cell potential loss at high current and pressure and improve cell efficiency.
\nPower generated from renewable energy sources, such as solar and wind, requires energy storage devices to balance its fluctuation and intermittence because of variable weather conditions [86]. Hydrogen production by water electrolysis has been developed as an alternative technology for energy conversion and storage that can be fitted to renewable energy systems [87, 88]. This section will briefly introduce the role of PEM electrolyzers in power-to-gas, solar, and wind energy systems.
\nPower-to-gas is emerging as a novel energy storage method that uses the surplus electricity from the grid during off-peak periods and converts it to hydrogen through a water electrolysis process [89]. The key technology for this strategy is the electrolyzer, which bridges the power to utilization by producing hydrogen. Electrolyzers must meet the following requirements in order for power-to-gas to become efficient and economically viable [90]: (1) high efficiency of hydrogen production; (2) fast response to power fluctuation; (3) very low minimal load for stand-by; (4) high-pressure operation to reduce the cost of hydrogen compression; and (5) long durability and lifetime. The major drawback of power-to-gas is the low efficiency and high cost of electrolyzers. While PEM electrolyzers offer fast response, high pressure, and the production of pure hydrogen, scaling up to MW scale has been the major technical challenge. As mentioned previously, the major hurdle of this challenge is the cost of catalysts and other MEA components (e.g., the Ti-based bipolar plates).
\nSolar energy conversion into hydrogen by water splitting has been long studied by various research groups due to its easy scale-up nature. The state-of-the-art photocatalytic and photo-electrochemical system has an efficiency of 10 and 5%, respectively, in the direct conversion of solar to hydrogen (STH) [91]. To reduce the price of hydrogen and boost up the efficiency of STH, an electrolyzer cell (EC) can be coupled with a photovoltaic cell (PV), called photovoltaic−water electrolysis system (PV-EC) [92]. The STH efficiency can be increased up to 30%. Further, a direct current to direct current (DC-DC) converter can be implemented between PV and EC (Figure 6). The main role of the converter is maximum power point tracking of the sun light to the EC system. Thus, coupling electrolyzers with highly efficient PVs and with converter assistance, high STH efficiency PV-Conv-EC systems can achieve 20.6% STH efficiency and 78% PV electricity to hydrogen conversion efficiency [92].
\nDesign principle of the PV-Conv-EC system based on an independent PV, the EC performance, and the existence of a converter. (a) Hydrogen power per square centimeter (pH2) and kinetic loss per square centimeter (pkin) at a given current density–voltage (j − V) curve of the PV and EC. The intersection between the PV and EC j − V curve has a lower voltage and a higher current density than the pPV, max point. (b) pH2 and pkin after the DC-DC converter assistance on (a). Reproduced with permission [
Wind power is heavily influenced by meteorological variances and requires balancing power for the load fluctuation. Wind to hydrogen (WTH) strategies by water electrolysis could offer a solution to this problem [9]. Synergy between wind farms and water electrolyzers makes hydrogen a buffer solution to balance the grid power as well as produce hydrogen from surplus wind power [9]. Thus, the wind power can be utilized at its maximum capacity.
\nTable 2 summarizes the commercially available PEM electrolysis systems from 12 major manufacturers worldwide. Note that only the highest capacity from each manufacturer is listed here. Six of the manufacturers are able to achieve a system capacity around 1 MW or higher. The largest system so far is from Hydrogenics, a 15 MW plant with 10 cell stacks capable of producing 3000 Nm3 hydrogen per hour. Giner currently offers a more powerful cell stack, Kennebec stacks, even though its current systems have not yet incorporated this brand of the cell stack. The Kennebec stacks have the largest capacity among all the stacks available from these manufacturers. It has a capacity of 5 MW and is capable of producing 2200 kg of hydrogen per day (that is, 1020 Nm3 per hour). Most of the systems offer high-purity hydrogen with the high delivery pressure that is suitable for on-site storage and fueling. The system consumption of electricity is very close among all the manufacturers, averaged around 5.5 ± 0.5 kWh per Nm3 of hydrogen.
\nManufacturers | \nSystem model | \nH2 production rate, Nm3/hr | \nH2 purity (after purification) | \nInstalled power, MW | \nSystem consumption, kWh/Nm3 of H2 | \nDelivery pressure, bar | \nReferences | \n
---|---|---|---|---|---|---|---|
Hydrogenics | \nHyLYZER-3000 | \n3000 | \n99.998% | \n15 | \n5.0–5.4 | \n30 | \n[93] | \n
Proton Onsite | \nM400 | \n400 | \n>99.9995% | \n2 | \n5 | \n30 | \n[94] | \n
Siemens | \nSilyzer 200 | \n225 | \n99.9% | \n1.25 | \n5.1–5.4 | \n35 | \n[95] | \n
ITM power | \nHGas1000 | \n215 | \n99.999% | \n1.03 | \n5.5 | \n20–80 | \n[96] | \n
Giner | \n200S | \n200 | \n99.999% | \n1 | \n5 | \n40 | \n[97] | \n
AREVA H2Gen | \nE120 | \n120 | \n99.999% | \n0.96 | \n4.8 | \n30 | \n[98] | \n
H-TEC | \nME100/350 | \n66 | \n99.999% | \n0.225 | \n4.9 | \n20 | \n[99] | \n
Kobelco-eco solutions | \nSH60D | \n60 | \n99.9999% | \n0.2 | \n5.5–6.5 | \n8.2 | \n[100] | \n
Treadwell Corp. | \nNA | \n10.2 | \nNA | \nNA | \nNA | \n75.8 | \n[101] | \n
Angstrom Advanced | \nHGH170000 | \n10 | \n99.9999% | \n0.058 | \n5.5 | \n4 | \n[102] | \n
SylaTech | \nHE32 | \n2 | \n99.999% | \n0.01 | \n4.9 | \n30 | \n[103] | \n
GreenHydrogen | \nHyProvide P1 | \n1 | \n99.995% | \n0.01 | \n5.5 | \n50 | \n[104] | \n
Summary of commercial PEM electrolysis systems.
The growing demand for energy and the accompanied environmental issues call for a rapid transition to low-carbon/carbon-free energy structure. In this context, hydrogen serves as an ideal secondary energy source for energy storage and transport. The key technology for hydrogen energy is water electrolysis. In particular, PEM electrolysis has been driven strongly by flexible energy storage in recent years as it offers several advantages compared to alkaline and solid oxide electrolysis. Nowadays, more mega-Watt scale PEM electrolysis systems are available on the market and in the field. However, further technological advancement is still demanded in the field of electrocatalysis and material science to obtain a deeper understanding of catalytic reactions and design new catalysts such that PEM electrolysis is more durable and cost-effective. Furthermore, as PEM electrolysis is but one building block for the future hydrogen economy, efforts in R&D should emphasize the compatibility with other technologies and optimize the synergic effects.
