A large number of interferometric setups make use of non-linear phase modulators. In the past, specific extraction methods have been proposed mostly to cover the important case of sinusoidal phase modulation with certain limits in term of signal-to-noise ratio. Recently, a detection method based on “Generalized Lock-in Amplifier” (G-LIA) was proposed to extract optimally amplitude and phase information in two-arm interferometers when nearly arbitrary phase modulations are used such as triangular or sinusoidal phase modulations. This method offers the opportunity to develop highly sensitive interferometers with simple-phase modulators such as piezo-actuated mirrors, piezo stretchers, or power-modulated laser diodes in unbalanced interferometers. Here we present the basics of the approach and we give application examples for monitoring displacement, sensing, and digital holography. The case where an amplitude modulation is also present is also detailed and discussed in the context of unbalanced interferometry and near-field nanoscopy.
Part of the book: Optical Interferometry