Differences between Resistance Sintering (RS) and Electric Discharge Sintering (EDS)
\r\n\t
",isbn:"978-1-83962-360-8",printIsbn:"978-1-83880-853-2",pdfIsbn:"978-1-83962-361-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"793751ee53f02ca84c8fe298a66208c9",bookSignature:"Dr. Kazuyuki Matsumoto",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9885.jpg",keywords:"Affective Computing, Sentiment Analysis Systems, Information Processing, Information Extraction, Neural Computing, Deep Learning, Swarm Intelligence, Chatbot, Dialogue Breakdown, Nursing Information Systems, Nursing Management Systems, Clinical Pathways Systems",numberOfDownloads:51,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 9th 2020",dateEndSecondStepPublish:"October 2nd 2020",dateEndThirdStepPublish:"December 1st 2020",dateEndFourthStepPublish:"February 19th 2021",dateEndFifthStepPublish:"April 20th 2021",remainingDaysToSecondStep:"4 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"A member of the technical committee of the international conference of IEEE and other international societies with broad research experience in Sensibility Robotics.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"195756",title:"Dr.",name:"Kazuyuki",middleName:null,surname:"Matsumoto",slug:"kazuyuki-matsumoto",fullName:"Kazuyuki Matsumoto",profilePictureURL:"https://mts.intechopen.com/storage/users/195756/images/system/195756.png",biography:"Dr. Matsumoto received his Ph.D. degree in 2008 from the Faculty of Engineering, the University of Tokushima. He is currently an assistant professor at the University of Tokushima. His main research field is Sensibility Robotics. His research interests include affective computing, Emotion Recognition, and Natural Language Processing. He has published over 30 peer-reviewed articles as a leading author. He is a member of the technical committee of the international conference of IEEE and other societies. He is a member of Information Processing Society of Japan (IPSJ), The Institute of Electronics, Information and Communication Engineers (IEICE), The Japanese Society for Artificial Intelligence (JSAI), The Association for Natural Language Processing (ANLP), The Institute of Electrical Engineers of Japan (IEEJ) and Human Interface Society.",institutionString:"University of Tokushima",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Tokushima",institutionURL:null,country:{name:"Japan"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"9",title:"Computer and Information Science",slug:"computer-and-information-science"}],chapters:[{id:"73157",title:"Humanistic Next-Generation Artificial Intelligence Capable of Association",slug:"humanistic-next-generation-artificial-intelligence-capable-of-association",totalDownloads:51,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"194667",firstName:"Marijana",lastName:"Francetic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/194667/images/4752_n.jpg",email:"marijana@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"42562",title:"Pulse Current Auxiliary Sintering",doi:"10.5772/53469",slug:"pulse-current-auxiliary-sintering",body:'Pulse current auxiliary sintering (PCAS) originated from electric current auxiliary sintering technique (ECAS), whose history can be traced back to the year of 1922, when an American did a path-breaking work to heat oxide powders by an electric current and synthesized a dense material. Then in 1927, another man sintered metal powders by simultaneously applying an electric current and a uniaxial mechanical load [1]. Since then, the synthesis technique has been being improved and perfected by numerous researchers. Up to now, over 1800 papers have been reported on the subject of ECAS and the technique has come to a new level: the used electric current extended from constant direct current to alternating current or pulsed electric current; power source was firstly selected to produce electric current, then capacitor banks were used; loading conditions evolved from no loading to uniaxial mechanical loaded or even multi-axial loading, etc.. Since 1960s, the technique commences to be commercialized. So far, it has been used to synthesize a large family of materials, including ceramics, intermetallics, metal-ceramic and ceramic-ceramic composites with various powders, such as elemental powders, pre-alloyed powders, pre-synthesized powders, or mechanical milled powders.
As a method to synthesize powers by applying electric current and mechanical loading simultaneously, ECAS technique revealed its increasing importance in the coming-out of a large amount of relevant bibliographies. Fig.1 shows the statistics of the number of articles on the subject published since the year 1922. It can be known that since 1999, the number of publications have been increased exponentially. If countries are weighed by the number of relevant articles, Japan, China and Korea are listed in the top three, as given in Fig. 2., while the contribution of other countries to the field remains relatively insignificant.
Number of publications related to ECAS processes by year [1]
Publications related to ECAS numbered by country [1]
According to the standard classification in the sintering process, ECAS belongs to pressurized solid compaction [2], as drafted in Fig.3.
Standard classification of sintering process
When based on characteristics of the applied electric current, ECAS itself can be divided into two categories: Resistance Sintering (RS) and Electric Discharge Sintering (EDS) [3]. The former, RS, adopts direct current, alternating current or pulsed current with low voltage (dozens of volts) and high current (thousands of amperes) to sinter powders in action time ranging from 100s to 103s. In contrast, in EDs, powders were sintered by the electrical current with high voltage and high current from capacitor bank, in which abundant electrical energy is stored and can be launched instantaneously. But, most especially, the sintering process is often accompanied by electromagnetic phenomenon [4]. The distinction between the two categories has been listed in Table 1. Fig. 4 presents the statistics on the number of articles regarding the two categories of techniques [1]. As seen, studies on RS are far more numerous. The subject of this chapter, PCAS, is in the range of RS.
\n\t\t\t | Current origin | \n\t\t\tCurrent waveform | \n\t\t\t\n\t\t\t\tVoltage\n\t\t\t\t /current | \n\t\t\tElectromagnetic phenomenon | \n\t\t\tAction duration (s) | \n\t\t
RS | \n\t\t\tpower | \n\t\t\tconstant direct current/ alternating pulsed current | \n\t\t\tlow voltage high current | \n\t\t\tno | \n\t\t\t100 ~ 103\n\t\t\t | \n\t\t
EDS | \n\t\t\tcapacitor bank | \n\t\t\tlarge pulsed current | \n\t\t\thigh voltage high current | \n\t\t\tyes | \n\t\t\t10-5 ~10-3 | \n\t\t
Differences between Resistance Sintering (RS) and Electric Discharge Sintering (EDS)
Relative amount of scientific reports regarding the two main ECAS processes
RS equipments used by researchers in different countries were purchased directly from commercial corporations, or developed by scientific institutions or researchers themselves for facilitate their own studies. Apart from the RS equipments developed by the two Japanese companies (Spark Plasma Sintering apparatus, well known as SPS), user-built machines accounts for about 40% among all the current RS machines, as introduced in Fig.5, where other companies refer to Sodick Co. Ltd [5]., Superior Graphite Co. Ltd.(USA) [6], Materials Modification Inc.(USA) [7], Eltek Co.(Korea) [8]etc.. All the user-built machines were named diversely to distinguish them from the commercial equipments. Fig. 6 shows a huge variety of RS designations. It is worth noting that almost all the names reflect the use of electric current [9]. For example, plasma activated sintering (PAS), pulse current hot pressing (PCHP), and so on. In the lab where the author of the chapter works, a similar apparatus was also developed and named ZLY-60 Pulse Current Auxiliary Sintering (PCAS) to distinguish it from other used machines. The photo of the machine has been given in Fig.7. In RS, 4 electric current waveforms have been mentioned [10-18], as shown in Fig. 8. Among them, the third one, pulsed direct current, was the most common current. In PCAS, such a current was adopted for a series of studies.
Relative distribution of apparatuses adopted in the RS processes as reported
RS processes designation [1].
ZLY-60 pulse current auxiliary sintering apparatus
Typical electric current waveforms applied in the RS processes; (a) constant direct current (DC)(b) alternating current (AC) (c) pulsed direct current(d) pulsed direct current + direct current
PCAS equipment consists of three parts, as shown in Fig.9: (1) sintering mold and the device to provide an axial force, the force which can be adjusted in terms of synthesized material properties; (2) pulsed DC generator to generate electrical current to activate material powders; (3) electrical resistance heating part. When PCAS is in use, loose powders are firstly put into the die, then the furnace is vacuumed before the die is pressurized. In the sintering process, heat is provided by passing an electric current through the upper and lower punches, the powders and their container. Because of the multi-channel to transfer the current, the heat transfer rate is that high and the temperature can arrive at 1000~2000°C in a few seconds or minutes. What\'s more, heating rate and sintering temperature are both in control by adjusting the magnitude of pulsed current. Coupled with the load regulating system (the applied load can be quite low, say, 20~30MPa, or quite high, 500~1000MPa), PCAS can be utilized to synthesize metals, ceramics, and composite materials.
Schematic of the PCAS process
As an advanced technology for materials synthesis and processing, RS presents a lot of potential applications. But its sintering mechanism is still in dispute. It is generally acknowledged that in the sintering procedure, when an electric current runs through, the consequent Joule heat effect and the plastic deformation caused from temperature-rising and loading help the sintering process, but other elements play a much greater role. For example, when pulse DC voltage is on, spark discharge/plasma generates between adjacent particles [19,20], and individual ones are spontaneously heated, leading to the activation, purification of particle exterior surface and removing of oxide film, helping the rapid material diffusion and migration, promoting efficient heating and plastic deformation. When the pulse voltage is off, the temperature decreases rapidly through thermal diffusion and sintered material is subjected to quite short temperature exposure [21]. All of the phenomena and effects realize the consolidation of specific products with desired configuration and density at lower temperature and in shorter sintering time, as introduced in details in Fig. 10.
It is accepted that pulsed current concentrates on the junction of neighboring powder particles. Activated by pulsed electric current field, anode and cathode emerge in minute zones, where spark discharge and plasma are generated. The energetic particles from discharging knock on the contact part between adjacent particles, then the resulting local high temperature bring the superficial layer into a molten state, causing the emergency of \'neck\' [22], as illustrated in Figs. 11. The transmission of the thermal energy from the particle center to the surface and its rapid dissipation result in a quick cooling in the \'neck\'s, prompting consolidation and material migration and transfer between neighboring powder particles through volume diffusion, surface diffusion and grain boundary diffusion [20], as Fig.12 shows. It is the simultaneous effect of electric current heating and uniaxial loading from the upper punch that reinforces volume diffusion and boundary condition so that the sintering synthesis and densification is accelerated and the sintered compacts of high quality can be gained in shorter duration of time and at lower sintering temperature.
However, how to verify the existence of discharged plasma has been a problem all the time. Besides, it has been proved on the basis of experimental studies that electric current cannot run through non-conductive powders, thus the view of generation of plasma in such powders does not work. Therefore, many scholars doubt the above-mentioned theory. For this reason, a \'self-adjusting\' mechanism in microstructure evolution comes forward [23], as shown in Fig. 13. It is recognized that in the initial stage of sintering, many particles have come into contact under pressure. The electric current tends to be relatively larger in the particle who has contributed larger contact surface, that is I1>I2. Thus, the sintered \'neck\' forms firstly in the particle which I1 passes through for the reason of the Joule heat effect. With the neck growing up, the contact surface increases further, then current I1 ascends and neck temperature augments correspondingly, producing increased local resistivity and resistance. At the moment, current in I1 particle is frustrated and commences to run through the particle with smaller contact surface, namely, I2>I1. As a result, neck forms in the particle with smaller contact surface. And so on alternately until powder consolidation and densification process is completed. Such a mechanism can explain the cause why the sintered materials are always with fine, homogeneous and dense microstructures. But the explanation can apply only to conductive material with positive resistance-temperature coefficient. When it comes to non-conductive materials with no obvious resistance changing sensitivity to temperature, it does not work. It is generally believed that the rapid transportation of heat through mold and upper and lower punches, together with the large electric current, bring non-conductive powders directly into the high-temperature zone and make it possible to realize rapid synthesis.