\nThe authors have no conflict of interest to declare.
The Article XII in the Declaration of the Rights of Man and of the Citizen—France—1789, declares that “
The State, through the Police, has to act with legality and attention to the protection of the human person; in other words, “police solutions” to violations of the law must not incur excesses by law enforcement officers. In order to adjust the conduct of law enforcement officers, there is a need to prepare to use force gradually, according to the premise that police action should suit each situation—considering that most police cases do not involve the use of lethal weapons—so, the police response must include nonlethal solutions [2].
\nThe gradual use of force is an internationally recognized concept, which aims to point out the best way, in terms of containment, during police assistance [3]. Resisting the use of nonlethal technologies means exposing public security professionals to irreparable excesses and errors, due to their effects.
\nAmong the nonlethal solutions for the use of force (in response to police incidents) are disabling agents that do not require physical contact between the police and the lawbreaker (for example, pepper spray), with the advantage of maintaining the offender at a safe distance and unable to harm others, including himself and the police officer.
\nWe must be aware of the growing issue of police officers who are injured during police duties. There is great public attention, fully justified and correct, regarding the excessive actions that can result from the confrontation between citizens and police officers, with a primary focus on avoiding lethality in these situations. However, it is important to understand that the State, through its agents, vulnerability is also not desirable, that is, the impediment to the use of lethal actions could be compensated by the access to nonlethal solutions, more immediate equipment, as previously said, the pepper spray is an example.
\nStill with respect to the vulnerability of the police, there is the attack of animals (usually dogs), against police officers or third parties; it also strongly indicates the use of pepper spray as a nonlethal solution. There are reports of criminals who train dogs to attack police officers, or even police dogs; such a condition would be mitigated with the use of pepper spray.
\nUsually, hot peppers are used as a seasoning for food, because of both the characteristic flavor and the peculiar feature of pungent sensation. In the same traditional way, they have also been used as cosmetics and in other forms such as topical stimulants and body creams. Nonetheless, this chapter shows a not-so-common application of hot pepper’s properties, like the so-called pepper spray for defense technology. Since the 1970s, pepper spray is used as a nonlethal defense solution by law enforcement forces and civilians around the world [4].
\nThe irritating effect—when the solution contained in the spray is sprayed on the face—allows for disabling the opponent by providing some advantage in self-defense (or third party), crowd controlling, and dispersing civilian disturbances. The immediate and involuntary closure of the eyelids and lacrimation were the main expected effects. Burning eyes, cough, nasal discharge, difficulty breathing, burning in the mouth, and other reactions occur within seconds of exposure. Those pain effects, together with the psychological (or moral) reflexes, cause temporary disability, thereby allowing police officers to avoid the opponent’s resistance or even counteracts. The temporary incapacitation lasts for about 10–15 min and, after a few hours, the individual self-regains full capacity without any permanent effect, in other words, without irreversible harm. These properties take the pepper spray for defense as a nonlethal defense technology, an alternative to lethal force.
\nThere are cases of serious injuries from the use of pepper spray, like the situations reported were the mechanical damage to the eye by the high-pressure aerosol jet applied directly to the eye [5], but this can be avoided through training and respecting the safe distance for application. Use in closed spaces, or “in door” uses, is dangerous too, because the spray can asphyxiate in closed spaces, for no other reason other than the aerosol taking the place of breathable air. Several authors have studied the permanent injury cases with the use of pepper sprays (when used improperly), and the most important permanent injury is cornea damage, followed by pulmonary injury cases [6, 7, 8, 9, 10]. Nevertheless, in general, the reported cases of death always involve adverse circumstances, due to either the environment or the individual, or even both, which leads to death for reasons other than the single effect of the irritant. The inverse problem is dangerous too, because the inefficiency of the incapacitating properties of the spray solution leads the law agents at risk [11]. Both injuries and inefficiency should be considered when developing pepper spray solutions. The challenge is to find the best formulation that is efficient without causing damage.
\nAlthough there are several types of hot pepper extracts, the most widely used irritant agent in the production of pepper sprays is the oleoresin capsicum (OC) [12]. OC is a viscous liquid extracted from the hot peppers fruit (
Oleoresin can be just a colorant red type (paprika), colorant and pungency type (red pepper), or high pungent type (capsicum). With regard to industrial production, the capsicum OC pepper spray type has been the most supplied to police forces.
\nThe nonivamide (pelargonic acid vanillylamide or PAVA) is a surrogate substance and some manufacturers use it instead of OC or capsicum extracts. This irritant can be found in some pepper extracts at lower concentrations; however, PAVA can be synthetically made, at low costs, and used alone or together with OC in some formulations. PAVA is much less irritating and its effect is felt much later than capsaicin.
\nNotwithstanding, there are formulation improvements by the application of another irritant capsaicin content that presents more homogeneous composition and can be more effortlessly controlled than OC. This irritant is an alternative type of pepper extract named natural capsaicin (N.Cap) [14] that engenders high-quality sprays. In practice, the irritant effect is not so different from OC but have a better-defined chemical composition and other advantages. The first advantage point is the absence of red dyes plus the characteristic seasoning smell of the OC, and the second point is the absence of oils and resins making possible the totally nonflammable solution formulation. Therefore, the N.Cap spray solutions cause just pungent effects and nothing else.
\nThe N.Cap can be purchased from manufacturers that supply common pepper extracts to the pharmaceutical market. The product presents a white crystalline coarse powder with the presence of flat-shaped flakes. The irritant content requirement meets a minimum of 95% capsaicin plus dihydrocapsaicin. The remaining 5% consists of the extraction residues at pharmaceutical levels and by other capsaicinoids. Furthermore, it meets maximum drying loss of 1%, maximum ignition residue of 1%, and residual solvent (methanol) max 3000 ppm (USP-467). It has a melting range of 57–66°C. Metal content is <10.0 ppm and arsenic <2.0 ppm.
\nThe chemical composition of OC depends on several factors—the species of plant, the extraction method, the season of the year in which the crop is harvested, and the region of the plant where it is cultivated—as well as processing way and production. All of these and a lot of other factors contribute to make it difficult to standardize the concentration of irritating agent in pepper spray solutions, thereby leading to a wide range of capsaicin amounts contained in different commercial products and also in separate lots from the same supplier.
