Piezoelectric materials can be used for nanogenerators in biomedical field.
Chapter 1: "Permanent Maxillary and Mandibular Incisors"\n
Chapter 2: "The Permanent Maxillary and Mandibular Premolar Teeth"\n
Chapter 3: "Dental Anatomical Features and Caries: A Relationship to be Investigated"\n
Chapter 4: "Anatomy Applied to Block Anaesthesia"\n
Chapter 5: "Treatment Considerations for Missing Teeth"\n
Chapter 6: "Anatomical and Functional Restoration of the Compromised Occlusion: From Theory to Materials"\n
Chapter 7: "Evaluation of the Anatomy of the Lower First Premolar"\n
Chapter 8: "A Comparative Study of the Validity and Reproducibility of Mesiodistal Tooth Size and Dental Arch with the iTero Intraoral Scanner and the Traditional Method"\n
Chapter 9: "Identification of Lower Central Incisors"\n
The book is aimed toward dentists and can also be well used in education and research.',isbn:"978-1-78923-511-1",printIsbn:"978-1-78923-510-4",pdfIsbn:"978-1-83881-247-8",doi:"10.5772/65542",price:119,priceEur:129,priceUsd:155,slug:"dental-anatomy",numberOfPages:204,isOpenForSubmission:!1,isInWos:null,hash:"445cd419d97f339f2b6514c742e6b050",bookSignature:"Bağdagül Helvacioğlu Kivanç",publishedDate:"August 1st 2018",coverURL:"https://cdn.intechopen.com/books/images_new/5814.jpg",numberOfDownloads:7201,numberOfWosCitations:0,numberOfCrossrefCitations:1,numberOfDimensionsCitations:3,hasAltmetrics:0,numberOfTotalCitations:4,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 4th 2016",dateEndSecondStepPublish:"October 25th 2016",dateEndThirdStepPublish:"July 16th 2017",dateEndFourthStepPublish:"August 16th 2017",dateEndFifthStepPublish:"October 16th 2017",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"178570",title:"Dr.",name:"Bağdagül",middleName:null,surname:"Helvacıoğlu Kıvanç",slug:"bagdagul-helvacioglu-kivanc",fullName:"Bağdagül Helvacıoğlu Kıvanç",profilePictureURL:"https://mts.intechopen.com/storage/users/178570/images/7646_n.jpg",biography:"Bağdagül Helvacıoğlu Kıvanç is a dentist, a teacher, a researcher and a scientist in the field of Endodontics. She was born in Zonguldak, Turkey, on February 14, 1974; she is married and has two children. She graduated in 1997 from the Ankara University, Faculty of Dentistry, Ankara, Turkey. She aquired her PhD in 2004 from the Gazi University, Faculty of Dentistry, Department of Endodontics, Ankara, Turkey, and she is still an associate professor at the same department. She has published numerous articles and a book chapter in the areas of Operative Dentistry, Esthetic Dentistry and Endodontics. She is a member of Turkish Endodontic Society and European Endodontic Society.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"174",title:"Dentistry",slug:"dentistry"}],chapters:[{id:"56461",title:"Permanent Maxillary and Mandibular Incisors",doi:"10.5772/intechopen.69542",slug:"permanent-maxillary-and-mandibular-incisors",totalDownloads:1474,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Mohammed E. Grawish, Lamyaa M. Grawish and Hala M. Grawish",downloadPdfUrl:"/chapter/pdf-download/56461",previewPdfUrl:"/chapter/pdf-preview/56461",authors:[{id:"82989",title:"Prof.",name:"Mohammed",surname:"Grawish",slug:"mohammed-grawish",fullName:"Mohammed Grawish"}],corrections:null},{id:"62386",title:"The Permanent Maxillary and Mandibular Premolar Teeth",doi:"10.5772/intechopen.79464",slug:"the-permanent-maxillary-and-mandibular-premolar-teeth",totalDownloads:1701,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Işıl Çekiç Nagaş, Ferhan Eğilmez and Bağdagül Helvacioğlu Kivanç",downloadPdfUrl:"/chapter/pdf-download/62386",previewPdfUrl:"/chapter/pdf-preview/62386",authors:[{id:"178570",title:"Dr.",name:"Bağdagül",surname:"Helvacıoğlu Kıvanç",slug:"bagdagul-helvacioglu-kivanc",fullName:"Bağdagül Helvacıoğlu Kıvanç"}],corrections:null},{id:"57546",title:"Dental Anatomical Features and Caries: A Relationship to be Investigated",doi:"10.5772/intechopen.71337",slug:"dental-anatomical-features-and-caries-a-relationship-to-be-investigated",totalDownloads:852,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Marcel Alves Avelino de Paiva, Dayane Franco Barros Mangueira\nLeite, Isabela Albuquerque Passos Farias, Antônio de Pádua\nCavalcante