Effect of ON/OFF direct current pulse energizing
Mechanisms of neck formation between particles
Material transfer paths during sintering process
Although the working mechanism of the technique is far from reaching a consensus, studies prove that electric pulse plays an importance effect on crystallization. Pulsed current possesses such a short relaxation time that it eliminates nucleation barrier and raises nucleation rate and refines sintered microstructures.
Change of contact areas between adjacent powders and distribution of electric current
This technology seems characterized by technological and economical advantages over conventional sintering methods, such as more efficient use of the heat input, faster heating rate, lower sintering temperature, shorter holding time, elimination of the need of sintering aids, no need of cold compaction, less sensitivity to initial powders characteristics, and marked comparative improvements in the properties of consolidated materials [24]. Especially when electrically insulating container is used and the electric current is applied for extremely short duration (down to few hundreds of microseconds), these advantages are more obvious.
For costly materials, this means considerable cost savings from reduced machining requirements and materials scrap. In addition, it should be noted that for engineering purposes shorter processing times usually result in productivity gains. As a consequence, sintered parts of higher quality may be expected to be obtained at lower processing costs.
On the contrary, in conventional powder metallurgy techniques, the powder container is typically heated by radiation from the enclosing furnace through external heating source. The resulting heating rate is then typically slow and the process can last hours. In the process, a lot of heat is wasted as the whole volume of space is heated and the compact receives heat indirectly from the hot environment.
γ-TiAl alloys are of great interest for applications in aerospace industry due to their numerous advantages, such as low density, high specific Young’s modulus and strength, good oxidation and burn resistance. However, such intermetallics suffer from having only poor machinability at room temperature and limited ductility at high temperatures, which limits their practical application [25]. In order to solve the problem, improving their room-temperature ductility and developing their superplasticity at high temperatures is of much importance.
Investigations have shown that fine grain size is beneficial for alloys to display good tensile behavior for the facility of grain sliding and diffusion [26]. However, it is difficult to directly obtain micron or submicron grains in γ-TiAl alloys through traditional cast or powder metallurgy route without subsequent heat treatment or complicated and costly mechanical processing. Thus, simplifying preparation route becomes an urgent need.
Up to now, electric current auxiliary sintering technique (ECAS) has been applied to synthesize γ-TiAl alloys and specimens with high densities and microstructures approaching the equilibrium state have been obtained [27-31]. The influence of operating parameters (i.e. temperature, processing time, etc.) on sintered γ-TiAl characteristics has been studied. However, heating rate effect was not widely explored. The typical heating rate is as low as1.7℃/s [27] or even less [32]. As a result, γ-TiAl alloys with coarse lamellar colonies were often obtained, even though the starting powders were managed to be refined. Thus, subsequent mechanical processing or other treatments become necessary for the purpose of improving the product properties. Currently, processed γ-TiAl alloys produced by electric current auxiliary sintering or other conventional processing routes, usually exhibit poor ambient ductility (in the range of 0.3~2% elongation).
In this context, dense γ-TiAl alloys with diverse microstructures through the controlling of sintering temperature, dwell time and heating rate are synthesized in PCAS apparatus from initially coarse powders (with particle size in the range of 5-350µm and the mean size of 103µm). When great care is taken, marked improvements in the tensile properties can be obtained both at room temperatures and at high temperatures. Above-mentioned experimental details are investigated and relevant results are given. Besides, an attempt was made to explain the effect of experimental parameters control, especially the role of heating rate, using thermodynamic theories, as well as nucleation and growth kinetics.
Pre-alloyed powders (Fig. 14) with the composition of Ti-42.5Al-2.3Nb-2.2Cr-0.28W- 0.15B (in at.%, mean grain size = 103µm, oxygen concentration ≈ 700ppm (wt.%) ) were filled into a graphite mold sealed by two graphite punches at both ends. The loose powders in the graphite mold with a rectangular cross-section in the dimension of 10mm×30mm were subjected to pulsed direct current with different current densities to realize three groups of contrast experiments. The tested heating rate ranged from 2 to 9℃•s-1; sintering optimal temperatures have been tested at 1200, 1250 and 1300℃; heating dwell time have been tried for 5min, 10min and 15min. In the experiments a gradual increasing pressure at the onset of the pulse was exerted until the optimal temperature and a specified pressure of 50MPa were attained nearly simultaneously. Then, the temperature and pressure were held constant for certain duration, followed by furnace cooling. A pulsed direct current with on/off cycles of 1.5ms (on-time) / 0.5ms (off-time) was applied. All the details for the three groups of contrast tests have been listed in Table 2.
Tensile specimens with a gauge length of 8mm and a section area of 3×1.2mm2 were machined from the compacts. Tensile tests were carried out in air on American Instron 5500R testing machine at a strain rate of 2.083×10-4s-1 at ambient temperatures and high temperatures from 800 to 1000℃. SEM observations were operated on S4700 scanning electron microscopy (SEM), equipped with backscattered electron image. Conventional TEM (transmission electron microscope) observations were made on a Philips CM 12 operating at 120kv. Thin foils for TEM observation were cut parallel to the tensile axis from the gauge section. The foils were prepared by the standard jet polishing method using a solution of 30 vol.% nitric acid, 70vol.% methanol under ~15V and at -30℃.
Basic information about pre-alloyed powders: (a) SEM micrographs, (b) particle size distribution (c) powders XRD analysis
Group | \n\t\t\tHeating rate (°C⋅s−1) | \n\tSintering temperature (°C) | \n\tDwell time (min) | \n\tLoading pressure (MPa) | \n
1 | \n\t9 | \n\t1250 | \n\t5 | \n\t50 | \n
4.5 | \n\t1250 | \n\t5 | \n\t50 | \n|
3 | \n\t1250 | \n\t5 | \n\t50 | \n|
2.5 | \n\t1250 | \n\t5 | \n\t50 | \n|
2 | \n\t1250 | \n\t5 | \n\t50 | \n|
2 | \n\t3 | \n\t1200 | \n\t10 | \n\t50 | \n
3 | \n\t1250 | \n\t10 | \n\t50 | \n|
3 | \n\t1300 | \n\t10 | \n\t50 | \n|
3 | \n\t3 | \n\t1250 | \n\t15 | \n\t50 | \n
Technological parameters adopted in sintering processes
Typical back-scattered photomicrographs of four representative specimens sintered with heating rates of 2-9℃•s-1 are given in Fig. 15. It can be clearly observed that heating rate has a significant influence on the sintered microstructures. In the specimen sintered with heating-up rate of 9℃•s-1, boundaries of original alloy powders can be clearly observed and a volume of pores between adjacent particles still exist. The compact is far from being consolidated. It can be remarked that inside individual powders, recovery and recrystallization have occurred, but grains have mal-developed. When powders were sintered with lower heating rate, 4.5℃•s-1, grains developed fully and fine grains formed. When a local region is zoomed in, Fig. 16 can be obtained, presenting a dense micron-sized near-γ microstructure with irregular grayish-white α2-Ti3Al interspersed in the matrix of nearly equiaxial gray γ-TiAl. The
3℃•s-1 sintered materials were alloys with a duplex microstructure with nearly equi-axed gray γ grains dotted about α2/γ lamellar colonies. TEM diffraction patterns of the two phases in lamellar region in Fig 15 (c) are shown by Fig.17, in which
Back scattered SEM images of microstructures in alloys sintered at 1250°C for 5min with the heating-up rate of (a)9°C⋅s-1, (b)4.5°C⋅s-1, (c) 3°C⋅s-1, (d)2.5°C⋅s-1, (e)2°C⋅s-1
Microstructures in alloy sintered with heating rate of 4.5°C⋅s-1: (a) Zoomed back scattering SEM image, (b) bright-field TEM image, (c) diffraction patterns of α2 (grain A in (b) ), (d) diffraction patterns of γ
Microstructures in 3°C•s-1-sintered alloy: (a) Zoomed back scattering SEM image; (b) bright-field TEM image; (c) diffraction patterns of α2 and γ, in which [0002¯]α2//[2¯2¯2¯]γ
\n\t\t\tHeating rate \n\t\t\t (℃⋅s-1) | \nMicrostructure (µm) | \nLamellar spacing (µm) | \nLamellar Volume fraction (%) | \n
4.5 | \n\tNG(4) | \n\t\n\t | 0 | \n
3 | \n\tDP(6~9) | \n\t0.21 | \n\t22.3 | \n
2.5 | \n\tFL(25) | \n\t0.89 | \n\t100 | \n
2 | \n\tFL (27) | \n\t2.53 | \n\t100 | \n
Controlled microstructures and corresponding values of the alloys sintered at 1250℃ for the duration time of 5min with different heating rates
When heating rate was fixed at 3°C
Microstructures of alloys heated with the rate of 3°C⋅s−1 and sintered at different temperatures for 10min :(a)1200°C, (b)1250°C, (c)1300°C
The Fig. 19, combined with micrographs in Fig. 15(c) and Fig.18(b), the influence of duration time on the sintered microstructures can be deduced. In the sintered compact heated at the rate of 3°C
Microstructures of alloys heated with the rate of 3℃⋅s−1 and sintered at 1250℃ for 15min
Working mechanisms for the PCAS technique has been introduced in details in the first part of the chapter. But when the effect of sintering parameters on consequent microstructures is involved, the above-mentioned theory seems a little abstract to explain the corresponding evolution of microstructures. Hereinafter, the author tried to approach the effect of sintering parameters on resultant microstructures from the viewpoint of thermodynamics, as well as nucleation and growth kinetics.
Firstly, attention was paid to the effect of heating-up rate. If the joule heat generated by the pulsed electric current flowing through the tested material is denoted by Qt, Qt=Qr+Qh, where Qr is the heat input during transient (i.e. temperature-rise) period, and Qh is that supplied during steady-state sintering. Since four sintering processes about heating rate influence were all carried out at 1250℃ for 5min under the load of 50MPa, Qhwas the same. The only consideration is thus Qr.
According to classical equation: Q = I2Rt. I is the applied electrical current and I = ρI*S, where ρI is the current density, which has been listed in table 4, and the cross-sectional area in tests S = 30×10mm2. The material’s electrical resistance R can be derived in terms of the equation: R = R0(1+aT), where T is the thermodynamic temperature, R0 the material resistance measured at 0℃, and ‘a’ is the temperature resistance coefficient. For the shortage of a suitable strong testing machine, it is sensible to choose R0 as a constant. For simplicity, the averaging value of the coefficient ‘a’ was taken according to the equation: a= (R2-R1)/R1ΔT. ΔT =T2 - T1, herein T1 = 293k, T2 = 1523k in experiments. In addition, R1, R2 respectively refer to the electrical resistance of initial loose powders and that of the alloy products. If all the alloy products are presumed to get to theoretical densification, it can be sure that R2 must also be the same. Thus ‘a’ is identified as another constant term. The numeral value of the time ‘t’ spent in temperature-rise period has been listed in table 4 as well. So the heat yielded by the current in temperature-rise period is calculated as follows:
If the equation is reduced to Qr= (A+Ba)R0, table 5 will be obtained. Based on theory of electron and quantum, literature [33] confirms that resistance temperature coefficient for metals is about 0.4%. Then, ‘a’ in the above-equation must be a positive constant. Therefore, the result is straightforward that slower heating supplies a higher energy.