\nSince they produce the desired irritant effect, the capsaicinoids are the most important substances present in the OC used in pepper spray solutions. Other substances such as phenols, acids, alcohols, aldehydes, carotenes, esters, oils, and resins are also present in the OC, but cause a little or no irritant effect compared to capsaicinoids. It should be noted that oils and resin compounds are potentially flammable, and they become undesirable by increasing the flammability of the spray solution. If the spray solution has flammable properties, a jet of flame can be produced if there is an ignition source in the path of the spray jet.
\nFurthermore, the OC normally has a strong spice smell, a striking reddish brown color, and has hydrophobic characteristics, thereby requiring organic solvents (or even emulsions) for its complete dissolution. All these features mentioned are undesirable in pepper spray technology.
\nThe OC extraction has wide types of processes, and the most simple is the extraction through ground powder fruits. Organic solvents like hexane, ether, alcohols, acetates, and ethylene dichloride are common extraction liquid phase media. In general, the extractions pass by two or three times, removing and replacing with pure solvent at each time. Other simple extractions consist basically to macerate the fruit with olive oil or other seed oils, but the impurity is high and the standardization is far from ideal to use as a raw material for pepper sprays. Modern processes of extractions are advanced Soxhlet extraction, microwave-assisted extraction, supercritical fluid extraction, ultrasound-assisted extraction, and pressurized liquid extraction. All they are more suitable for better-controlled extractions. However, these methods are very expensive and greatly increase the production costs [13].
\nThe concentration of capsaicinoids in OC, in general, shows variations from 1 to 10%, depending on the type of fruit, solvent, process, and so on. Some types of OC capsicum have an approximate concentration range of 3–6% of capsaicinoids, but some Indian suppliers may have OC with 20% of capsaicinoids [15]. Of course, this large amount of concentrations and side substances present in the OC leads to a difficult standardization of raw material for the pepper spray proposal [12].
\nThe substances so-called capsaicinoids can be represented, in a simple way, by the binding of a vanillylamide group with fatty acids as a principal characteristic molecular structure, where the fatty chain would have 9–11 carbon atoms. The capsicum fruits synthetizes the capsaicinoids in the placenta-fruit region, close to the tissue adjacent to the seeds. This type of metabolite is unique to
From the point of irritant effect, the capsaicin is the main substance in the midst of capsaicinoids compounds, followed by dihydrocapsaicin. The total capsaicinoids content in the fruits has a typical concentration range of 0.1–1.0% on a dry basis [17], but it is not a rule and some species have lowest concentration like 0.003% and others have a far high concentration like 1.86% [18]. In general, the capsaicin and dihydrocapsaicin together correspond to ~90% of the total capsaicinoids present in the ready fruit. The typical distribution is 60–70% capsaicin, 20–30% dihydrocapsaicin, 3–7% nordihydrocapsaicin, ~1% homocapsaicin, and ~ 1% homodihydrocapsaicin. However, this is not true in all cases; once, for example, there is evidence that the degree of fruit maturation and incidence of sunlight in the cultivation area, temperatures, and water availability are important factors in the accumulation and proportion of capsaicinoids in the fruit [19]. Table 1 shows the name, chemical structure, and molecular formula of the major capsaicinoids.
\nName, chemical structure, molecular formula, and CAS number of the major capsaicinoids.
Unfortunately, there are associations between OC and the molecular capsaicin formula in some pepper spray technicians media, thereby leading to erroneous perception that OC and capsaicin are synonymous with the same substance. Nevertheless, the molecular formula C18H27NO3 is not the OC formula but only the capsaicin molecular formula, which is contained in OC.
\nThe biological action of capsaicinoids is complex and multi-targeted mechanisms. The action involves, above all, the activation of peripheral nerve receptors in the mucous membranes, by interactions of the capsaicinoids with the vanilloid transient receptor potential type-1 cation channels (TRPV1). These receptors are normally activated by temperatures between 37 and 45°C when opening the calcium channels and induce reflexes of burn sensation. However, when TRPV1 binds with the capsaicinoids, it causes these channels to open below 37°C and the burn sensation occurs at normal body temperature. This is why capsaicinoids are linked to the sensation of heat [20].
\nFurthermore, the interactions of the TRPV1 with capsaicin are strictly related to pain by nociceptor activation and the release of substance-P. Nociceptor is a nervous sensory receptor responsible for pain mechanisms in the human body [21]. Prolonged contact may cause nerve endings to be desensitized; however, it does not lead to a permanent desensitization state and can be reversed by discontinuing contact.
\nThe capsaicin and dihydrocapsaicin content in the pepper spray solution is determinant for the irritant properties and the disabling effect of the spray. Thus, to evaluate the effectiveness of the disabling properties of the spray, the capsaicinoids concentration in the solution can be measured, particularly the capsaicin together with dihydrocapsaicin [14]. Obviously, the limits to this concentration must take into account the toxicity and security against injury. So, some connections among the concentration and the irritant effect must be evaluated.
\nThe Scoville test, whose unit of measure is SHU, is a known form of evaluating the effect of pungency or blazing of the peppers. This method was developed in 1912 by Wilbor Scoville [22] giving a five-level scale for pungency: nonpungent (0–700 SHU), low pungency (700–3000 SHU), moderate pungency (3000–25,000 SHU), high pungency (25,000–70,000 SHU), and very high pungency (>80,000 SHU). However, the Scoville method is a taste organoleptic method made by a dilution series of the pepper extracts. It makes subjective responses and unreproducible results. Qualitative and quantitative information can be precisely obtained by modern instrumental chemical methods with many advantages [12, 23].
\nSince the peppers are largely used as a food, through several forms and quantities around the word for centuries, it is not expected that it is a poison. The individual consumption of capsaicin in India may be around 7–120 mg/day. In Northeast Thailand, the individual consumption may be 26 g of (jaew) pepper per meal [24]. The main concern with the use of pepper spray is with the possible toxic properties of the solution. Another important aspect is the observation of the tactical way of use, which involves the amount of solution applied, environment conditions, closed spaces and psychological state of the aggressor; all of these characteristics must be well studied in action using pepper spray.
\nPrevious study shows that the toxic level of 60-kg human consumption of capsaicin corresponds to consumption of 1.94 kg of dry weight of capsicum fruit. Obviously, there is no person who can consume this amount of dry pepper at once; due to the pain and pungent sensation, it prevents over consumption [25].