Costa and Fábio Correia Sampaio",downloadPdfUrl:"/chapter/pdf-download/57546",previewPdfUrl:"/chapter/pdf-preview/57546",authors:[{id:"138852",title:"Prof.",name:"Fabio",surname:"Sampaio",slug:"fabio-sampaio",fullName:"Fabio Sampaio"},{id:"213662",title:"Prof.",name:"Isabela Albuquerque",surname:"Passos Farias",slug:"isabela-albuquerque-passos-farias",fullName:"Isabela Albuquerque Passos Farias"},{id:"213663",title:"Prof.",name:"Dayane Franco",surname:"Barros Mangueira Leite",slug:"dayane-franco-barros-mangueira-leite",fullName:"Dayane Franco Barros Mangueira Leite"},{id:"213664",title:"BSc.",name:"Marcel Alves",surname:"Avelino De Paiva",slug:"marcel-alves-avelino-de-paiva",fullName:"Marcel Alves Avelino De Paiva"},{id:"213666",title:"Prof.",name:"Antonio De Pádua",surname:"Cavalcante Da Costa",slug:"antonio-de-padua-cavalcante-da-costa",fullName:"Antonio De Pádua Cavalcante Da Costa"}],corrections:null},{id:"56119",title:"Anatomy Applied to Block Anesthesia for Maxillofacial Surgery",doi:"10.5772/intechopen.69545",slug:"anatomy-applied-to-block-anesthesia-for-maxillofacial-surgery",totalDownloads:842,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Alex Vargas, Paula Astorga and Tomas Rioseco",downloadPdfUrl:"/chapter/pdf-download/56119",previewPdfUrl:"/chapter/pdf-preview/56119",authors:[{id:"199400",title:"Dr.",name:"Alex",surname:"Vargas",slug:"alex-vargas",fullName:"Alex Vargas"},{id:"202023",title:"Dr.",name:"Paula",surname:"Astorga",slug:"paula-astorga",fullName:"Paula Astorga"},{id:"205059",title:"Dr.",name:"Tomas",surname:"Rioseco",slug:"tomas-rioseco",fullName:"Tomas Rioseco"}],corrections:null},{id:"55902",title:"Treatment Considerations for Missing Teeth",doi:"10.5772/intechopen.69543",slug:"treatment-considerations-for-missing-teeth",totalDownloads:511,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Abdolreza Jamilian, Alireza Darnahal, Ludovica Nucci, Fabrizia\nD’Apuzzo and Letizia Perillo",downloadPdfUrl:"/chapter/pdf-download/55902",previewPdfUrl:"/chapter/pdf-preview/55902",authors:[{id:"171777",title:"Prof.",name:"Abdolreza",surname:"Jamilian",slug:"abdolreza-jamilian",fullName:"Abdolreza Jamilian"},{id:"171873",title:"Dr.",name:"Alireza",surname:"Darnahal",slug:"alireza-darnahal",fullName:"Alireza Darnahal"},{id:"173044",title:"Prof.",name:"Letizia",surname:"Perillo",slug:"letizia-perillo",fullName:"Letizia Perillo"},{id:"198961",title:"MSc.",name:"Fabrizia",surname:"D'Apuzzo",slug:"fabrizia-d'apuzzo",fullName:"Fabrizia D'Apuzzo"},{id:"206137",title:"Mrs.",name:"Ludovica",surname:"Nucci",slug:"ludovica-nucci",fullName:"Ludovica Nucci"}],corrections:null},{id:"55973",title:"Anatomical and Functional Restoration of the Compromised Occlusion: From Theory to Materials",doi:"10.5772/intechopen.69544",slug:"anatomical-and-functional-restoration-of-the-compromised-occlusion-from-theory-to-materials",totalDownloads:615,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Nicola Mobilio and Santo Catapano",downloadPdfUrl:"/chapter/pdf-download/55973",previewPdfUrl:"/chapter/pdf-preview/55973",authors:[{id:"179565",title:"Dr.",name:"Nicola",surname:"Mobilio",slug:"nicola-mobilio",fullName:"Nicola Mobilio"},{id:"199397",title:"Prof.",name:"Santo",surname:"Catapano",slug:"santo-catapano",fullName:"Santo Catapano"}],corrections:null},{id:"57245",title:"Evaluation of the Anatomy of the Lower First Premolar",doi:"10.5772/intechopen.71038",slug:"evaluation-of-the-anatomy-of-the-lower-first-premolar",totalDownloads:392,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Ticiana Sidorenko de Oliveira Capote, Suellen Tayenne Pedroso\nPinto, Marcelo Brito Conte, Juliana Álvares Duarte Bonini Campos\nand Marcela de Almeida Gonçalves",downloadPdfUrl:"/chapter/pdf-download/57245",previewPdfUrl:"/chapter/pdf-preview/57245",authors:[{id:"87871",title:"Prof.",name:"Ticiana",surname:"Capote",slug:"ticiana-capote",fullName:"Ticiana Capote"},{id:"199157",title:"Prof.",name:"Marcela",surname:"De Almeida Gonçalves",slug:"marcela-de-almeida-goncalves",fullName:"Marcela De Almeida Gonçalves"},{id:"199243",title:"BSc.",name:"Marcelo",surname:"Brito Conte",slug:"marcelo-brito-conte",fullName:"Marcelo Brito Conte"},{id:"199244",title:"Prof.",name:"Juliana",surname:"Álvares Duarte