Usually the heat energy is consumed by three respects: QS, QT and QL, where QS is the energy for synthesis and densification of powders, QT is for morphologic transformation, and QL is for thermal losses. Here, QL can be neglected because the graphite mold used in the experiments was set inside a ceramic mold to prevent heat losses. Allowing for all the powders have been synthesized to compact alloys under the four sintered conditions, QS must be the same. Therefore, the more heat energy absorbed in 2℃•s-1, 2.5℃•s-1, 3℃•s-1-sintering process than that in 4.5℃•s-1-sintering period is used for morphological transformation. The slower the heating up rate, the more energy for such transformation will be.
Heating rate(°C·s-1) | \n\t\tρI (A·mm-2) | \n\t\tt(h) | \n\t
2 | \n\t\t7.3 | \n\t\t0.174 | \n\t
2.5 | \n\t\t7.7 | \n\t\t0.139 | \n\t
3 | \n\t\t8.1 | \n\t\t0.116 | \n\t
4.5 | \n\t\t9.1 | \n\t\t0.077 | \n\t
Heating rate(°C·s-1) | \n\t\tA(×106) | \n\t\tB(×109) | \n\t
2 | \n\t\t0.835 | \n\t\t1.271 | \n\t
2.5 | \n\t\t0.742 | \n\t\t1.130 | \n\t
3 | \n\t\t0.685 | \n\t\t1.043 | \n\t
4.5 | \n\t\t0.574 | \n\t\t0.874 | \n\t
Numeral values of A and B in Qr
In the experiments in the current chapter, the more energy corresponds to more lamellar volume fraction in sintered alloys. Also it has been mentioned above that our starting metal powders consists of γ and α2 (Fig.14(c) ) with the approximate composition of Ti-42.5Al. In terms of Ti-Al binary phase diagram, Fig. 20, when experimented materials were heated up to 1250℃, the sintering temperature, the constituent phases γ and α2 would both turn into disordered phase α. Thus it can be asserted that phase transformation in the sintering process followed the route: α → α+γPPT → α+γP→ Lamellar (α/γ) → Lamellar(α2+γ), where γPPT refers to disordered γ (equiaxed grains), γPordered γ (γ plates).
When after heat preservation and the material was cooled down into γ+α two phase region, in α, the whole dislocation a/3<1120 > was discomposed into partial Shockley ones with simple stacking faults (SF): α → αSF+α → γppt+α [34]. Such SFs would change local stacking sequences in (0001) α in hcp α matrix, leading to a local change of crystal structure from hcp→LI0. γ grains began to precipitate. Driven by surface tension, the precipitated disordered γ phase turned equiaxed. If at such time not enough energy can promote more equiaxed γ grains to precipitate further, such γ grains together with residual α would change into γ and ordered α2, making up near γ microstructure. But the formation of equiaxed γ brought about differences in chemical free energy between γ and α matrix, and further redistribution of Ti and Al atoms. Thus it can be figured out that equiaxed γ is only a pioneer of lamellar γ/α2 colonies. If the energy absorbed by the material can keep it in γ+α region for longer time, the internal structure tends to change into a more stable state.
Central part of Ti-Al binary phase diagram
The surface of equiaxed γ grains is composed of many crystal faces with varied orientation, and such places can easily become nucleation location for γ lamellae. Extension of partial Shockley dislocations led to γ lateral growth and formation of “terrace” in phase boundaries. The formed kinking parts attracted atoms’ diffusion and migration, resulting in γ growing laterally and γ plates formed. That is, γ plates form and grow by the “terrace-ledge-kink” mechanism [35]. In view of the fact that γ lamellae grew into neighboring α matrix interior with different rates and the growth rate in coherent α was greater than in incoherent ones, the differences in chemistry free energy would drive α on the side with incoherent boundaries to grow into γ interior. Then lamellar γ/α2 colonies took shape[36,37]. γ plates can parallel align along (0001) α, the only habit plane in hcp α, while α lamellae can align along four habit planes in γ, including (111) γ,
The above-mentioned phase transformation process is in agreement with experimental results in this paper. Fig. 21 displayed such microstructure evolution process in TiAl alloys [40]. It should be pointed out that in the PCAS technique, electric field helps to improve nucleation rate and refine microstructures. As a result, the recrystallized α would be finer than that given in the figure, then more equiaxed γ would be separated out. When fine γ grains reached out to each other, triple junctions among boundaries would appear and near gamma would form. Therefore, the reason for the as-sintered microstructures changing from near gamma to duplex, fine lamellae, then coarse lamellae with the increment of heating-up rate can be clearly uncovered. The effect of lengthening duration time and raising sintering temperature is the case also.
Schematic drawing of microstructure evolution process in TiAl alloys
Due to the fact that the alloys sintered at 1250 °C with heating rate of 2-4.5℃
Tensile properties of the sintered alloys are listed in Table 6. As shown in the table, room-temperature mechanical properties of the materials are dependent upon the microstructure. Ultimate tensile strengths σb of all specimens fell between 300 and 700MPa. The ultimate tensile strength increases with a decrease in lamellar colony size. Whereas the two samples with lamellar structure exhibited ordinary tensile elongation, the ductility of samples with near γ and duplex structures were over the usual value of 0.3-2%.
Heating rate(°C⋅s-1) | \nMicrostructure (µm) | \nσb(MPa) | \nδ(%) | \n
4.5 | \n\tNG(4) | \n\t578 | \n\t3.59 | \n
3 | \n\tDP(6~9) | \n\t632 | \n\t4.51 | \n
2.5 | \n\tFL(25) | \n\t416 | \n\t2.21 | \n
2 | \n\tFL(27) | \n\t367 | \n\t1.58 | \n
Results of ambient temperature tensile tests at 2.083×10-4 s-1
It has been shown [41] that the refinement of grain size can enhance the mechanical properties of TiAl. Indeed tensile properties of the two coarse fully lamellar microstructures are lower than those of duplex microstructure (Table 6). The strengthening mechanism of TiAl alloys with refined microstructures may be attributed to the classical Hall-Petch equation σ = σo+ KD-1/2, where σo refers to a material intrinsic value, K a Hall-Petch constant, and D the average diameter of grains. Such equation can be used to explain higher ultimate tensile strength when α2 / γ lamellae size decreases from 27 down to 9µm. In addition, fine microstructures are beneficial for the operation of grain boundary sliding and the compatibility of deformation, resulting in better strain [42-44]. Furthermore, allowing for lamellar microstructures possessing the anisotropic mechanical property, differently oriented lamellae in deformation will produce discontinuous strain [45], resulting in the generation of interfacial microcracks and brittle failure of the tested specimen. Thus, better room temperature ductility is suppressed.
However, the above-mentioned theory isn’t applicable for all the experimental results here in that in the test a room temperature ductility peak was observed in the duplex TiAl alloy instead of finer equi-axed one. Specifically, the maximum tensile strength occurs also at the maximum tensile elongation. In order to explain such phenomenon, close attention is paid to sintering processes. During sintering, load and heat were applied simultaneously. Therefore, high heating rate corresponded to high pressurizing rate. A high heating rate is expected to inhibit grain growth. As a result, grain sizes are much refined when heating rate is high. However, high loading rate can quickly seal the venting channels among powder particles and prevent a complete outgassing. This, of course, was not in favor for specimen densification during sintering [46]. Thus, the relative density of specimens obtained at the heating rate in the range of 2-3℃•s-1 was over 99.5%, while the density of that one sintered at 4.5℃•s-1 was 98.6%. The lower density, thus more residual pores reduces the ductility and tensile properties. Also, near gamma microstructure is a product of unstable phase transformation, so vast defects would remain in internal structures, such as a large number of dislocations tangled up in grains, as shown in Fig. 22. So, even though grain boundary sliding and deformation compatibility ameliorated with grains being refined, numerous dislocations tangling up inhibited the alloy’s capability of homogeneous deformation [45]. As a result, the tensile properties of fine-grained, near γ sample are inferior to those with a duplex structure.
TEM micrographs of 4.5℃•s-1-sintered alloy
Fig. 23(a) shows the true stress-strain curves of the 4.5℃•s-1-sintered alloy for tensile deformation at temperatures ranging from 800 to 1000℃ at the strain rate of 2.083×10-4s-1. It can be seen that in the temperature range, plastic strain appeared, following the elastic deformation. Moreover, at above 900℃, steady flow took place. Besides, the equiaxial γ-TiAl based alloy under study is characterized by a remarkable elongation-to-fracture and a marked strain rate sensitivity m. As the temperature rises, the elongation exhibits monotonous character, increasing from 71% at 800℃, 165% 900℃, 241% 950℃ to the maximum elongation-to-failure δ=409% at 1000℃. The profile of the specimen fracture at 1000℃ is illustrated by the Fig. 23(b).
(a)True stress-strain curves of the 4.5℃•s-1-sintered alloy for deformation at 800 -1000℃, (b) fracture sample deformed at 1000°C with 409% elongation and an as-prepared test piece (bottom) is also shown for comparison.
m value obeys the same tendency as the elongation, from 0.15, 0.33, and 0.45 up to 0.8 at 1000℃. The values of m and elongation-to-failure at temperatures above 900℃ are indicative of superplastic deformation behavior. Meanwhile, an increase of temperature leads to a rapid decrease in flow stress, decreasing from 565Mpa at 800℃ down to 79Mpa at 1000℃. This result is in accordance with the majority of γ-TiAl based alloys with micron-grained structure investigated to date [47-49].
The effect of testing temperature on the high temperature flow behavior of duplex microstructure is illustrated in Fig. 24(a). It can be seen that this alloy failed during the elastic stage at 750°C and the elongation reaches 10%.At 900°C, plastic strain began to appear, following the elastic deformation. At and above 950°C, steady flow took place. Moreover, an increase in the temperature led to an increase in the elongation, from 48% at 900°C to 99% at 950°C, with a maximum of 135% achieved at 1000°C (Fig. 24 (b) ). m value reached 0.23 at 1000°C, lower than the critical value 0.3 for conventional superplastic deformation. Its flow stress followed the same tendency as 4.5°C•s-1-sintered alloy, namely decreasing with the test temperature ascending. However, compared with the tensile behavior exhibited by 4.5°C•s-1-sintered alloy, flow stress in 3°C•s-1-sintered one is always higher at corresponding test temperature.
(a) True stress-strain curves of the 3°C•s-1-sintered alloy for deformation at 750 -1000°C at the strain rate of 2.083×10-4s-1 (b) fracture sample deformed at 1000°C with 135% elongation and an as-prepared test piece (bottom) is also shown for comparison.
Superplastic behavior was found in nearly equi-axed TiAl alloy with the usual prerequisites of fine grain size [50]. It is obvious that a decrease in grain size to a micron level improves deformation homogeneity, facilitates grain boundary sliding and interaction of dislocation with grain boundaries, decreases flow stress, and suppresses deformation twinning, providing increased ductility at relatively low temperatures [51]. Fine microstructures are beneficial to the compatibility of deformation. Large number of grains joins in the deformation, resulting in better plasticity.This is also the reason for the non existence of superplasticity in 3°C•s-1-sintered duplex alloy.
Also, a microcrystalline grain size can help the alloy to display Superplastic behavior and decrease the temperature for Superplastic behavior with extensive grain boundary diffusion and sliding. Based on calculation of the activation energy Q for Superplastic deformation being 212.6~252.2kJ•mol-1, the Superplastic deformation mechanism for the alloy is determined as the grain boundary sliding accommodated by grain boundary diffusion [52].
In the first part of this chapter, the technique of PCAS was firstly introduced in detail, including its origin, development, classification, fundamental working mechanism and a lot of advantages over other traditional material preparation technique.