\nThere is no consensus in the literature for the acceptable dose of capsaicin for oral, skin, and eyes human contact. The studies are commonly connected with lethal doses values (LD50), which means a quantity limit that kills 50%, at least, of the population studied. This kind of test programs normally uses rats or mouse to access results. Rabbits, dogs, and guinea pig are common too. It is sustained by a presumption that these animals have a close correlation with human responses to capsaicin [26].
\nAn oral LD50 value was reported at range of 60–75 mg/kg (Swiss male albino mice). On the other hand, another experiment with the same mice type and procedure, just changing the solution vehicle, showed LD50 at 190 mg/kg [25]. Another work reports male mice with LD50 values of 118.8 mg/kg and for female mice of 97.4 mg/kg [27]. The U.S. National Library of Medicine—National Center for Biotechnology Information—reports 47.2 mg/kg for mouse. OSHA or NIOSH has reported no occupational exposure limits for capsaicin or OC. As can be seen in these short examples above, there is not a single value to use to computation and derive secure concentrations of spray solutions to manufactories.
\nSome inhalation response studies showed no evidences that inhalation of capsicum oleoresin spray causes respiratory compromise [28]. An investigation made with the concern on the respiratory effects of OC concludes that the exposure did not result in abnormal hypoxemia or hypoventilation. This experiment was made by aerosol delivery exposure box with a hood for the subject attached to one end of the exposure box. The aerosol was 5.5% OC (with 0.92% of capsaicinoids) solution with isopropyl alcohol as carrier agent and isobutane/propane as propellant [29]. These types of studs are more conclusive and can take better access for more suitable results to manufactories.
\nThe ocular contact with capsaicin is the primary incapacitation response. Furthermore, the hydrophobic properties of capsaicin (and capsaicinoids) allow them to penetrate the eye tissue, accessing the terminal nervous and, consequently, causing pain and great lacrimation response. The use of contact lenses can lead to an increase in the duration of the effect, due to the accumulation under the lens. In these cases, care should be taken to remove the lens as soon as possible.
\nThe quantification of capsaicin in pepper spray can be made by GC-MS/FID [14]. This experimental result presented here aims to exemplify the quantitative and qualitative analysis of the samples of the commercial Brazilian pepper spray. About 500 μl of solution sample was weighed on an analytical balance and the contents were solubilized with HPLC grade acetone and transferred quantitatively to a 1 ml volumetric flask. The solution was swollen and an aliquot was conducted for analysis by gas chromatography.
\nA model GC-2010 equipped with a mass spectrometer GCMS-QP2010 Ultra and an automatic sampler AOC-5000 (Shimadzu) was used. The chromatographic separation was performed using RTx-5MS capillary column (Restek) with a stationary phase containing 5% phenylmethyl and 95% polydimethylsiloxane (30 m × 0.25 mm × 0.25 μm of film). The temperatures of the injector and the transfer line of the mass spectrometer were 300°C. The samples were injected with a split ratio of 1:50. The oven temperature program followed the following conditions: 50°C (2 min), heating rate from 10°C/min to 300°C (2 min). Helium was used as the carrier gas in a flow rate of 1.2 ml/min. The mass spectrometer was operated in electron impact ionization mode, with acquisition in the scan mode with m/z between 50 and 500.
\nTo identify the compounds, a comparison of the spectra with the NIST library was carried out. Only substances whose similarity was greater than 80% were considered, compared with data from the library. Figure 1 shows the chromatogram result with the solvent around 7.2 min and capsaicin and dihydrocapsaicin peak around 24 min.
\nGC-FID chromatogram of capsaicin and dihydrocapsaicin peaks with retention time around 24 min.
With the purpose of quantifying, the capsaicin and dihydrocapsaicin are integrated together and the calibration curve was made by this result against standard solutions made with Sigma-Aldrich Capsaicin (purity capsaicin: 61.1%, dihydrocapsaicin: 31.2% LOT#: LRAA9221 09 September 2015). The regression coefficient R2 was 0.999 and uncertainty was 0.9%. The subsequent dilution was satisfactory by the statistical linear fit results. In this way, it is possible to quantify the capsaicinoids, that is, capsaicin and dihydrocapsaicin together, on the pepper spray solution.
\nNuclear magnetic resonance (NMR) is a powerful analytical tool for identification and quantification of capsaicinoids in raw materials for pepper spray solutions. Its ability to analyze samples with minimum pre-treatment allows a safe analysis that preserves the original characteristics. In the specific case of organic molecules, their sensitivity is increased by the detection of the isotope 1H. Thus, the ability of NMR to evaluate the quality control of the nonlethal arms industry becomes clear.
\nIn order to verify the N.Cap content, a sample of 26.4 mg was weighed and solubilized in 600 μl of CDCl3 in a 5-mm NMR tube. The analysis was performed at 25°C using glass capillary for the quantification of the maleic acid present in the solution with 100 mmol of D2O. The broad band inverse (BBI) probe inserted into Bruker Avance III 11.75 T equipment was used. The simple pulse sequence used was zg. The spectra were processed with 0.3 Hz line broadening and zero filling.
\n\nFigure 2 shows the graphical results, and the relative chemical shift integration of hydrogens of capsaicin and dihydrocapsaicin are presented. All the signals of the main chemical groups present in the sample were identified through the NMR analyses. Groups 1 from capsaicin and 2 from dihydrocapsaicin (amplified in Figure 2) can be used for relative integration of the signals. In addition to being unobstructed, they had a higher signal-to-noise ratio due to having six hydrogens contributing to the integration of each signal. Thus, it was possible to verify the proportion of these compounds among themselves present in the mixture. This led to the proportion of 33% dihydrocapsaicin (minority) and 66% capsaicin (majority), the latter being twice the concentration of the former.
\n\n1H NMR identification and relative quantification of the components present in the N.Cap.
The 1H NMR technique proved efficient in the identification and relative quantification of the components present in the mixture of pepper derivatives. The spectra were acquired quickly and with a simple sample preparation step.
\nThe analyses allowed a broad view of the absence of other compounds, even if minority, thereby proving the purity of the material and absence of degradation products. On the other hand, the presence of other components could be identified concomitantly in a mixture of higher complexity. Thus, this work suggests that 1H NMR can be used as a quality control tool in the nonlethal industry.