Bonini Campos",slug:"juliana-alvares-duarte-bonini-campos",fullName:"Juliana Álvares Duarte Bonini Campos"},{id:"217420",title:"Mrs.",name:"Suellen",surname:"Tayenne Pedroso Pinto",slug:"suellen-tayenne-pedroso-pinto",fullName:"Suellen Tayenne Pedroso Pinto"}],corrections:null},{id:"57752",title:"A Comparative Study of the Validity and Reproducibility of Mesiodistal Tooth Size and Dental Arch with iTeroTM Intraoral Scanner and the Traditional Method",doi:"10.5772/intechopen.70963",slug:"a-comparative-study-of-the-validity-and-reproducibility-of-mesiodistal-tooth-size-and-dental-arch-wi",totalDownloads:457,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Ignacio Faus-Matoses, Ana Mora, Carlos Bellot-Arcís, Jose Luis\nGandia-Franco and Vanessa Paredes-Gallardo",downloadPdfUrl:"/chapter/pdf-download/57752",previewPdfUrl:"/chapter/pdf-preview/57752",authors:[{id:"150456",title:"Prof.",name:"Vanessa",surname:"Paredes",slug:"vanessa-paredes",fullName:"Vanessa Paredes"},{id:"150458",title:"Prof.",name:"José-Luis",surname:"Gandia",slug:"jose-luis-gandia",fullName:"José-Luis Gandia"},{id:"212242",title:"Prof.",name:"Ignacio",surname:"Faus",slug:"ignacio-faus",fullName:"Ignacio Faus"},{id:"212243",title:"Prof.",name:"Carlos",surname:"Bellot-Arcís",slug:"carlos-bellot-arcis",fullName:"Carlos Bellot-Arcís"},{id:"218390",title:"Prof.",name:"Ana",surname:"Mora",slug:"ana-mora",fullName:"Ana Mora"}],corrections:null},{id:"57378",title:"Identification of Lower Central Incisors",doi:"10.5772/intechopen.71341",slug:"identification-of-lower-central-incisors",totalDownloads:365,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Marcela de Almeida Gonçalves, Bruno Luís Graciliano Silva, Marcelo\nBrito Conte, Juliana Álvares Duarte Bonini Campos and Ticiana\nSidorenko de Oliveira Capote",downloadPdfUrl:"/chapter/pdf-download/57378",previewPdfUrl:"/chapter/pdf-preview/57378",authors:[{id:"199157",title:"Prof.",name:"Marcela",surname:"De Almeida Gonçalves",slug:"marcela-de-almeida-goncalves",fullName:"Marcela De Almeida Gonçalves"},{id:"199243",title:"BSc.",name:"Marcelo",surname:"Brito Conte",slug:"marcelo-brito-conte",fullName:"Marcelo Brito Conte"},{id:"199244",title:"Prof.",name:"Juliana",surname:"Álvares Duarte Bonini Campos",slug:"juliana-alvares-duarte-bonini-campos",fullName:"Juliana Álvares Duarte Bonini Campos"},{id:"221435",title:"Mr.",name:"Bruno Luis Graciliano",surname:"Silva",slug:"bruno-luis-graciliano-silva",fullName:"Bruno Luis Graciliano Silva"},{id:"221438",title:"Prof.",name:"Ticiana Sidorenko De Oliveira",surname:"Capote",slug:"ticiana-sidorenko-de-oliveira-capote",fullName:"Ticiana Sidorenko De Oliveira Capote"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,isOpenForSubmission:!1,hash:"7cb94732cfb315f8d1e70ebf500eb8a9",slug:"trauma-in-dentistry",bookSignature:"Serdar Gözler",coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",editedByType:"Edited by",editors:[{id:"204606",title:"Dr.",name:"Serdar",surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9387",title:"Oral Diseases",subtitle:null,isOpenForSubmission:!1,hash:"76591a3bd6bedaa1c8d1f72870268e23",slug:"oral-diseases",bookSignature:"Gokul Sridharan, Anil Sukumaran and Alaa Eddin Omar Al Ostwani",coverURL:"https://cdn.intechopen.com/books/images_new/9387.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",isOpenForSubmission:!1,hash:"ac055c5801032970123e0a196c2e1d32",slug:"human-teeth-key-skills-and-clinical-illustrations",bookSignature:"Zühre Akarslan and Farid Bourzgui",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",editedByType:"Edited by",editors:[{id:"171887",title:"Prof.",name:"Zühre",surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan"}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.jpeg",biography:"Farid Bourzgui is a professor of Orthodontics in the School of Dental Medicine at Hassan II University in Casablanca, Morocco. He received his PhD from the School of Dental Medicine at Hassan II University in 1995. He holds various certificates and diplomas: a Certificate of Higher Studies in Group A (major: Technology of Biomaterials used in Dentistry, 1996), a Certificate of Advanced Studies of group B, (major: Dentofacial Orthopaedics, 1997) from the Faculty of Dental Surgery at University Denis Diderot-Paris VII, France, a diploma of Higher Studies in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002), a Certificate of Clinical Occlusal Odontology from the Faculty of Dentistry Casablanca (2004) and a university degree in Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca in 2011.