The second part paid special attention to the application of the technique to synthesis ofγ-TiAl alloys. On self-built pulse current auxiliary sintering apparatus (PCAS), influences of different parameters, including heating-up rate, sintering temperature and duration time, on obtained microstructures in sintered products were studied. After systematic researches on heating rates of 2~9°C
When powders were synthesized in the oven at 1250℃ for 5min with heating rates of 4.5, 3, 2.5, 2℃
In tensile tests at various temperatures on sintered TiAl alloys with near γ and duplex microstructures, it was observed that the one with equi-axed fine grains possessed more superior elevated temperature tensile properties. In temperature range of 950℃~1000℃ and strain rate range of 2.083×10-4s-1,the obtained elongation was over 240%. The results demonstrated its ability to display superplastic behavior at relatively low temperatures. Based on calculation of the activation energy Q for Superplastic deformation being 212.6~252.2kJ•mol-1, the superplastic deformation mechanism for the alloy was determined as the grain boundary sliding accommodated by grain boundary diffusion
Based on the success in the synthesis of dense γ-TiAl alloys with fine microstructures, improved room-temperature and ideal high-temperature tensile properties, more studies are under way for processing industrial parts with good quality and improved mechanical properties directly by PCAS technique. These relative studies will explore more prospects for the application of the technique.
How do γ-rays compare with other types of radiation? “Radiation” in common language describes “energy packages” that travel on straight paths. “Electromagnetic radiation” is characterized by variations of electric and magnetic fields in space and time. Another type of “radiation” is “cosmic rays,” very energetic particles discovered early in the twentieth century in the upper atmosphere of the Earth and known to pervade interstellar space. These particles are called “cosmic radiation” because with their high energies they propagate at the speed of light and in certain aspects behave like photons of similar energies [1].
\nGamma radiation represents the most energetic part of the electromagnetic spectrum (\nFigure 1\n). Therefore, it is natural that it provides information about the liveliest procedures and wonders in the universe [2].
\nThe electromagnetic spectrum from radio to γ-ray energies. The electromagnetic radiation can be characterized by its photon energy (measured in eV), by its frequency (measured in Hz) or by its wavelength (measured in m) [2].
In general, there are three noteworthy sources: earthly radiation, grandiose radiation, and interior radiation due to the admission of regular radionuclides through inward breath (for the most part radon) and ingestion. Additionally, the most three radionuclide components are thorium (232Th), potassium (40K), and uranium (238U). Natural radiation sources consolidate the ground, rocks, air, building materials, and drinking water supplies. Big amount of radiation rises up out of sun situated, galactic and extragalactic transmissions and contains decidedly charged particles, muons, neutrons, and gamma radiation.
\nInward radiation is in our body because of what we eat and drink and the air we unwind. Common radiation in a general sense relies upon topographical and geological conditions. In this way, the portion ratios of both enormous and earthbound gamma radiation will be found to vary depending upon where the estimations are made [3, 4, 5].
\nAs the research shows the relationship between the gamma-ray and living beings and all gamma radiation in the earth, it will explain in detail the mechanisms (according to the user of the detector) to calculate gamma background radiation and the measurements depending on the international standard values.
\nThis section explains the most common detectors used in the measurement of gamma background radiation and equipped with the international practical recent researches, to let the researchers who have worked in this field have the basic knowledge on these devices by knowing the mechanism of how they work and how to calculate gamma background radiation.
\nA radiation dosimeter is a gadget, instrument, or framework that measures or assesses specifically or in a roundabout way, the amounts presentation, KERMA, proportional portion, or when they again their time auxiliaries (rates), or related amounts of ionizing radiation. A dosimeter close by its scrutinize is insinuated as a dosimetry structure.
\nEstimation of a dosimetric aggregate is the course toward finding the respect of the total likely utilizing dosimetry frameworks. The delayed consequence of estimation is the estimation of a dosimetric aggregate imparted as the aftereffect of a numerical regard and a reasonable unit. To fill in as a radiation dosimeter, the dosimeter must have no short of what one physical property that is a component of the intentional dosimetric sum and that can be used for radiation dosimetry with the real arrangement. With the ultimate objective to be significant, radiation dosimeters must show a couple of appealing characteristics.
\nFor instance, in radiotherapy, correct information of both the consumed portion of water at a predefined point and its spatial appropriation are of significance, also the likelihood of determining the portion to an organ of enthusiasm for the patient [6]. In radiation, preparing dosimetry is utilized to evaluate the vitality kept in a material or consumed by a human from radiation sources.
\nDiverse dosimetry frameworks are utilized for various purposes in industry and research light offices, which have distinctive prerequisites for portion conclusions. Radiation wellbeing norms and issues including the radiation safety of people against radiation presentation have their very own dosimetry metrology.
\nRadiation dosimeters and dosimetry frameworks come in numerous shapes and structures and they depend on various physical impacts for capacity and readout of the dosimetric flag. The below table demonstrates the most regularly utilized of dosimetric frameworks, and the qualities and shortcomings of these four dosimeters are outlined. The four most commonly used radiation dosimeters are [6]:
Ionization chambers
Radiographic films
TLDs
Diodes
Dosimetry type | \nAdvantage | \nDisadvantage | \n
---|---|---|
Ionization chambers | \nAccurate and precise. Recommended for beam calibration. Necessary corrections well understood. Instant readout. | \nConnecting cables required. High voltage supply required. Many corrections required for high energy beam dosimetry. | \n
Radiographic films | \n(2-D) spatial goals. Thin: does not irritate the pillar. | \nDarkroom and preparing offices required. Preparing hard to control variety among movies and clumps. Needs legitimate alignment against ionization chamber estimations. Energy reliance issues can’t be utilized for pillar alignment. | \n
TLDs | \nSmall in size: point portion estimations conceivable. Numerous TLDs can be uncovered in a solitary presentation. Accessible in different structures such as some similar tissue identical. Not costly. | \nFlag deleted amid readout. Simple to lose perusing. No moment readout. Precise outcomes require care readout and alignment tedious. Not suggested for shaft calibration. | \n
Diodes | \nLittle size. High affectability. Moment readout. No outer inclination voltage basic instrumentation. | \nRequires partner joins Variability of alteration with temperature. Change in affectability with the aggregated portion. Uncommon consideration expected to guarantee consistency of reaction. Can’t be utilized for pillar adjustment. | \n
Radiation dosimetry is a part of physical science investigating diverse strategies for the quantitative assurance of vitality, which is stored in a given material by ionizing radiation, either through an immediate or aberrant presentation. Dosimetry manages conclusions and computations of amounts (portion) that depict the vitality ingested in a material and to some degree its rate of the statement (portion rate). Dosimetry conclusions that are performed by presenting a dosimeter to a radiation source help in assessing the radiation-prompted impacts, physical, substance, and additionally organic, on a lighted material [7]. \nFigure 2\n shows a Science Photo Library/Getty Images [8].
\nScience Photo Library/Getty Images [8].
Know the most recent research to calculate gamma background radiation is measurements of gamma background radiation in Lorestan, Iran.
\nThe researcher used a G.M. detector (RDS-110) “Inspector Alert model RAP RS1, S.E. international, Inc, USA”. The outcome demonstrates the normal yearly powerful portion for gamma base radiation in Lorestan area has been 0.72 mSv, with the scope of 0.3–0.6 mSv which was more than the worldwide esteem (0.48 mSv). A poor coefficient relationship in-between was noticed elevating and retaining portion rates [9].
\nAnother research study used the same device and the same properties. Indoor and outdoor absorbed dose rates were measured in the select region of AL-Qizweenia Najaf in Iraq [10]. Many studies in the gamma field of background radiation were conducted in different cities of Iraq [11, 12, 13]. All values of these studies compared with limitation of world average values.
\nThere was an expansive glitter phenomenon in 1948 which was accounted for. It caused by including a follow amount of thallium (Tl) into a precious stone of sodium iodide (NaI). This identifier, in which sodium iodide (NaI) was utilized for radiation estimations, was based on the fact that recently it had been produced by HORIBA. They had the advancement of the NaI(Tl) plate for gamma cameras began during the 1970s.
\nIn the first place, gems with breadths of 1–3 inches were utilized as indicators for atomic material science tests, natural radiation estimations at atomic power plants, or radioimmunoassay. Furthermore, mosaic-type precious stones were likewise created to relate to vast estimated gems notwithstanding the gems with a distance across of around 5 inches. After the expansive estimated gamma camera was created, bigger and bigger precious stones have been requested each year, and researchers have been making a decent attempt to get ever bigger measured NaI(Tl) gems as of late, and \nFigure 3\n shows atypical scintillation detector [14].
\nAtypical scintillation detector [14].
An elective strategy for assurance of exercises of regular, techno genic, and aftermath radionuclide in natural examples was proposed. The strategy utilized a broadly accessible shine spectrometer and depended on the disintegration of tests’ γ-spectra into ghastly segments of discrete radionuclide bunches with the assistance of standard sources. The technique was tested on water, soil, and coal which could be effectively utilized in field (endeavor) conditions (without fluid nitrogen for the indicator cooling) [15].
\nThere were many local and international studies used NaI(Tl) detector to evaluate natural or terrestrial of radionuclide or gamma background radiation with a difference of accuracy and efficiency of the device and sometimes equipped with a software program of the trace elements.
\nIn 2013, a nearby report discusses uranium (238U), thorium (232Th), and potassium (40K) with the explicit movement (10) in a few types of vegetables that is accessible at the market in Iraq. Tests had been estimated, and inner risk file, radium identical, and the yearly compelling portion of (40K) in all examples were resolved. The gamma spectrometry methodology with a NaI(Tl) pointer was used for radiometric estimations, outcomes were contrasted and worldwide prescribed qualities and were observed to be inside the global dimension [16].
\nAn investigation was conducted on radionuclides (226Ra, 232Th, and 40K) of natural radioactivity estimations and assessment of radiological hazards in the silt of Oguta Lake, South East Nigeria. NaI(Tl) indicator “(show: Bicron, Pre-intensifier model:2001, Amplifier model:2020, ADC model:8075, HVPS model:3105)” was utilized for the gamma-beam spectrometry estimations. The identifier has a goal of 8% at 0.665 MeV line of 137Cs, which is equipped for recognizing the gamma-beam energies of the radionuclides of enthusiasm for this examination. The investigation could fill in as critical radiometric pattern information whereupon future epidemiological examinations and ecological observing activities could be based [17].
\nAnother examination enduring gamma producers in biscuit samples expired in Iraq, estimated the common radioactivity couple to seemingly perpetual gamma producers in children roll by gamma spectroscopy and appraisal radiation risk records which are the radium comparable action, the delegate of gamma level file, the interior danger file, and yearly powerful portion in kids. The gamma spectrum from each sample was recorded using detector NaI(Tl), and the volume of the crystal is (“3 × 3”), a PC-based multichannel analyzer (4096 channel) and processed using the MAESTRO-32 software. The estimations of eexpress activity, radiation risk records, and a yearly viable portion in all examples in this investigation are discovered lower than the overall middle incentive for all gatherings. Along these lines, these qualities are observed to be protected [18].
\nThree types of research are in the same field (used NaI detector). First one is in Kütahya, Turkey. The examination of common radioactivity from 238U, 232Th, and 40K in 357 soil tests gathered from territory of Kütahya was completed utilizing a NaI(Tl) gamma-beam spectroscopy. Explicit exercises of 238U, 232Th, and 40K in the dirt examples were assessed. The locator was coupled to a full-featured 16 K channel fused multichannel analyzer “(Canberra DSA-1000).” It is joined with a PC for getting an examination and with reasonable programming “(Genie 2000).”