\nThe main aspects of pepper spraying technology were discussed and the main concepts related to use, hazardous, solution formulations and quantification tests were pointed out. This technology is relatively recent, and a wide field of research is not addressed yet. The advance showed here is around the use of capsaicinoids to extract raw material N.Cap instead of OC to produce pepper spray. The absence of oils and resin is the main point, as nonflammability is achieved much more easily and without the use of hazardous organic solvents. Chemical analyses by GC-MS/FID applied to quantify capsaicinoids (capsaicin and dihydrocapsaicin together) have been demonstrated and can be reproducible for the quality control of this product. The 1H NMR provides information about raw material and how to access quality information and impurity with our relative concentration.
\nThe concentration range between 0.2 and 0.3% (mass of solution) of capsaicinoids guarantees satisfactory spray efficiency, allowing the aggressor to be incapacitated without serious injury. Toxicological study preferred with human voluntaries is the way for a better evaluation of limits.
\nIntechOpen - where academia and industry create content with global impact
",metaTitle:"Team",metaDescription:"Advancing discovery in Open Access for the scientists by the scientist",metaKeywords:null,canonicalURL:"page/team",contentRaw:'[{"type":"htmlEditorComponent","content":"Our business values are based on those any scientist applies to their research. We have created a culture of respect and collaboration within a relaxed, friendly and progressive atmosphere, while maintaining academic rigour.
\\n\\nCo-founded by Alex Lazinica and Vedran Kordic: “We are passionate about the advancement of science. As Ph.D. researchers in Vienna, we found it difficult to access the scholarly research we needed. We created IntechOpen with the specific aim of putting the academic needs of the global research community before the business interests of publishers. Our Team is now a global one and includes highly-renowned scientists and publishers, as well as experts in disseminating your research.”
\\n\\nBut, one thing we have in common is -- we are all scientists at heart!
\\n\\nSara Uhac, COO
\\n\\nSara Uhac was appointed Managing Director of IntechOpen at the beginning of 2014. She directs and controls the company’s operations. Sara joined IntechOpen in 2010 as Head of Journal Publishing, a new strategically underdeveloped department at that time. After obtaining a Master's degree in Media Management, she completed her Ph.D. at the University of Lugano, Switzerland. She holds a BA in Financial Market Management from the Bocconi University in Milan, Italy, where she started her career in the American publishing house Condé Nast and further collaborated with the UK-based publishing company Time Out. Sara was awarded a professional degree in Publishing from Yale University (2012). She is a member of the professional branch association of "Publishers, Designers and Graphic Artists" at the Croatian Chamber of Commerce.
\\n\\nAdrian Assad De Marco
\\n\\nAdrian Assad De Marco joined the company as a Director in 2017. With his extensive experience in management, acquired while working for regional and global leaders, he took over direction and control of all the company's publishing processes. Adrian holds a degree in Economy and Management from the University of Zagreb, School of Economics, Croatia. A former sportsman, he continually strives to develop his skills through professional courses and specializations such as NLP (Neuro-linguistic programming).
\\n\\nDr Alex Lazinica
\\n\\nAlex Lazinica is co-founder and Board member of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his Ph.D. in Robotics at the Vienna University of Technology. There, he worked as a robotics researcher with the university's Intelligent Manufacturing Systems Group, as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and, most importantly, co-founded and built the International Journal of Advanced Robotic Systems, the world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career since it proved to be the pathway to the foundation of IntechOpen with its focus on addressing academic researchers’ needs. Alex personifies many of IntechOpen´s key values, including the commitment to developing mutual trust, openness, and a spirit of entrepreneurialism. Today, his focus is on defining the growth and development strategy for the company.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Our business values are based on those any scientist applies to their research. We have created a culture of respect and collaboration within a relaxed, friendly and progressive atmosphere, while maintaining academic rigour.
\n\nCo-founded by Alex Lazinica and Vedran Kordic: “We are passionate about the advancement of science. As Ph.D. researchers in Vienna, we found it difficult to access the scholarly research we needed. We created IntechOpen with the specific aim of putting the academic needs of the global research community before the business interests of publishers. Our Team is now a global one and includes highly-renowned scientists and publishers, as well as experts in disseminating your research.”
\n\nBut, one thing we have in common is -- we are all scientists at heart!
\n\nSara Uhac, COO
\n\nSara Uhac was appointed Managing Director of IntechOpen at the beginning of 2014. She directs and controls the company’s operations. Sara joined IntechOpen in 2010 as Head of Journal Publishing, a new strategically underdeveloped department at that time. After obtaining a Master's degree in Media Management, she completed her Ph.D. at the University of Lugano, Switzerland. She holds a BA in Financial Market Management from the Bocconi University in Milan, Italy, where she started her career in the American publishing house Condé Nast and further collaborated with the UK-based publishing company Time Out. Sara was awarded a professional degree in Publishing from Yale University (2012). She is a member of the professional branch association of "Publishers, Designers and Graphic Artists" at the Croatian Chamber of Commerce.
\n\nAdrian Assad De Marco
\n\nAdrian Assad De Marco joined the company as a Director in 2017. With his extensive experience in management, acquired while working for regional and global leaders, he took over direction and control of all the company's publishing processes. Adrian holds a degree in Economy and Management from the University of Zagreb, School of Economics, Croatia. A former sportsman, he continually strives to develop his skills through professional courses and specializations such as NLP (Neuro-linguistic programming).