\r\nFarid Bourzgui is a former intern and resident of Casablanca University Hospital, Ibn Rushd in Casablanca. Dr Bourzgui specialises in Orthodontics and received his National Diploma in Dentistry (major: Dentofacial Orthopedics) from the School of Dentistry in Casablanca in 2000.\r\nDr Bourzgui has published a number of articles and book chapters on various aspects of Orthodontics. He has served on the board of the Moroccan Society of Dentistry, and was the President of the Moroccan Society of Dentistry from 2002 to 2004.",institutionString:"University Hassan II of Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,isOpenForSubmission:!1,hash:"1e9812cebd46ef9e28257f3e96547f6a",slug:"computer-vision-in-dentistry",bookSignature:"Monika Elzbieta Machoy",coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",editedByType:"Edited by",editors:[{id:"248279",title:"Dr.",name:"Monika",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66301",slug:"corrigendum-to-denim-fabrics-woven-with-dual-core-spun-yarns",title:"Corrigendum to: Denim Fabrics Woven with Dual Core-Spun Yarns",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66301.pdf",downloadPdfUrl:"/chapter/pdf-download/66301",previewPdfUrl:"/chapter/pdf-preview/66301",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66301",risUrl:"/chapter/ris/66301",chapter:{id:"63209",slug:"denim-fabrics-woven-with-dual-core-spun-yarns",signatures:"Osman Babaarslan, Esin Sarioğlu, Halil İbrahim Çelik and Münevver\nArtek Avci",dateSubmitted:"February 5th 2018",dateReviewed:"July 12th 2018",datePrePublished:"November 5th 2018",datePublished:"February 13th 2019",book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"119775",title:"Prof.",name:"Osman",middleName:null,surname:"Babaarslan",fullName:"Osman Babaarslan",slug:"osman-babaarslan",email:"teksob@cu.edu.tr",position:null,institution:{name:"Cukurova University",institutionURL:null,country:{name:"Turkey"}}},{id:"178353",title:"Dr.",name:"Halil",middleName:"İbrahim",surname:"Çelik",fullName:"Halil Çelik",slug:"halil-celik",email:"hcelik@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"216179",title:"Dr.",name:"Esin",middleName:null,surname:"Sarıoğlu",fullName:"Esin Sarıoğlu",slug:"esin-sarioglu",email:"sarioglu@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"245674",title:"Mrs.",name:"Münevver",middleName:null,surname:"Ertek Avci",fullName:"Münevver Ertek Avci",slug:"munevver-ertek-avci",email:"Munevver.ErtekAvci@calikdenim.com",position:null,institution:null}]}},chapter:{id:"63209",slug:"denim-fabrics-woven-with-dual-core-spun-yarns",signatures:"Osman Babaarslan, Esin Sarioğlu, Halil İbrahim Çelik and Münevver\nArtek Avci",dateSubmitted:"February 5th 2018",dateReviewed:"July 12th 2018",datePrePublished:"November 5th 2018",datePublished:"February 13th 2019",book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"119775",title:"Prof.",name:"Osman",middleName:null,surname:"Babaarslan",fullName:"Osman Babaarslan",slug:"osman-babaarslan",email:"teksob@cu.edu.tr",position:null,institution:{name:"Cukurova University",institutionURL:null,country:{name:"Turkey"}}},{id:"178353",title:"Dr.",name:"Halil",middleName:"İbrahim",surname:"Çelik",fullName:"Halil Çelik",slug:"halil-celik",email:"hcelik@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"216179",title:"Dr.",name:"Esin",middleName:null,surname:"Sarıoğlu",fullName:"Esin Sarıoğlu",slug:"esin-sarioglu",email:"sarioglu@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"245674",title:"Mrs.",name:"Münevver",middleName:null,surname:"Ertek Avci",fullName:"Münevver Ertek Avci",slug:"munevver-ertek-avci",email:"Munevver.ErtekAvci@calikdenim.com",position:null,institution:null}]},book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10296",leadTitle:null,title:"Special Considerations in Human Airway Managements",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tDespite the existence of relevant guidelines and algorithms, the Fourth National Audit Project (NAP4), developed in 2011 by the Royal College of Anaesthetists (RCoA) and the Difficult Airway Society (DAS), showed that reliance on inadequate criteria, together with poor planning and training, were the main determinants of poor outcomes in DA management. 