\nThe identifier was covered in a 0.5 cm thickness lead shield, giving a disguise of the establishment gamma-bar radiation present in the exploration office. The NaI(Tl) gamma-bar spectrometer has high efficiency, and in a similar manner, it might be used for the customary radioactivity. The outcomes acquired in this examination were analyzed inside the cutoff points of values gotten in different urban areas of Turkey, those in different nations [19].
\nSecond research estimated normal radioactivity in chosen tests of therapeutic plants in Iraq, where characteristic dimensions of radiation in some chosen therapeutic plants existing in the Iraqi stores were assessed to decide any action fixation, radium comparable, and inner risk file due to the radionuclide, of 238U, 232Th, and in addition 40K, which happens normally. The movement fixation is recognized by gamma-beam spectroscopy and NaI(Tl). Estimations are done by embracing frameworks of gamma spectrometry from ORTEC, furnished with a high productivity sparkle indicator, a NaI(Tl) locator of (3″ × 3″) precious stone measurement, with goals 9.2% for 137Cs (661.7 keV). A lead shield with a thickness of (10 cm) was put around the finder to decrease the foundation, with a 0.3 cm layer of copper to debilitate X-rays discharged by the lead shield. The spectra were seen disconnected utilizing the ORTEC Maestro-32 information obtaining and examination framework. Regular radionuclides and development of the radium similar to the remedial plant tests were far underneath the world for the ingestion of typically happening radionuclide, as given in UNSCEAR 2000 report [20].
\nThird research in some vegetables and fruits commonly used in Najaf Governorate, Iraq, determined the natural radioactivity levels. The points of the present work were to gauge the explicit action and yearly compelling portion because of the admission of vegetables and organic products gathered from the nearby market in Najaf governorate. Characteristic radioactivity was estimated in tests utilizing gamma beam spectrometer. Gamma-ray spectroscopy with scintillation detector NaI(TI) from ORTEC had an active area of “3 × 3” inches, the efficiency of 4.6% at the 662 KeV, and energy resolution 7.9%. The qualities found for explicit action and the yearly powerful portion in all examples in this investigation were lower than overall middle qualities for all gatherings as indicated by UNSCEAR (2000) and ICRP (1996) individually; subsequently, these qualities are observed to be sheltered [21].
\nAlso, a study in Turkey for the three radionuclide elements (226Ra, 232 Th, and 40K) had been made in some granite samples. The action grouping of primordial radionuclides in rock tests was assessed by utilizing (3 × 3) NaI(Tl) indicator-based gamma-beam spectrometry. This gamma spectrometer has vitality goals 8% for 662 keV and the relative checking productivity about 20%. It was critical that the productivity adjustment of the framework ought to be made before estimation for the right outcome. Estimation of radioactivity for, 14 various types of stone examples have been breaking down for their regular radioactivity content. The end was: the 40K action focus levels in stone examples in these investigations were lower than fixation estimations of various examinations on the planet. A few examples and other stone examples were not observed to be reasonable for utilizing in the human life regions due to every single radiological incentive in these examples are higher than CLV [22].
\nRoentgen in 1928 was held onto as a unit to describe radiation introduction. Roentgen evaluates the number of electrons made in air, yet not the genuine damage following in a man.
\nIn 1953, a unit known as a rad (100 ergs g−1) was grasped to portray the proportion of essentialness spared in a material. Clearly, it was found that different sorts of radiation affected the tissue in the body all of a sudden. Another unit was made to address this, known as a rem. A rem is proportionate to a rad duplicated by a factor known as a “Quality Factor” (Q) which numerically portrays the relative trademark impact of the express kind of radiation. As these new units of measure were made and executed, new radiation materials and exposure instruments were delivered with the objective that contradictory exposures and doses could be accurately evaluated [23].
\nAlthough extremely accurate active radiation detectors are now available, TLDs are small, inexpensive, and if the correct material is chosen, tissue equivalent. They can be used to detect photons, beta particles, and slow neutrons, and with appropriate filters, they can be used to determine the shallow and deep dose. Their biggest advantage is long-term deplorability, possible due to a power source being unnecessary until readout. This allows time-efficient monitoring of typically uninhabited areas. In order to ensure accurate results from long deployments in diverse interior and exterior environments, various aspects of their performance must be examined. This work serves to improve the effectiveness of TLD systems by analyzing several factors which may affect the sensitivity and precision of TLD measurements, as well as determining a practical minimum detectable dose incorporating those factors.
\nTLDs must be individually calibrated, meaning that the amount of signal response to a known dose must be measured before use. The light response to doses generally between 0.1 mGy and 10 Gy, but varying by material, has a two linear relationship with dose. This makes calibration at only one dose necessary if staying within the linear range [24]. \nFigure 4\n below shows the thermoluminescence detector (model THERMO SCIENTIFIC 4500 TLD READER) in the laboratory at Ankara University, Institute of nuclear sciences [25].
\nTHERMO SCIENTIFIC 4500 TLD READER [25].
Some examples of modern researches will be taken. Researches of detector will show it had much application with different branches in physical science. First one in network communication in which the point is to seek after an ordinary free quality review in Czech radiotherapy focuses and to help state supervision. The results appears to be that there are 34 radiotherapy focuses in the Czech Republic. They experience the essential method of the TLD review routinely at regular intervals.
\nOn the off chance that an inside demonstrates a deviation outside the acknowledgment level, it is evaluated more frequently. Step by step, a large portion of the checked shafts conform to the acknowledgment level.
\nResults were for the most part inside as far as possible for the estimations on-hub, though for off-hub focuses they fell past the limit all the more oftentimes, particularly for set-ups with in-homogeneities, diagonal occurrence, and wedges.
\nThe outcomes demonstrate the significance of the national TLD quality affirmation arrange. It has added to the enhancement of clinical dosimetry in the Czech Republic. What’s more, it causes administrative specialist to screen successfully and consistently radiotherapy focuses [26].
\nAn exploration in therapeutic material science including patients and apparition dosimetry in the two cases, thermoluminescence dosimetry (TLD) is the most suitable strategy for estimating the assimilated portion. In this chapter, thermoluminescence wonder and in addition the utilization of TLD in radiodiagnosis and radiotherapy for in vivo or in apparition estimations is talked about. A few aftereffects of estimations made in radiotherapy and radio diagnosis utilizing natively constructed LiF: Mg, Cu, P + PTFE TLD are exhibited [27].
\nIn nuclear atomic material science, an examination in the robust assurance of successful nuclear numbers for electron together with “TLD-100 and TLD-100H thermoluminescent dosimeters,” lithium fluoride thermoluminescent dosimeters (TLD) are frequently not completed for clinical dosimetry. The little physical enormity of TLDs makes them applicable, for instance, little field estimation, in vivo dosimetry, and estimation of out-of-field bits of essential structures. The most exhaustively used TLD can’t avoid being “TLD-100 (LiF: Mg, Ti),” and for applications requiring higher affectability to low-parcels, TLD-100H (LiF: Mg, Cu, P) is consistently used. The radiological properties of these TLDs are along these lines of significant interest. All of a sudden, in this examination, convincing atomic numbers for radiative, collisional, and mean electron association frames is resolved for “TLD-100 and TLD-100H” dosimeters over the essential expansion of 1 keV–100 MeV. This is applied by using a solid, essentialness subordinate system for calculation instead of normal power-law approximations. The effect of dopant obsessions and unwanted impacts is further analyzed. The two TLDs show relative convincing atomic numbers, generally ranging from 5.77 to 6.51. Differentiations rising up out of the particular dopants are most enunciated in low-imperativeness radiative effects. The TLDs have atomic numbers around (1.48–2.06) events than that of water [28].
\nMeasurement of computed tomography dose profile with pitch variation uses Gafchromic XR-QA2 and thermoluminescence dosimeter (TLD). This examination was meant to point the examples of portion profile on a grown-up and pediatric head filter. They thought about estimation depended on portion profile along the z-hub turn at peripheries and focus apparition with an assortment of the pitch, that is, 0.75, 1, and 1.5 for grown-up and pediatric head convention, keeping whatever is left of the sweep parameters steady.
\nEstimations were performed on homogeneous, round, and void PMMA ghost with widths of 16 and 10 cm utilizing XR-QA2 Gafchromic film and TLD as dosimeters. The estimation result showed a diminishing in the part about half and 47% for grown-up and pediatric head check with the advancement of pitch. Part profile for adult and pediatric head channel traditions has configuration twist with the most outrageous bit in the inside and inclination of symmetry near the edges, with difference in the dimension length along z-center point bearing incomprehension to the estimation position in the nebulous vision [29].
\nA research related with nuclear physics was unfolding neutron spectra from the simulated response of thermoluminescence dosimeters, and neutron spectrometry utilizing a solitary circle containing dosimeters has been produced as of late, as a powerful swap for Bonner circle spectrometry. The purpose of the examination is spreading out the neutron essentialness spectra using the GRNN fake neural framework, from the response of thermoluminescence dosimeters, TLDs, arranged inside a polyethylene circle. The spectrometer was reproduced using MCNP5.
\nTLD-600 and TLD-700 dosimeters were replicated in different positions all over. By then, the GRNN was used for neutron spectrum gauge, using the TLDs’ readings. Examination of spectra foreseen by the framework with real spectra shows that the single-circle dosimeter is an incredible instrument in spreading out neutron spectra [30].
\nSolid state physic took apart with thermoluminescence detector, preliminary studies of thermoluminescence dosimeter “(TLD) CaSO4: Dy Synthesis. thermoluminescence dosimeter (TLD) CaSO4: Dy” was orchestrated by coprecipitation.
\nThe TLD was seen after radiation introduction to Strontium-90. The thermoluminescence drive was scrutinized using a TLD Reader Harshaw 3500. The thermoluminescent response obtained was 59.29 nC. By then, refortifying was driven with the temperature vacillated at 700, 800, and 900°C. The thermoluminescent control got at temperatures of 700–900°C was 66.12, 169.45, and 552.37 nC independently. The affectability of the TLD extended in light of the retoughening temperature rise. Despite viewing the thermoluminescence properties, a relationship was made between the TLD got from this attempt distinctive things with a current TLD in the market. At long last, likewise, the gleam bend attributes of the TLD were watched [31].
\nThe U.S. Naval force utilizes the “Harshaw 8840/8841 dosimetric (DT-702/PD)” framework, which utilizes LiF: Mg, Cu, P thermoluminescent dosimeters (TLDs), created and delivered by Thermo Fisher Scientific (TFS). The dosimeter comprises four LiF: Mg, Cu, P components, mounted in Teflon on an aluminum card and put in a possessor made from plastic. The possessor consists of an interesting channel for each chip made of copper.
\nThe Naval Dosimetry Center (NDC) has created and tried another nondamaging method, which empowers the check and the assessment of installed channels in the possessors. Testing depends on weakening estimations of low-vitality radiation transmitted through each channel in an agent test gathering of possessors to confirm that right channel type and thickness are available. The deliberate reaction proportions are then contrasted and the normal reaction proportions. Moreover, every component’s deliberate reaction is contrasted with the mean reaction of the gathering. The test was organized and endeavored to recognize basic singularities, for instance, missing copper or tin channels, twofold copper or twofold tin channels, or diverse discords that may influence TLD response extents. In the midst of the execution of the made strategy, testing revealed a possessor with a twofold copper channel. To finish the assessment, the effect of the qualifications on limit testing was destitute down. The examination uncovered disappointments in capacity testing orders III and IV when these dosimeters were edified to high-significance betas [32].
\nThe diode indicator is the least difficult and most essential type of abundancy tweak, AM locator, and it distinguishes the envelope of the AM flag as shown in \nFigure 5\n. The AM diode locator could be worked only on a diode with couple of different segments, and therefore it is a minimal effort circuit hinder inside a general recipient. Because of its expense and comfort, the AM diode envelope identifier has been broadly utilized for a long time in transistor compact radios.