\n\nDr Alex Lazinica
\n\nAlex Lazinica is co-founder and Board member of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his Ph.D. in Robotics at the Vienna University of Technology. There, he worked as a robotics researcher with the university's Intelligent Manufacturing Systems Group, as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and, most importantly, co-founded and built the International Journal of Advanced Robotic Systems, the world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career since it proved to be the pathway to the foundation of IntechOpen with its focus on addressing academic researchers’ needs. Alex personifies many of IntechOpen´s key values, including the commitment to developing mutual trust, openness, and a spirit of entrepreneurialism. Today, his focus is on defining the growth and development strategy for the company.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5820},{group:"region",caption:"Middle and South America",value:2,count:5289},{group:"region",caption:"Africa",value:3,count:1761},{group:"region",caption:"Asia",value:4,count:10546},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15932}],offset:12,limit:12,total:119318},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10582",title:"Chemical Vapor Deposition",subtitle:null,isOpenForSubmission:!0,hash:"f9177ff0e61198735fb86a81303259d0",slug:null,bookSignature:"Dr. Sadia Ameen, Dr. M. Shaheer Akhtar and Prof. Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10582.jpg",editedByType:null,editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10519",title:"Middleware Architecture",subtitle:null,isOpenForSubmission:!0,hash:"c326d436ae0f4c508849d2336dbdfb48",slug:null,bookSignature:"Dr. Mehdia Ajana El Khaddar",coverURL:"https://cdn.intechopen.com/books/images_new/10519.jpg",editedByType:null,editors:[{id:"26677",title:"Dr.",name:"Mehdia",surname:"Ajana El Khaddar",slug:"mehdia-ajana-el-khaddar",fullName:"Mehdia Ajana El Khaddar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10814",title:"Anxiety, Uncertainty, and Resilience During the Pandemic Period - Anthropological and Psychological Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"2db4d2a6638d2c66f7a5741d0f8fe4ae",slug:null,bookSignature:"Prof. Fabio Gabrielli and Dr. Floriana Irtelli",coverURL:"https://cdn.intechopen.com/books/images_new/10814.jpg",editedByType:null,editors:[{id:"259407",title:"Prof.",name:"Fabio",surname:"Gabrielli",slug:"fabio-gabrielli",fullName:"Fabio Gabrielli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10504",title:"Crystallization",subtitle:null,isOpenForSubmission:!0,hash:"3478d05926950f475f4ad2825d340963",slug:null,bookSignature:"Dr. Youssef Ben Smida and Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:null,editors:[{id:"311698",title:"Dr.",name:"Youssef",surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10568",title:"Hysteresis in Engineering",subtitle:null,isOpenForSubmission:!0,hash:"6482387993b3cebffafe856a916c44ce",slug:null,bookSignature:"Dr. Giuseppe Viola",coverURL:"https://cdn.intechopen.com/books/images_new/10568.jpg",editedByType:null,editors:[{id:"173586",title:"Dr.",name:"Giuseppe",surname:"Viola",slug:"giuseppe-viola",fullName:"Giuseppe Viola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10668",title:"Sustainable Concrete",subtitle:null,isOpenForSubmission:!0,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:null,bookSignature:"Prof. Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editedByType:null,editors:[{id:"144691",title:"Prof.",name:"Hosam",surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9816",title:"Idiopathic Pulmonary Fibrosis",subtitle:null,isOpenForSubmission:!0,hash:"365bb9762ba33db2d07e677690af1772",slug:null,bookSignature:"Dr. Salim Surani and Dr. Venkat Rajasurya",coverURL:"https://cdn.intechopen.com/books/images_new/9816.jpg",editedByType:null,editors:[{id:"15654",title:"Dr.",name:"Salim",surname:"Surani",slug:"salim-surani",fullName:"Salim Surani"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10789",title:"Cervical Cancer - A Global Public Health Treatise",subtitle:null,isOpenForSubmission:!0,hash:"3f7a79875d0d0ae71479de8c60276913",slug:null,bookSignature:"Dr. Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/10789.jpg",editedByType:null,editors:[{id:"120109",title:"Dr.",name:"Rajamanickam",surname:"Rajkumar",slug:"rajamanickam-rajkumar",fullName:"Rajamanickam Rajkumar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10343",title:"Ocular Hypertension",subtitle:null,isOpenForSubmission:!0,hash:"0ff71cc7e0d9f394f41162c0c825588a",slug:null,bookSignature:"Prof. Michele Lanza",coverURL:"https://cdn.intechopen.com/books/images_new/10343.jpg",editedByType:null,editors:[{id:"240088",title:"Prof.",name:"Michele",surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10648",title:"Vibrios",subtitle:null,isOpenForSubmission:!0,hash:"863c86c37b8a066ed95397fd9a114a71",slug:null,bookSignature:"Dr. Lixing Huang and Dr. Jie Li",coverURL:"https://cdn.intechopen.com/books/images_new/10648.jpg",editedByType:null,editors:[{id:"333148",title:"Dr.",name:"Lixing",surname:"Huang",slug:"lixing-huang",fullName:"Lixing Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8969",title:"Deserts and Desertification",subtitle:null,isOpenForSubmission:!0,hash:"4df95c7f295de7f6003e635d9a309fe9",slug:null,bookSignature:"Dr. Yajuan Zhu, Dr. Qinghong Luo and Dr. Yuguo Liu",coverURL:"https://cdn.intechopen.com/books/images_new/8969.jpg",editedByType:null,editors:[{id:"180427",title:"Dr.",name:"Yajuan",surname:"Zhu",slug:"yajuan-zhu",fullName:"Yajuan Zhu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10557",title:"Elaeis guineensis",subtitle:null,isOpenForSubmission:!0,hash:"79500ab1930271876b4e0575e2ed3966",slug:null,bookSignature:"Dr. Hesam Kamyab",coverURL:"https://cdn.intechopen.com/books/images_new/10557.jpg",editedByType:null,editors:[{id:"225957",title:"Dr.",name:"Hesam",surname:"Kamyab",slug:"hesam-kamyab",fullName:"Hesam Kamyab"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:48},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:182},popularBooks:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5327},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"836",title:"Geology",slug:"geology",parent:{title:"Earth