18% of patients are difficult to intubate, 5% are difficult to oxygenate and 0.004-0.008% cannot be intubated/oxygenated, all this in well-equipped areas, with trained personnel and prepared patients. These problems are even more significant in other areas such as pre-hospital, outside of the operating room (OR), inside the ambulance or even in the sky. NAP4 highlighted a significantly higher rate of adverse outcomes and important deficiencies of airway management in intensive care units (ICUs) and emergency departments (EDs), compared with regular anaesthetic practice. This book aims to investigate and present how these major challenges can be overcome. The significant problems happen outside ORs, in the hospital’s wards, with a lack of trained staff and unprepared airway management equipment. Another common area where it usually happens is in A&E due to patient distress, overcrowding, presence of relatives, unprepared patients, lack of medical history and untrained staff. Cognitive processing and motor skills often deteriorate under situations of stress, such as an unpredicted DA. These uncommon problems can also happen in the sky during travel or during the transporting of sick patients if they need an urgently secured airway.
\r\n\r\n\tThis book discusses the magnitude of the mentioned problems and how with better airway management in the special circumstances the problems of the airway can be solved and the lives of patients saved.
",isbn:"978-1-83880-388-9",printIsbn:"978-1-83880-387-2",pdfIsbn:"978-1-83880-547-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"c11e3ca09bf246ec270063a7198fd33c",bookSignature:"Dr. Nabil A. Shallik",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10296.jpg",keywords:"Airway Equipment, Video-laparoscopy, Difficult Airway, Neck Infection, Critical Care, Rapid Sequence Induction, SALAD Intubation, Air Ambulance, Space Travel, Prehospital Airway Management, Airway Management and Coronavirus, Airway Management and HIV",numberOfDownloads:555,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 16th 2020",dateEndSecondStepPublish:"April 6th 2020",dateEndThirdStepPublish:"June 5th 2020",dateEndFourthStepPublish:"August 24th 2020",dateEndFifthStepPublish:"October 23rd 2020",remainingDaysToSecondStep:"9 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"The leading researcher in airway management in the Middle East who focused his research on perioperative care and on new tools for airway assessment and management. A pioneer in anesthesia education with over 20 years of anesthesia practice and 15 years of dedicated anesthesia teaching.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"202782",title:"Dr.",name:"Nabil A.",middleName:null,surname:"Shallik",slug:"nabil-a.-shallik",fullName:"Nabil A. Shallik",profilePictureURL:"https://mts.intechopen.com/storage/users/202782/images/system/202782.png",biography:"Dr. Nabil A. Shallik, MD, is an A. Professor of Clinical Anesthesiology at Weill Cornell Medical College in Qatar, an A. Professor of Clinical Anesthesiology at Qatar University and an A. Professor of Anesthesiology and SICU at Tanta Faculty of Medicine in Egypt, associate head of anesthesia services in Rumailah Hospital and ACC, which is a part of HMC in Qatar. He also works as a senior consultant at Anesthesia, ICU and Peri-operative Medicine at HMC, Qatar. He has published more than 40 articles in national and international peer-reviewed medical journals including peri-operative, pain and airway publications. He is also a reviewer and editorial board member for a number of international peer-reviewed medical journals. He is the main author of numerous book’s chapters, and editor of many books. He is a leading researcher in airway management in the Middle East and his research interests mainly focus on perioperative care and on new tools for airway assessment and management. Dr. Nabil is a pioneer in anesthesia