\nCircuit of an envelope locator as utilized in an AM radio collector [33].
In changing the RF hail, the AM diode discoverer gives a yield proportionate to the envelope of one part of the banner, and this implies an envelope locator. In context of the errand of the diode marker, it may every so often be implied as an envelope discoverer. The moving toward abundancy changed RF hail includes a waveform of both positive and negative going voltages as shown in \nFigure 6\n. Any stable transducer would not respond to that.
\nAM diode envelop detection process [33].
The diode envelope discoverer changes the waveform leaving only the positive or negative segment of the waveform. The high repeat part of this is filtered through, normally using a capacitor that outlines the low pass channel and suitable “fills” in the high repeat segments, leaving a waveform to which a transducer like two or three earphones or an enhancer could respond to and convert into sound waves.
\nThe AM diode envelope discoverer had been viably used to quite a while. The most envelope pointer purposes of intrigue are: ease that means the diode indicator just requires the utilization of a couple of ease parts. This means it is perfect for use in transistor (and valve/vacuum tube) radios utilizing discrete segments, effortlessness means utilizing not a lot of parts, and the diode AM identifier was definitely not hard to complete. It was dependable and did not need any setup, while an envelope identifier inconveniences are:
\nAs the diode indicator is nondirect, it presents mutilation onto the identified sound flag.
\nOne of the issues a significant part of the time experienced on the short and medium wavebands where the AM transmissions are found is that of express darkening. The diode envelope identifier cannot battle the impacts of this on how some different locators are capable, and therefore, contortion happens when specific blurring happens.
\nThe diode locator is not as precarious as some remarkable sorts. On the off chance that silicon diodes are utilized, these have a turn-on voltage of around 0.6 volts, and therefore, germanium or Schottky diodes are utilized which have a lower turn-on voltage of around 0.2–0.3 volts. Without a doubt, even with the utilization of the Schottky diode, the diode envelope identifier still experiences a pore estimation of affectability.
\nThe AM diode envelope indicator has been accessible for a long time. Despite the fact that abundancy balance is utilized less nowadays, and different types of AM finder can be effortlessly consolidated into coordinated circuits, the basic diode identifier still has a few points of interest [33].
\nAfter a brief explanation about diode detector, some recent applications of diode detector will be discussed.
\nIn remedial material science, in light of the way is that the skin diode is made on a thin epitaxial layer and bundled utilizing the “drop-in” advancement. It was portrayed comparably as rate hugeness isolate, segment linearity, and section rate reliance and benchmarked against the Attix ionization chamber. The reaction of the skin diode in the enhancement zone of the rate importance divide touch of a 6 MV clinical photon bar was explored. The radiation hardness of the skin diode up to an amassed bit of 80 kGy using photons from a Co-60 gamma source was surveyed [34].
\nAnother application in the same field is evaluation of the dosimetric properties of a diode detector for small field proton radiosurgery; the little fields and sharp angles regularly experienced in proton radiosurgery require high spatial goal dosimetric estimations, particularly underneath 1–2 cm measurements. The radiochromic film gives high goals; however, it requires postprocessing and unique taking care of. Promising choices are diode identifiers with little delicate volumes (SV) that are able to do high goals and continuous portion obtaining.
\nIn this investigation, the analyst assessed the PTW PR60020 proton dosimetry diode utilizing radiation fields and shaft energies pertinent to radiosurgery applications [35].
\nSchottky diode is well know; therefore, we have given examples. The first one is calculating the diode junction resistance variations with RF power of a series Schottky diode detector. Based on the Ritz-Galerkin method, this research provides a simple formula that can be used to calculate the differential input impedance and frequency response of a diode detector. Calculated results are presented for several circuit configurations that are confirmed by ADS [36].
\nThe second example is high-resolution Schottky CdTe diode detector, with a Schottky intersection created on the Te face of a top-notch CdTe semiconductor by dissipating indium, and they have possessed the capacity to accomplish a CdTe diode including high vitality goals. The identifiers demonstrate the best execution when they utilize a moderately thin locator of 1 mm. The high vitality goals of the CdTe diode are exceptionally alluring for hard X-beam and gamma-beam recognition. Particularly, an extensive CdTe diode with measurements bigger than 20 × 20 mm can possibly supplant shine locators because of its high ceasing force and vitality goals of 3 keV at 100 keV. Numerous ideas dependent on high goal CdTe diodes are currently being examined, and model indicators are being created [37].
\nSemiconductor identifiers are basically strong state analogs of gas-filled ionization chambers. Since the strong indicator materials utilized in semiconductor identifiers are 2000 to multiple times more than gases, they have the much better halting force and are considerably more productive finders for X-rays and γ-rays.
\nSemiconductor indicators regularly are poor electrical transmitters; when they were ionized by an ionizing radiation event, the electrical charge delivered could be gathered by an outer connected voltage, for what its worth with gas-filled locators. This guideline could not be connected utilizing a leading material for the locator (e.g., a square of metal) on the grounds that such a material would direct a lot of current even without ionizing occasions. Protectors (e.g., glass) are not appropriate identifier materials either on the grounds that they don’t lead even within the sight of ionizing radiation. Subsequently, just semiconductor materials can work as “strong ionization chambers.”
\nThe most by and large used semiconductor locator materials are silicon (Si) and germanium (Ge). Even more starting late, cadmium telluride (CdTe) or cadmium zinc telluride (CZT) has been utilized as the major material in insignificant atomic medicine checking and imaging gadgets. One ionization is made per 3–5 eV of radiation importance consumed. By examination, this propelling power for gases (air) is around 34 eV for each ionization. Subsequently, a semiconductor locator not exclusively is more fruitful shield of radiation, in any case, passes on an electrical standard that is around various events more prominent (per unit of radiation centrality ingested) than a gas-filled pioneer. The flag is sufficiently enormous to allow recognizing verification and checking of individual radiation occasions. Also, the proportion of the electrical banner is relating to the proportion of radiation imperativeness acclimatized. Thusly, semiconductor discoverers can be used for essentialness explicit radiation counting [38].
\nThe most advantage of HPGe high purity germanium detectors (HPGe) is the best energy resolution among all detector types. In principle, they work like reverse biased diodes; energy deposition by nuclear radiation causes the flow of a current, which is processed by front-end electronics [39]. \nFigure 7\n shows a geometrical dimension of the investigated detector (mm).
\nA geometrical dimension of the investigated detector (mm) [39].
In 2018, many international studies are about gamma background radiation and using HPGe detector. One of these studies is treating illnesses for many years all over the world. The aim of this study is to determine the radioactivity levels in some anti-carcinogenic medicinal plants that are often used to treat illnesses in Turkey.
\nThe analysis of 226Ra, 232Th, 40K, and 137Cs activity concentration of medicinal plants was performed using a high-resolution gamma-ray spectrometer with HpGe detector. Total committed effective dose value due to ingestion was determined as 55.04 μSv y−1 for these medicinal plants and has no risk to public health [40].
\nA study to analyze natural radioactivity level contents in Nigeria and China and a typical radioactive substance in tiles manufactured in Nigeria and tiles imported from China were evaluated using gamma-shaft spectroscopy. High purity germanium identifier was used to check the combinations of a couple of radioisotopes present in 17 trial of various tiles from Nigeria and China. The mean estimation of annual viable gamma dosages and the lifetime dangers to procure in this examination is not as much as that of the worldwide reference estimation of 370 Bq/kg for the two sorts of tiles [41].
\nAnother place in Nigeria studied building material purpose, which evaluated the activity concentration of natural radionuclides (226Ra, 232Th, and 40K) for fifteen (15) different brands of tile samples, is used for building purposes in Nigeria. The tile samples were analyzed using high purity germanium gamma detector. The deliberate centralizations of these radioactive materials were related with different past outcomes got from comparable tile materials utilized in different nations and observed to be in great concurrence with the global standard, and be that as it may, the tiles are suggested for adornment purposes in Nigeria [42].
\nA research in Amman calculated hazard indices and annual effective dose due to terrestrial radioactivity in the urban areas of south Amman. The extricated qualities are, by and large, tantamount to the relating ones acquired from different locales in Jordan and different nations and they all fall inside the normal overall reaches. Consequently, the foundation in these regions is actually equivalent to the esteem run of the mill of the upper piece of the Earth’s outside layer. Hence, all the samples investigated can be considered as safe materials for use in building constructions [43].
\nThe radioactivity groupings of 226Ra, 232Th, and 40K in 24 tests of normal and made building materials ordinarily utilized in Bangladesh were estimated utilizing HPGe gamma-beam spectrometer. Outcomes were contrasted and the world normal and furthermore with the detailed information. The radium equal action, the assimilated portion rate, yearly successful portion, outer and inside peril records, gamma file, alpha file, yearly gonadal portion equal, and overabundance lifetime malignancy chance were additionally assessed to assess the potential radiation dangers related with these building materials.
\nAll models under investigation were seen to be inside the recommended prosperity limit and don’t speak to any essential radiation risks. This examination can be used as a sort of viewpoint for more expansive examinations of a comparable subject in future [44].
\nThe radiological risk from building stone interfaces in Jordanian houses was determined depending on gamma-ray spectrometric techniques. Building stone samples collected from seven types mostly used in Jordanian houses have been analyzed for the naturally occurring radioactive radionuclides. Moreover, different radiological hazardous parameters (absorbed dose, annual effective dose equivalent, AGDE, ELCR, and AUI) were calculated. The results were lower than those of published world average values. Also, the obtained values were comparable with the presented data of other building materials used in Jordan [45].
\nTwo researches in 2017, first one is Evaluation of Natural Radioactivity and its Radiation Hazards in Some Building and Decorative Materials in Iraq, 29 examples of various kinds of building materials, for example, blocks, bond, earthenware, rock, marble, paint, mortar, sand, and soil were examined by a gamma spectrometer dependent on HPGe locator. The outcomes demonstrated that all the building materials in Iraq are sheltered with the exception of the materials that utilized as improving materials that must be directed [46].
\nThe second one is in north focal of Nigeria; measurement of the radiation portion dispersion is critical in surveying the wellbeing hazard a populace and fill in as a kind of perspective in archiving changes to ecological radioactivity in soil because of man-made exercises. The mean assimilated portion rate, yearly successful portion, and gamma radiation record assessed were 66.2 nGyh−1, 81.2 μSvy−1, and 1.05 individually which are higher than as far as possible for ordinary foundation radiation. In this manner, it is argued that individuals living in these areas might be presented to higher radiation [47].
\nThere are numerous examinations in Turkey about radioactivity levels and malignancy hazard. Turkey, particularly its northern piece, was one of the nations which were defiled by the Chernobyl mishap. In the Northeastern area of Turkey, there was a city named Rize, which was intensely affected by the Chernobyl atomic mishap.
\nThe action convergences of characteristic (226Ra, 232Th, and 40K) and artificial (137Cs) were estimations in soil tests gathered from 132 distinct focuses in Rize territory of Turkey utilizing gamma spectrometry with HPGe identifier. The open-air assimilated portion rates (D) because of earthbound gamma rays for soil have been determined due to agrarian zone and lived in the encompassing. It is essential to decide foundation radiation level with the end goal to assess the wellbeing dangers.
\nYearly viable gamma dosages and the presence dangers of disease were higher than the world’s normal. Besides contrast with the World’s normal, the existence time danger of malignancy is multiplied for a large portion of the territories [48].
