A vaccine providing sterile immunity against malaria has been shown to be possible with antigens from the pre-erythrocytic stages of malaria. Therefore, it is reasonable to focus vaccine development efforts on the pre-erythrocytic stages, consisting of both sporozoites and liver stage parasites, where it is expected that sterile immunity against the parasite can be elicited to block the development of blood stage infection, clinical disease, and resulting parasite transmission. Accordingly, we will review the preclinical and clinical studies of malaria pre-erythrocytic efforts as well as highlight the advances, trends, and roadblocks encountered in these efforts.
Part of the book: Current Topics in Malaria
Enabling vaccine delivery platforms and adjuvants with promising attributes for malaria vaccine development are reviewed within the framework of accessibility, efficacy, clinical status, cost, and cold-chain considerations. An emphasis is placed on commercially available platforms and adjuvants including virus-like particle, nanoparticle, microneedle, and mRNA vaccine delivery platforms as well as lipid vesicle, microparticle, and emulsion-based adjuvants. Strategies for addressing complications of vaccine delivery in endemic regions due to concatenate vaccination and infection, and parasite immune avoidance mechanisms are presented. Additionally, recent findings regarding how malaria infection triggers inflammatory pathways and T cell exhaustion along with negative impacts to the development of effective memory responses are described in a context relevant to vaccine development.
Part of the book: Current Topics in Malaria