education and a dedicated clinical teacher with more than 20 years of anesthesia practice and 15 years of dedicated anesthesia teaching. \nAs a course director for all airway workshops and courses at Qatar Robotic Center and Itqan Simulation Center, he is continually testing, inventing and tailoring basic and advanced educational modules related to airway skills to suit different health care providers. Dr. Nabil is an active contributor to international airway societies (AMA),(SHANA) and (EAMS), Founder of Difficult Airway Management (DAM) Society and is frequently invited as a guest speaker in national and international conferences.",institutionString:"Hamad Medical Corporation",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Hamad Medical Corporation",institutionURL:null,country:{name:"Qatar"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:[{id:"73154",title:"An Approach to the Airway Management in Children with Craniofacial Anomalies",slug:"an-approach-to-the-airway-management-in-children-with-craniofacial-anomalies",totalDownloads:55,totalCrossrefCites:0,authors:[null]},{id:"74315",title:"Airway Management in the Pre-Hospital Setting",slug:"airway-management-in-the-pre-hospital-setting",totalDownloads:32,totalCrossrefCites:0,authors:[null]},{id:"73198",title:"Videolaryngoscopy, the Current Role in Airway Management",slug:"videolaryngoscopy-the-current-role-in-airway-management",totalDownloads:214,totalCrossrefCites:0,authors:[null]},{id:"74256",title:"Airway Management in Critical Settings",slug:"airway-management-in-critical-settings",totalDownloads:44,totalCrossrefCites:0,authors:[null]},{id:"73238",title:"Airway Management in Full Stomach Conditions",slug:"airway-management-in-full-stomach-conditions",totalDownloads:77,totalCrossrefCites:0,authors:[null]},{id:"72984",title:"Airway Management Outside the Operating Room",slug:"airway-management-outside-the-operating-room",totalDownloads:69,totalCrossrefCites:0,authors:[null]},{id:"73593",title:"Second Generation Supraglottic Airway (SGA) Devices",slug:"second-generation-supraglottic-airway-sga-devices",totalDownloads:69,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"205697",firstName:"Kristina",lastName:"Kardum Cvitan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/205697/images/5186_n.jpg",email:"kristina.k@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"7289",title:"Pain Management in Special Circumstances",subtitle:null,isOpenForSubmission:!1,hash:"4043c5c08f3764c0de2d283a40d07c3c",slug:"pain-management-in-special-circumstances",bookSignature:"Nabil A. Shallik",coverURL:"https://cdn.intechopen.com/books/images_new/7289.jpg",editedByType:"Edited by",editors:[{id:"202782",title:"Dr.",name:"Nabil A.",surname:"Shallik",slug:"nabil-a.-shallik",fullName:"Nabil A. Shallik"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"René Mauricio",surname:"Barría",slug:"rene-mauricio-barria",fullName:"René Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"70631",title:"Piezoelectric/Triboelectric Nanogenerators for Biomedical Applications",doi:"10.5772/intechopen.90265",slug:"piezoelectric-triboelectric-nanogenerators-for-biomedical-applications",body:'The ongoing development of nanogenerators in recent years has enabled the design of self-powered systems that can operate without external power supplies. Nanogenerators have the ability to harvest mechanical energy in different forms from a variety of sources, including human body motion and activities. This makes them particularly suitable for applications in the biomedical field. Nanogenerators can convert the tiny mechanical energy in body motion, muscle contraction/relaxation, bone strain, and respiration into electrical energy [1, 2, 3, 4]. The generated electrical energy can be used as a sustainable energy source for implantable biomedical devices, which would both reduce the volume of the powering unit and eliminate the need for battery replacement [5, 6, 7].
A great deal of work has been invested in the study of biomedical applications of nanogenerators, including self-powered sensors, pacemakers, and stimulators, and the results have shown that nanogenerators can be very promising in the biomedical field [8, 9, 10, 11, 12, 13, 14, 15].