\nIn Egypt, south Sinai granite is generally utilized in the development of homes as a building material. It contains the common radionuclides, 238U and 232Th, and their descendants together with 40K. This guarantees the significance of the evaluation of radiation levels and the related radiological dangers to which the populace may be uncovered. Gamma shaft spectra of standard radioactivity from the 238U and 232Th game-plan and from 40K of eight (tending to 40 gathered models) shake tests collected from Saint Katherine district, South Sinai, Egypt, had been assessed utilizing a gamma-column spectrometer with HPGe identifier. From the exploratory and computational work on normal radioactivity of Egyptian shake tests, we can complete the going with:
\nFirst, the region from where they collected the granite samples, South Sinai Governorate, Egypt contains 238U, 232Th, and 40K radionuclides with obsessions higher, comparable and lower than beyond what many would consider possible. Second, the radium tantamount activity is not actually beyond what many would consider possible. Thirdly, the danger lists, the dimension lists, and the actors use lists that are not exactly the world set criteria. Fourth, the Clark esteem is equivalent to around five which implies that district from where they took the rock tests isn’t financial for uranium mining and extraction [49].
\nSouthwestern of Nigeria (226Ra, 232Th, and 40K) and artificial (137Cs) were measured using (HPGe) detector (Canberra Industries Inc.). The outdoor absorbed dose rates in the air at about 1.0 m height were estimated from the activity concentrations and dose rate conversion factors for the radionuclides. The annual outdoor effective dose equivalent rates were also estimated for urban and rural areas of the state using the calculated absorbed dose rates in air. The results showed that area named (Igbeti and Eruwa) soils contain the highest level of natural radioactivity, while Egbeda soil contains the lowest level. The study showed that healthy burden caused by natural background radiation from soils on inhabitant area of study is generally low and carried insignificant radiation hazard except for two locations (Igbeti and Eruwa) [50].
\nA second study in Malaysia 2013, the radiation survey of the ambient environment was conducted using two gamma detectors, and the measurement results were used in the computation of the mean external radiation dose rate, mean-weighted dose rate, and annual effective dose, and also, the mean lifetime dose and lifetime cancer risk for each person living in the area with an average lifetime (70 years). Two strategies have been utilized to assess outer exposures in this examination. The first was a provoke estimation of outside gamma segment rates.
\nThe observation was taken at 497 zones in the Kluang District at 1 m above the ground utilizing two NaI-based gamma locators. The second system depended upon surveyed action revolves around soil tests and the gamma divide (Dc) from the gatherings of 238U, 232Th, and 40K. The advancement groupings of 226Ra, 232Th, and 40K in soil were acquired by utilizing the HPGe gamma spectrometer. The advancement fixations decided for 57 soil tests. The rationale for affirmation of the gamma segment rates from the fixations was gotten a handle on from United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2000 [51].
\nThe fundamental goal of this examination is to decide the action centralizations of primordial radionuclides in soil tests gathered from various of studying locale areas in India such as Ramanagara, Tumkur, and Karnataka districts, using gamma bar spectrometry and besides the radiological dangers records identified with based on soil tests. The radiological hazard files of the common radioactivity have been determined and contrasted and the globally affirmed qualities. The convergence of these radionuclides with various sizes and depth of the dirt examples was contemplated. They were found to pursue [52]:
\nThe 232Th and 40K action focus was seen to be marginally higher than the world normal values reported by UNSCEAR (2000). The normal 226Ra fixation in soil tests of the contemplated zone was observed to be like the world normal.
\nThe assessed normal action grouping of 226Ra, 232Th, and 40K in soil tests of those contemplated zones observed to be higher than the Indian normal.
\nResults acquired had demonstrated radiological dangers, for example, gamma list, radium equal movement, external peril record, and indoor risk list are well inside the world normal esteem. At last, it is presumed that the radiation discharged from the radionuclides present in the dirt of the examination zone doesn’t represent any radiological wellbeing risk to the general population of the zone.
\nThe normal indoor and open-air ingested portion rate for the dirt examples of investigation zone were marginally higher than the world normal estimations of 75 nGy h−1 for indoor what’s more, 59 nGy h−1 for open air.
\nResults show that ordinary indoor, outdoors amazing part, and a total yearly convincing bit in view of trademark radioactivity of soil tests is lower than the typical national and world endorsed estimation of 1 mSv y−1.
\nMovement assembly of primordial radionuclides increases with an addition in grain gauge.
\nInformation procured in this examination will fill in as a benchmark for looking over the radiation presentation of the inhabitants.
\nThis section manages gamma foundation radiation which uncovered with two noteworthy normal sources; earthly gamma rays and astronomical rays.
\nRecent studies in building materials, medical plants, building purposes, some vegetables and fruits commonly used in markets, and different soil samples in various countries in the world. The measurements of gamma background radiation differ according to the purpose. Each type of detectors is explained which are: radiographic films (scintillation detector), TLD detector (thermoluminescence detector), diode detector, and HPGe detector. The mechanism for each detector is provided with recently applied researches for the past 10 years, focusing on used gamma background radiations measurements.
\nThe author expresses a deep sense of gratitude to Kufa University, Faculty of Science, for providing the scientific support to do this work. The author is grateful to Dr. Basim Almayahi, University of Kufa (basimnajaf@yahoo.com), for assisting throughout conducting the present chapter.
\nThe author declares that she has no conflicts of interest.
General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed.
',metaTitle:"Horizon 2020 Compliance",metaDescription:"General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed. ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\\n\\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\\n\\nIn other words, publishing with IntechOpen guarantees compliance.
\\n\\nRead more about Open Access in Horizon 2020 here.
\\n\\nWhich scientific publication to choose?
\\n\\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\\n\\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\\n\\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\n\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\n\nIn other words, publishing with IntechOpen guarantees compliance.
\n\nRead more about Open Access in Horizon 2020 here.
\n\nWhich scientific publication to choose?
\n\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\n\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\n\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}},{id:"6495",title:"Dr.",name:"Daniel",middleName:null,surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6495/images/1947_n.jpg",biography:"Daniel Eberli MD. Ph.D. is a scientific physician working in the translational field of urologic tissue engineering. He has a medical degree from the Medical School in Zurich, Switzerland, and a Ph.D. in Molecular Medicine from Wake Forest University, Winston Salem, NC. He currently has a faculty position at the Department of Urology at the University Hospital Zurich, where he devotes half of his time to patient care. He is a lecturer at the Medical School of Zurich and the Swiss Federal Institute of Technology. Together with his research team, he is working on novel biomaterials for bladder reconstruction, improving autonomic innervation, cellular treatment of incontinence and tracking of stem cells.",institutionString:null,institution:{name:"University Hospital of Zurich",country:{name:"Switzerland"}}},{id:"122240",title:"Prof.",name:"Frede",middleName:null,surname:"Blaabjerg",slug:"frede-blaabjerg",fullName:"Frede Blaabjerg",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Aalborg University",country:{name:"Denmark"}}},{id:"50823",title:"Prof.",name:"Hamid Reza",middleName:null,surname:"Karimi",slug:"hamid-reza-karimi",fullName:"Hamid Reza Karimi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Polytechnic University of Milan",country:{name:"Italy"}}},{id:"22128",title:"Dr.",name:"Harald",middleName:null,surname:"Haas",slug:"harald-haas",fullName:"Harald Haas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:{name:"University of Edinburgh",country:{name:"United Kingdom"}}},{id:"80399",title:"Dr.",name:"Huosheng",middleName:null,surname:"Hu",slug:"huosheng-hu",fullName:"Huosheng Hu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Essex",country:{name:"United Kingdom"}}},{id:"135796",title:"Prof.",name:"Jim",middleName:null,surname:"Van Os",slug:"jim-van-os",fullName:"Jim Van Os",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:{name:"Utrecht University",country:{name:"Netherlands"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5717},{group:"region",caption:"Middle and South America",value:2,count:5179},{group:"region",caption:"Africa",value:3,count:1696},{group:"region",caption:"Asia",value:4,count:10260},{group:"region",caption:"Australia and Oceania",value:5,count:890},{group:"region",caption:"Europe",value:6,count:15670}],offset:12,limit:12,total:15671},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish",topicid:"5"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:11},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:14},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:11},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:17},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:51},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:5},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5156},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"6934",title:"Psycho-Social Aspects of Human Sexuality and Ethics",subtitle:null,isOpenForSubmission:!1,hash:"44731b106aa0d1ab5c64a7394483c7d5",slug:"psycho-social-aspects-of-human-sexuality-and-ethics",bookSignature:"Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/6934.jpg",editedByType:"Edited by",editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",middleName:null,surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10062",title:"Forecasting in Mathematics",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"9a3ad05fef0502040d2a238ad22487c0",slug:"forecasting-in-mathematics-recent-advances-new-perspectives-and-applications",bookSignature:"Abdo Abou Jaoude",coverURL:"https://cdn.intechopen.com/books/images_new/10062.jpg",editedByType:"Edited by",editors:[{id:"248271",title:"Dr.",name:"Abdo",middleName:null,surname:"Abou Jaoude",slug:"abdo-abou-jaoude",fullName:"Abdo Abou Jaoude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editedByType:"Edited by",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10075",title:"Nonlinear Optics",subtitle:"From Solitons to Similaritons",isOpenForSubmission:!1,hash:"b034b2a060292c8511359aec0db1002c",slug:"nonlinear-optics-from-solitons-to-similaritons",bookSignature:"İlkay Bakırtaş and Nalan Antar",coverURL:"https://cdn.intechopen.com/books/images_new/10075.jpg",editedByType:"Edited