Science",slug:"earth-science"},numberOfBooks:4,numberOfAuthorsAndEditors:132,numberOfWosCitations:101,numberOfCrossrefCitations:53,numberOfDimensionsCitations:146,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"geology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9879",title:"Geochemistry",subtitle:null,isOpenForSubmission:!1,hash:"aebccc07f8ffdf8a0043efc454024292",slug:"geochemistry",bookSignature:"Miloš René, Gemma Aiello and Gaafar El Bahariya",coverURL:"https://cdn.intechopen.com/books/images_new/9879.jpg",editedByType:"Edited by",editors:[{id:"142108",title:"Dr.",name:"Miloš",middleName:null,surname:"René",slug:"milos-rene",fullName:"Miloš René"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8476",title:"Earth Crust",subtitle:null,isOpenForSubmission:!1,hash:"ebef9911d87b6db8cb55dad47250a6be",slug:"earth-crust",bookSignature:"Muhammad Nawaz, Farha Sattar and Sandeep Narayan Kundu",coverURL:"https://cdn.intechopen.com/books/images_new/8476.jpg",editedByType:"Edited by",editors:[{id:"269790",title:"Dr.",name:"Muhammad",middleName:null,surname:"Nawaz",slug:"muhammad-nawaz",fullName:"Muhammad Nawaz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6130",title:"Tectonics",subtitle:"Problems of Regional Settings",isOpenForSubmission:!1,hash:"01aa9cf9d09a2b939bf67a90466f9a84",slug:"tectonics-problems-of-regional-settings",bookSignature:"Evgenii V. Sharkov",coverURL:"https://cdn.intechopen.com/books/images_new/6130.jpg",editedByType:"Edited by",editors:[{id:"32743",title:"Prof.",name:"Evgenii",middleName:null,surname:"Sharkov",slug:"evgenii-sharkov",fullName:"Evgenii Sharkov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1882",title:"Earth and Environmental Sciences",subtitle:null,isOpenForSubmission:!1,hash:"f08e8b418978309cbc096cae436e41c6",slug:"earth-and-environmental-sciences",bookSignature:"Imran Ahmad Dar and Mithas Ahmad Dar",coverURL:"https://cdn.intechopen.com/books/images_new/1882.jpg",editedByType:"Edited by",editors:[{id:"64247",title:"Dr.",name:"Imran Ahmad",middleName:null,surname:"Dar",slug:"imran-ahmad-dar",fullName:"Imran Ahmad Dar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,mostCitedChapters:[{id:"24572",doi:"10.5772/27233",title:"The Permo-Triassic Tetrapod Faunal Diversity in the Italian Southern Alps",slug:"the-permo-triassic-tetrapod-faunal-diversity-in-the-italian-southern-alps",totalDownloads:2484,totalCrossrefCites:5,totalDimensionsCites:25,book:{slug:"earth-and-environmental-sciences",title:"Earth and Environmental Sciences",fullTitle:"Earth and Environmental Sciences"},signatures:"Marco Avanzini, Massimo Bernardi and Umberto Nicosia",authors:[{id:"69352",title:"Dr.",name:"Marco",middleName:null,surname:"Avanzini",slug:"marco-avanzini",fullName:"Marco Avanzini"},{id:"69369",title:"Dr.",name:"Massimo",middleName:null,surname:"Bernardi",slug:"massimo-bernardi",fullName:"Massimo Bernardi"},{id:"122682",title:"Prof.",name:"Umberto",middleName:null,surname:"Nicosia",slug:"umberto-nicosia",fullName:"Umberto Nicosia"}]},{id:"24566",doi:"10.5772/25448",title:"Soil Contamination by Trace Metals: Geochemical Behaviour as an Element of Risk Assessment",slug:"soil-contamination-by-trace-metals-geochemical-behaviour-as-an-element-of-risk-assessment",totalDownloads:8158,totalCrossrefCites:11,totalDimensionsCites:19,book:{slug:"earth-and-environmental-sciences",title:"Earth and Environmental Sciences",fullTitle:"Earth and Environmental Sciences"},signatures:"Monika Zovko and Marija Romic",authors:[{id:"63363",title:"Dr.",name:"Marija",middleName:null,surname:"Romic",slug:"marija-romic",fullName:"Marija Romic"},{id:"70993",title:"Ph.D.",name:"Monika",middleName:null,surname:"Zovko",slug:"monika-zovko",fullName:"Monika Zovko"}]},{id:"24552",doi:"10.5772/26990",title:"Geology and Geotectonic Setting of the Basement Complex Rocks in South Western Nigeria: Implications on Provenance and Evolution",slug:"geology-and-geotectonic-setting-of-the-basement-complex-rocks-in-south-western-nigeria-implications-",totalDownloads:20028,totalCrossrefCites:1,totalDimensionsCites:19,book:{slug:"earth-and-environmental-sciences",title:"Earth and Environmental Sciences",fullTitle:"Earth and Environmental Sciences"},signatures:"Akindele O. Oyinloye",authors:[{id:"68497",title:"Prof.",name:"Akindele",middleName:null,surname:"Oyinloye",slug:"akindele-oyinloye",fullName:"Akindele Oyinloye"}]}],mostDownloadedChaptersLast30Days:[{id:"68134",title:"Introductory Chapter: Earth Crust - Origin, Structure, Composition and Evolution",slug:"introductory-chapter-earth-crust-origin-structure-composition-and-evolution",totalDownloads:967,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"earth-crust",title:"Earth Crust",fullTitle:"Earth Crust"},signatures:"Muhammad Nawaz",authors:[{id:"269790",title:"Dr.",name:"Muhammad",middleName:null,surname:"Nawaz",slug:"muhammad-nawaz",fullName:"Muhammad Nawaz"}]},{id:"75063",title:"An Overview on the Classification and Tectonic Setting of Neoproterozoic Granites of the Nubian Shield, Eastern Desert, Egypt",slug:"an-overview-on-the-classification-and-tectonic-setting-of-neoproterozoic-granites-of-the-nubian-shie",totalDownloads:243,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"geochemistry",title:"Geochemistry",fullTitle:"Geochemistry"},signatures:"Gaafar A. El Bahariya",authors:[{id:"267666",title:"Dr.",name:"Gaafar",middleName:null,surname:"El Bahariya",slug:"gaafar-el-bahariya",fullName:"Gaafar El Bahariya"}]},{id:"72197",title:"Middle Miocene Evaporites from Northern Iraq: Petrography, Geochemistry, and Cap Rock Efficiency",slug:"middle-miocene-evaporites-from-northern-iraq-petrography-geochemistry-and-cap-rock-efficiency",totalDownloads:171,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"geochemistry",title:"Geochemistry",fullTitle:"Geochemistry"},signatures:"Ali I. Al-Juboury, Rana A. Mahmood and Abulaziz M. Al-Hamdani",authors:[{id:"58570",title:"Prof.",name:"Ali",middleName:"Ismail",surname:"Al-Juboury",slug:"ali-al-juboury",fullName:"Ali Al-Juboury"},{id:"313036",title:"Ms.",name:"Rana",middleName:null,surname:"Mahmood",slug:"rana-mahmood",fullName:"Rana Mahmood"},{id:"320900",title:null,name:"Abulaziz M.",middleName:null,surname:"Al-Hamdani",slug:"abulaziz-m.