In this chapter, we first introduce the required characteristics of nanogenerator materials that can be used in the biomedical field. Generally, there are two main types of biomedical nanogenerators, piezoelectric nanogenerators (PENG) and triboelectric nanogenerators (TENG), which have different operating mechanisms. PENG are based on piezoelectric materials, such as polyvinylidene fluoride (PVDF) [8], poly(vinylidenefluoride-co-trifluoroethylene) [P(VDF-TrFE)] [9], BaTiO3 (BTO) [10], ZnO [11], Pb(ZrxTi1−x)O3 (PZT) [12], and (1 − x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) [13]. While TENG are based on triboelectric charges which are generated when dissimilar materials are in contact [14, 15], their operating mechanism is a combination of tribo-electrification and electrostatic induction between the two contacted materials [14, 15]. A broad range of materials exhibiting these effects can be selected, which make TENG ideal for biomedical applications. Besides the PENG and TENG nanogenerators, there are also other types of biomedical nanogenerators using biofuel cells (BFCs) or photovoltaics. BFCs transform chemical energy into electrical energy from molecules present in human body [16], which are very promising since there is >100 W of chemical energy in our body [17]. Flexible photovoltaic materials can meet the conformability requirements of e-skin, thus showing the possibility of solar-powered e-skin [18, 19].
Next, we will provide some examples of important biomedical nanogenerator applications, including self-powered human activity sensors; pacemakers; cochlear implants; simulators for cells, tissues, and brain; and biodegradable electronics. After that, we will also discuss challenges and future outlooks for biomedical nanogenerators, including their miniaturization, stability, encapsulation, and output performance. We hope this book chapter will provide insight and inspiration to people who are interested in biomedical devices and nanogenerator development.
Self-powered biomedical devices require nanogenerators that can directly harvest energy from their surroundings, in this case, from activities in the human body. This also requires the nanogenerators to have specific designs that respond to different mechanical stimuli with high sensitivity, since many bodily activities are subtle.
The materials used in biomedical nanogenerators should also be biocompatible. The primary conventional piezoelectric material is lead zirconate titanate (PZT). PZT has a high piezoelectric coefficient; however, the toxicity of Pb makes it unsuitable for application in the human body. Scientists have been searching for other materials in efforts to develop alternatives to lead-based nanogenerators. One of the emerging lead-free piezoelectric materials, 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT), has a piezoelectric coefficient comparable to PZT and also good biocompatibility, which makes it a promising candidate for applications in the biomedical field [10]. ZnO has also attracted great interest because of its favorable characteristics, which include piezoelectricity, biocompatibility, transparency, and large-area fabrication [11].
In many cases, nanogenerators based on nanowires, nanobelts, and nanorods can be placed into specific structures to fit inside the body. Nanostructures, nanocomposites, or piezoelectric polymers specifically designed with superior flexibility and elasticity are particularly preferred for biomedical applications. For example, poly(vinylidenefluoride-co-trifluoroethylene) [P(VDF-TrFE)]-based nanogenerators have demonstrated good piezoelectric coefficient, flexibility, and biocompatibility [20, 21, 22, 23, 24].
Finally, nanogenerators used in the biomedical field should have high sensitivity and efficiency because many bodily activities, such as respiration, heartbeat, muscle stretching, or blood circulation, are very gentle and render a small amplitude. Nanogenerators need high energy conversion efficiency and sufficient output power to be used in devices with comparable size [25, 26, 27].
There are many nanogenerator materials that have been reported thus far. Some representative piezoelectric materials that can be used for nanogenerators in biomedical applications are shown in Table 1.
Piezoelectric materials | Characteristics | Biomedical applications |
---|---|---|
PZT | High piezoelectric coefficient, toxicity | Energy harvesting from body motion, including the heart, lung, and diaphragm [4, 28] Cochlear implant [29] Eye fatigue detection [30] |
PMN-PT | High piezoelectric coefficient, toxicity | Cardiac pacemaker [13, 31] |
(Na, K)NbO3 | Piezoelectric, biocompatible | Cardio-mechanical electric sensor [32] |
BaTiO3-based | High piezoelectric coefficient, biocompatible | Implantable medical devices [10, 32] |
ZnO | Piezoelectric, low toxicity, biodegradable, transparency | Biosensors [33] |
PVDF | Piezoelectric, flexibility, elasticity, biocompatibility | In vivo biomechanical energy harvesting [8, 27] Cochlear implant [34] |
PVDF-TrFE | Piezoelectric, flexibility, biocompatibility | Energy harvesting [9, 20, 21, 22, 23, 24] Pressure sensor [26] Bone tissue engineering [35] |
Poly-L-lactic acid | Piezoelectric (shear piezoelectricity in particular), shape-adaptable, biodegradable, biocompatible | Energy harvesting [36] Biodegradable implants [37] |
Piezoelectric materials can be used for nanogenerators in biomedical field.