by",editors:[{id:"186388",title:"Prof.",name:"İlkay",middleName:null,surname:"Bakırtaş",slug:"ilkay-bakirtas",fullName:"İlkay Bakırtaş"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10116",title:"Nano- and Microencapsulation",subtitle:"Techniques and Applications",isOpenForSubmission:!1,hash:"8d92c5999718734b36a0cc3a6af7c7f6",slug:"nano-and-microencapsulation-techniques-and-applications",bookSignature:"Nedal Abu-Thabit",coverURL:"https://cdn.intechopen.com/books/images_new/10116.jpg",editedByType:"Edited by",editors:[{id:"308436",title:"Associate Prof.",name:"Nedal",middleName:null,surname:"Abu-Thabit",slug:"nedal-abu-thabit",fullName:"Nedal Abu-Thabit"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9881",title:"Perovskite and Piezoelectric Materials",subtitle:null,isOpenForSubmission:!1,hash:"8fa0e0f48567bbc50fbb3bfdde6f9a0b",slug:"perovskite-and-piezoelectric-materials",bookSignature:"Someshwar Pola, Neeraj Panwar and Indrani Coondoo",coverURL:"https://cdn.intechopen.com/books/images_new/9881.jpg",editedByType:"Edited by",editors:[{id:"177037",title:"Dr.",name:"Someshwar",middleName:null,surname:"Pola",slug:"someshwar-pola",fullName:"Someshwar Pola"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9394",title:"Genotoxicity and Mutagenicity",subtitle:"Mechanisms and Test Methods",isOpenForSubmission:!1,hash:"9ee7e597358dbbfb5e33d0beb76e6fff",slug:"genotoxicity-and-mutagenicity-mechanisms-and-test-methods",bookSignature:"Sonia Soloneski and Marcelo L. Larramendy",coverURL:"https://cdn.intechopen.com/books/images_new/9394.jpg",editedByType:"Edited by",editors:[{id:"14863",title:"Dr.",name:"Sonia",middleName:null,surname:"Soloneski",slug:"sonia-soloneski",fullName:"Sonia Soloneski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"757",title:"Semiotics",slug:"electrical-and-electronic-engineering-semiotics",parent:{title:"Electrical and Electronic Engineering",slug:"electrical-and-electronic-engineering"},numberOfBooks:1,numberOfAuthorsAndEditors:19,numberOfWosCitations:13,numberOfCrossrefCitations:22,numberOfDimensionsCitations:36,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"electrical-and-electronic-engineering-semiotics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"3240",title:"Soundscape Semiotics",subtitle:"Localization and Categorization",isOpenForSubmission:!1,hash:"2591f42f72b6e851e6cd65911ec93cb7",slug:"soundscape-semiotics-localisation-and-categorisation",bookSignature:"Herve Glotin",coverURL:"https://cdn.intechopen.com/books/images_new/3240.jpg",editedByType:"Edited by",editors:[{id:"23522",title:"Dr.",name:"Hervé",middleName:null,surname:"Glotin",slug:"herve-glotin",fullName:"Hervé Glotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"45589",doi:"10.5772/56872",title:"Clusterized Mel Filter Cepstral Coefficients and Support Vector Machines for Bird Song Identification",slug:"clusterized-mel-filter-cepstral-coefficients-and-support-vector-machines-for-bird-song-identificatio",totalDownloads:1540,totalCrossrefCites:9,totalDimensionsCites:15,book:{slug:"soundscape-semiotics-localisation-and-categorisation",title:"Soundscape Semiotics",fullTitle:"Soundscape Semiotics - Localization and Categorization"},signatures:"Olivier Dufour, Thierry Artieres, Hervé Glotin and Pascale Giraudet",authors:[{id:"23523",title:"Prof.",name:"Pascale",middleName:null,surname:"Giraudet",slug:"pascale-giraudet",fullName:"Pascale Giraudet"},{id:"169025",title:"Dr.",name:"Olivier",middleName:null,surname:"Dufour",slug:"olivier-dufour",fullName:"Olivier Dufour"},{id:"169026",title:"Dr.",name:"Thierry",middleName:null,surname:"Artieres",slug:"thierry-artieres",fullName:"Thierry Artieres"},{id:"169027",title:"Dr.",name:"Hervé",middleName:null,surname:"Glotin",slug:"herve-glotin",fullName:"Hervé Glotin"}]},{id:"45262",doi:"10.5772/56040",title:"Automatic Identification and Interpretation of Animal Sounds, Application to Livestock Production Optimisation",slug:"automatic-identification-and-interpretation-of-animal-sounds-application-to-livestock-production-opt",totalDownloads:1709,totalCrossrefCites:4,totalDimensionsCites:11,book:{slug:"soundscape-semiotics-localisation-and-categorisation",title:"Soundscape Semiotics",fullTitle:"Soundscape Semiotics - Localization and Categorization"},signatures:"Vasileios Exadaktylos, Mitchell Silva and Daniel Berckmans",authors:[{id:"20140",title:"Dr.",name:"Daniel",middleName:null,surname:"Berckmans",slug:"daniel-berckmans",fullName:"Daniel Berckmans"},{id:"20246",title:"Dr.",name:"Vasileios",middleName:null,surname:"Exadaktylos",slug:"vasileios-exadaktylos",fullName:"Vasileios Exadaktylos"},{id:"20391",title:"Mr.",name:"Mitchell",middleName:null,surname:"Silva",slug:"mitchell-silva",fullName:"Mitchell Silva"}]},{id:"45612",doi:"10.5772/56907",title:"Head-Related Transfer Functions and Virtual Auditory Display",slug:"head-related-transfer-functions-and-virtual-auditory-display",totalDownloads:2024,totalCrossrefCites:7,totalDimensionsCites:7,book:{slug:"soundscape-semiotics-localisation-and-categorisation",title:"Soundscape Semiotics",fullTitle:"Soundscape Semiotics - Localization and Categorization"},signatures:"Xiao-li Zhong and Bo-sun Xie",authors:[{id:"155754",title:"Prof.",name:"Bo-Sun",middleName:null,surname:"Xie",slug:"bo-sun-xie",fullName:"Bo-Sun Xie"},{id:"155755",title:"Associate Prof.",name:"Xiao-Li",middleName:null,surname:"Zhong",slug:"xiao-li-zhong",fullName:"Xiao-Li Zhong"}]}],mostDownloadedChaptersLast30Days:[{id:"45612",title:"Head-Related Transfer Functions and Virtual Auditory Display",slug:"head-related-transfer-functions-and-virtual-auditory-display",totalDownloads:2024,totalCrossrefCites:7,totalDimensionsCites:7,book:{slug:"soundscape-semiotics-localisation-and-categorisation",title:"Soundscape Semiotics",fullTitle:"Soundscape Semiotics - Localization and Categorization"},signatures:"Xiao-li Zhong and Bo-sun Xie",authors:[{id:"155754",title:"Prof.",name:"Bo-Sun",middleName:null,surname:"Xie",slug:"bo-sun-xie",fullName:"Bo-Sun Xie"},{id:"155755",title:"Associate Prof.",name:"Xiao-Li",middleName:null,surname:"Zhong",slug:"xiao-li-zhong",fullName:"Xiao-Li Zhong"}]},{id:"45589",title:"Clusterized Mel Filter Cepstral Coefficients and Support Vector Machines for Bird Song Identification",slug:"clusterized-mel-filter-cepstral-coefficients-and-support-vector-machines-for-bird-song-identificatio",totalDownloads:1540,totalCrossrefCites:9,totalDimensionsCites:15,book:{slug:"soundscape-semiotics-localisation-and-categorisation",title:"Soundscape Semiotics",fullTitle:"Soundscape Semiotics - Localization and Categorization"},signatures:"Olivier Dufour, Thierry Artieres, Hervé Glotin and Pascale Giraudet",authors:[{id:"23523",title:"Prof.",name:"Pascale",middleName:null,surname:"Giraudet",slug:"pascale-giraudet",fullName:"Pascale Giraudet"},{id:"169025",title:"Dr.",name:"Olivier",middleName:null,surname:"Dufour",slug:"olivier-dufour",fullName:"Olivier Dufour"},{id:"169026",title:"Dr.",name:"Thierry",middleName:null,surname:"Artieres",slug:"thierry-artieres",fullName:"Thierry Artieres"},{id:"169027",title:"Dr.",name:"Hervé",middleName:null,surname:"Glotin",slug:"herve-glotin",fullName:"Hervé Glotin"}]},{id:"45338",title:"Contribution of Precisely Apparent Source Width to Auditory Spaciousness",slug:"contribution-of-precisely-apparent-source-width-to-auditory-spaciousness",totalDownloads:1424,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"soundscape-semiotics-localisation-and-categorisation",title:"Soundscape Semiotics",fullTitle:"Soundscape Semiotics - Localization and Categorization"},signatures:"Chiung Yao Chen",authors:[{id:"154975",title:"Prof.",name:"Chiung Yao",middleName:null,surname:"Chen",slug:"chiung-yao-chen",fullName:"Chiung Yao Chen"}]},{id:"43951",title:"Evaluation of an Active Microphone with a Parabolic Reflection Board for Monaural Sound-Source-Direction Estimation",slug:"evaluation-of-an-active-microphone-with-a-parabolic-reflection-board-for-monaural-sound-source-direc",totalDownloads:1027,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"soundscape-semiotics-localisation-and-categorisation",title:"Soundscape Semiotics",fullTitle:"Soundscape Semiotics - Localization and Categorization"},signatures:"Tetsuya Takiguchi, Ryoichi Takashima and Yasuo Ariki",authors:[{id:"2093",title:"Dr.",name:"Tetsuya",middleName:null,surname:"Takiguchi",slug:"tetsuya-takiguchi",fullName:"Tetsuya Takiguchi"},{id:"5503",title:"Dr.",name:"Yasuo",middleName:null,surname:"Ariki",slug:"yasuo-ariki",fullName:"Yasuo Ariki"},{id:"17095",title:"Mr.",name:"Ryoichi",middleName:null,surname:"Takashima",slug:"ryoichi-takashima",fullName:"Ryoichi Takashima"}]},{id:"45170",title:"Source Separation and DOA Estimation for Underdetermined Auditory Scene",slug:"source-separation-and-doa-estimation-for-underdetermined-auditory-scene",totalDownloads:1460,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"soundscape-semiotics-localisation-and-categorisation",title:"Soundscape Semiotics",fullTitle:"Soundscape Semiotics - Localization and Categorization"},signatures:"Nozomu Hamada and Ning Ding",authors:[{id:"155108",title:"Prof.",name:"Nozomu",middleName:null,surname:"Hamada",slug:"nozomu-hamada",fullName:"Nozomu Hamada"}]},{id:"45262",title:"Automatic Identification and Interpretation of Animal Sounds, Application to Livestock Production Optimisation",slug:"automatic-identification-and-interpretation-of-animal-sounds-application-to-livestock-production-opt",totalDownloads:1709,totalCrossrefCites:4,totalDimensionsCites:11,book:{slug:"soundscape-semiotics-localisation-and-categorisation",title:"Soundscape Semiotics",fullTitle:"Soundscape Semiotics - Localization and Categorization"},signatures:"Vasileios Exadaktylos, Mitchell Silva and Daniel Berckmans",authors:[{id:"20140",title:"Dr.",name:"Daniel",middleName:null,surname:"Berckmans",slug:"daniel-berckmans",fullName:"Daniel Berckmans"},{id:"20246",title:"Dr.",name:"Vasileios",middleName:null,surname:"Exadaktylos",slug:"vasileios-exadaktylos",fullName:"Vasileios Exadaktylos"},{id:"20391",title:"Mr.",name:"Mitchell",middleName:null,surname:"Silva",slug:"mitchell-silva",fullName:"Mitchell Silva"}]},{id:"45332",title:"Application of Iterative Reverse Time Migration Procedure on Transcranial Thermoacoustic Tomography Imaging",slug:"application-of-iterative-reverse-time-migration-procedure-on-transcranial-thermoacoustic-tomography-",totalDownloads:1213,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"soundscape-semiotics-localisation-and-categorisation",title:"Soundscape Semiotics",fullTitle:"Soundscape Semiotics - Localization and Categorization"},signatures:"Zijian Liu and Lanbo Liu",authors:[{id:"156358",title:"Dr.",name:"Zijian",middleName:null,surname:"Liu",slug:"zijian-liu",fullName:"Zijian Liu"},{id:"157065",title:"Prof.",name:"Lanbo",middleName:null,surname:"Liu",slug:"lanbo-liu",fullName:"Lanbo Liu"}]},{id:"43711",title:"Auditory Distance Estimation in an Open Space",slug:"auditory-distance-estimation-in-an-open-space",totalDownloads:1647,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"soundscape-semiotics-localisation-and-categorisation",title:"Soundscape Semiotics",fullTitle:"Soundscape Semiotics - Localization and Categorization"},signatures:"Kim Fluitt, Timothy Mermagen and Tomasz Letowski",authors:[{id:"157339",title:"Ms.",name:"Kim",middleName:null,surname:"Fluitt",slug:"kim-fluitt",fullName:"Kim Fluitt"},{id:"157340",title:"Dr.",name:"Tomasz",middleName:null,surname:"Letowski",slug:"tomasz-letowski",fullName:"Tomasz Letowski"}]}],onlineFirstChaptersFilter:{topicSlug:"electrical-and-electronic-engineering-semiotics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/194616/asfeena-began",hash:"",query:{},params:{id:"194616",slug:"asfeena-began"},fullPath:"/profiles/194616/asfeena-began",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()