-al-hamdani",fullName:"Abulaziz M. Al-Hamdani"}]},{id:"24564",title:"Carbonate-Hosted Base Metal Deposits",slug:"carbonate-hosted-base-metal-deposits",totalDownloads:7511,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"earth-and-environmental-sciences",title:"Earth and Environmental Sciences",fullTitle:"Earth and Environmental Sciences"},signatures:"Fred Kamona",authors:[{id:"64861",title:"Dr.",name:"Fred",middleName:null,surname:"Kamona",slug:"fred-kamona",fullName:"Fred Kamona"}]},{id:"58849",title:"Soft Sediment Deformation Structures Triggered by the Earthquakes: Response to the High Frequent Tectonic Events during the Main Tectonic Movements",slug:"soft-sediment-deformation-structures-triggered-by-the-earthquakes-response-to-the-high-frequent-tect",totalDownloads:977,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"tectonics-problems-of-regional-settings",title:"Tectonics",fullTitle:"Tectonics - Problems of Regional Settings"},signatures:"Bizhu He, Xiufu Qiao, Haibing Li and Dechen Su",authors:[{id:"67245",title:"Dr.",name:"Bizhu",middleName:null,surname:"He",slug:"bizhu-he",fullName:"Bizhu He"},{id:"214032",title:"Prof.",name:"Xiufu",middleName:null,surname:"Qiao",slug:"xiufu-qiao",fullName:"Xiufu Qiao"},{id:"236871",title:"Prof.",name:"Haibin",middleName:null,surname:"Li",slug:"haibin-li",fullName:"Haibin Li"},{id:"236872",title:"Prof.",name:"Dechen",middleName:null,surname:"Su",slug:"dechen-su",fullName:"Dechen Su"}]},{id:"72717",title:"Microstructure Features in Paleo and Neoproterozoic Granitic Rocks, Southeastern Region of Brazil",slug:"microstructure-features-in-paleo-and-neoproterozoic-granitic-rocks-southeastern-region-of-brazil",totalDownloads:160,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"geochemistry",title:"Geochemistry",fullTitle:"Geochemistry"},signatures:"Leonardo Gonçalves and Cristiane Castro Gonçalves",authors:[{id:"279207",title:"Dr.",name:"Leonardo",middleName:null,surname:"Gonçalves",slug:"leonardo-goncalves",fullName:"Leonardo Gonçalves"},{id:"317986",title:"Prof.",name:"Cristiane",middleName:null,surname:"Gonçalves",slug:"cristiane-goncalves",fullName:"Cristiane Gonçalves"}]},{id:"24569",title:"Climate History and Early Peopling of Siberia",slug:"climate-history-and-early-peopling-of-siberia",totalDownloads:2981,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"earth-and-environmental-sciences",title:"Earth and Environmental Sciences",fullTitle:"Earth and Environmental Sciences"},signatures:"Jiří Chlachula",authors:[{id:"58290",title:"Dr.",name:"Jiri",middleName:null,surname:"Chlachula",slug:"jiri-chlachula",fullName:"Jiri Chlachula"}]},{id:"59029",title:"Tectonic Insight in the Southwest Gondwana Boundary Based on Anisotropy of Magnetic Susceptibility",slug:"tectonic-insight-in-the-southwest-gondwana-boundary-based-on-anisotropy-of-magnetic-susceptibility",totalDownloads:523,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"tectonics-problems-of-regional-settings",title:"Tectonics",fullTitle:"Tectonics - Problems of Regional Settings"},signatures:"Arzadún Guadalupe, Tomezzoli Renata Nela, Tickyj Hugo, Cristallini\nErnesto Osvaldo and Gallo Leandro Cesar",authors:[{id:"228870",title:"Ph.D.",name:"Guadalupe",middleName:null,surname:"Arzadun",slug:"guadalupe-arzadun",fullName:"Guadalupe Arzadun"},{id:"237217",title:"Dr.",name:"Renata",middleName:null,surname:"Tomezzoli",slug:"renata-tomezzoli",fullName:"Renata Tomezzoli"},{id:"237218",title:"Dr.",name:"Hugo",middleName:null,surname:"Tickyj",slug:"hugo-tickyj",fullName:"Hugo Tickyj"},{id:"237219",title:"Dr.",name:"Ernesto",middleName:null,surname:"Cristallini",slug:"ernesto-cristallini",fullName:"Ernesto Cristallini"},{id:"237220",title:"BSc.",name:"Leandro",middleName:null,surname:"Gallo",slug:"leandro-gallo",fullName:"Leandro Gallo"}]},{id:"24566",title:"Soil Contamination by Trace Metals: Geochemical Behaviour as an Element of Risk Assessment",slug:"soil-contamination-by-trace-metals-geochemical-behaviour-as-an-element-of-risk-assessment",totalDownloads:8158,totalCrossrefCites:11,totalDimensionsCites:19,book:{slug:"earth-and-environmental-sciences",title:"Earth and Environmental Sciences",fullTitle:"Earth and Environmental Sciences"},signatures:"Monika Zovko and Marija Romic",authors:[{id:"63363",title:"Dr.",name:"Marija",middleName:null,surname:"Romic",slug:"marija-romic",fullName:"Marija Romic"},{id:"70993",title:"Ph.D.",name:"Monika",middleName:null,surname:"Zovko",slug:"monika-zovko",fullName:"Monika Zovko"}]},{id:"59828",title:"Evolution of Drainage in Response to Brittle - Ductile Dynamics and Surface Processes in Kachchh Rift Basin, Western India",slug:"evolution-of-drainage-in-response-to-brittle-ductile-dynamics-and-surface-processes-in-kachchh-rift-",totalDownloads:1027,totalCrossrefCites:4,totalDimensionsCites:14,book:{slug:"tectonics-problems-of-regional-settings",title:"Tectonics",fullTitle:"Tectonics - Problems of Regional Settings"},signatures:"Girish Ch Kothyari, Ajay P. Singh, Sneha Mishra, Raj Sunil\nKandregula, Indu Chaudhary and Gaurav Chauhan",authors:[{id:"55774",title:"Dr.",name:"Ap",middleName:null,surname:"Singh",slug:"ap-singh",fullName:"Ap Singh"},{id:"212374",title:"Dr.",name:"Girish",middleName:"Chandra",surname:"Kothyari",slug:"girish-kothyari",fullName:"Girish Kothyari"},{id:"239935",title:"Ms.",name:"Sneha",middleName:null,surname:"Mishra",slug:"sneha-mishra",fullName:"Sneha Mishra"},{id:"239936",title:"Mr.",name:"Raj Sunil",middleName:null,surname:"Kandregula",slug:"raj-sunil-kandregula",fullName:"Raj Sunil Kandregula"},{id:"239937",title:"Ms.",name:"Indu",middleName:null,surname:"Chaudhary",slug:"indu-chaudhary",fullName:"Indu Chaudhary"},{id:"239938",title:"Dr.",name:"Gaurav",middleName:"D",surname:"Chauhan",slug:"gaurav-chauhan",fullName:"Gaurav Chauhan"}]}],onlineFirstChaptersFilter:{topicSlug:"geology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/197484/jana-radosinska",hash:"",query:{},params:{id:"197484",slug:"jana-radosinska"},fullPath:"/profiles/197484/jana-radosinska",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()