Heterosis refers to the superior performance of heterozygous F1 hybrid plants with respect to those of their genetically distinct parents. Despite its wide use in crops, heterosis is seldom applied in the Panax genus, and its molecular basis remains unclear. Thus, this study is aimed to obtain hybrid F1s and identify the proteins associated with heterosis. Hybrid F1 plants and parental inbred lines were obtained using the embryo rescue technique, and the proteomes of their leaves were analyzed using two‐dimensional gel electrophoresis. A total of 236 differentially expressed proteins were found, among which 84 nonadditive proteins indicated a heterosis pattern in the hybrid. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analysis revealed that photosynthesis, carbohydrate metabolism, and protein and amino acid synthesis were the most abundant classes of nonadditive proteins. Of the proteins in these categories, 10, 6, and 4 proteins, respectively, showed above high parent expression in the hybrid leaves. These results imply that the increment in photosynthetic capacity, carbohydrate decomposition, and nitrogen fixation might be related to the heterosis of the hybrid biomass and ginsenoside production in the hybrid leaves. This study could provide a basis for hybrid breeding of the Panax genus.
Part of the book: Active Ingredients from Aromatic and Medicinal Plants