In the future, it will be critical to further develop nanogenerator materials with more precise conformity to medical principles and the requirements of clinical applications.
Energy harvesting systems based on irregular body motions or mechanical deformation are promising candidates for self-powered biomedical devices [1, 2, 3, 4]. Using nanogenerators inside the human body is of great medical interest because they can scavenge inexhaustible biomechanical energy from muscle contraction/relaxation, blood circulation, respiration, and cardiac motion and convert it into electrical energy [5, 6, 7, 8, 9, 10]. Several examples of the applications of nanogenerators in the biomedical field are illustrated in the following text.
Human healthcare monitoring is becoming increasingly significant because of the need for early disease diagnosis and daily health assessments. Conventional monitoring systems are usually powered by batteries, which have limited lifespan and can cause many problems [38]. Self-powered nanogenerators can solve the power supply issue and can be easily integrated into the healthcare system [38]. Some examples are listed below.
A cardiac sensor, used for heart-rate monitoring, is a critical component in personal healthcare management. Self-powered nanogenerators have been employed in self-powered cardiac sensors, as shown in Figure 1 [5]. Besides the merit of self-powered, they are non-invasive, cost-effective and user-friendly. These implantable cardiac sensors can detect a number of arrhythmic symptoms and provide real-time feedback spontaneously [5]. Compared to current wearable heartbeat monitoring systems, the implantable cardiac sensors can provide both higher accuracy and greater reliability [39]. Self-powered wireless cardiac sensors have a great potential in the future heart healthcare monitoring market.
Illustration of heart-rate monitoring by a wireless self-powered cardiac sensor. Reprinted with permission from [5]. Copyright (2017) American Chemical Society.
Physiological parameters such as respiration rate, blood pressure, and pulse rate are major concerns in clinical practice [40]. Failure to detect these signals timely can result in life-threatening conditions [40]. Scientists recently fabricated self-powered TENG-based pressure sensors with a high sensitivity of 150 mV/Pa [41]. When the flexible pressure sensor was attached to the human body, respiration and pulse were accurately and spontaneously monitored [41]. The sensitivity, flexibility, and robustness of nanogenerators allow them to be used in wearable and wrist-based pulse wave detectors [40, 41, 42, 43].
When a heart’s natural pacemaker is not working properly, resulting in a heart-rate that may be too fast, too slow, or irregular, a doctor may implant a device called pacemaker to restore the heart’s nature rhythm. Implantable battery-powered pacemakers, which use electrical impulses to stimulate the heart muscles and regulate heartbeat, have been in clinical use for more than 50 years [13, 15]. Pacemakers have made significant contributions to the treatment of heart diseases such as sick sinus syndrome, heart blockage, and abnormal heart rate [13, 15]. However, every 7–10 years, surgery is needed to replace the pacemaker battery [44, 45]. Self-powered devices can prolong the pacemaker’s operation and eliminate battery replacement surgery.
Both PENG and TENG have been investigated for cardiac pacemakers [46, 47]. Generally, PENG are more robust and durable, but their outputs are relatively low. TENG materials show a higher output, but they need to be well encapsulated to prevent leakage. A schematic diagram of cardiac pacemaker without battery that can pace the porcine heart is shown in Figure 2 [31].
Schematic diagram of self-powered cardiac pacemaker that pace the porcine heart in vivo. Reprinted with permission from [31]. Copyright (2019) American Chemical Society.
Cochlear implants are neural prosthetic devices that can restore a sense of hearing to people with hearing disability. Cochlear implants work by picking up sound using a microphone located externally above the pinna, and with an external processor, convert the microphone output into electrical pulses that are transmitted internally using a transmitter or receiver to finally stimulate the auditory neurons using an array of electrodes implanted in the cochlea [34]. The conceptual schematics of the cochlear and the basilar membrane are shown in Figure 3. However, current cochlear implants have limitations, because they require external components, which are inconvenient for patients. A totally implantable cochlear implant powered by a nanogenerator would address this issue [48]. Scientists have reported the fabrication and characterization of a prototype polyvinylidene fluoride polymer-based implantable microphone for detecting sound inside gerbil and human cochleae [34]. These results demonstrate the feasibility of the prototype devices as implantable microphones for the development of completely implantable cochlear implants. For patients, this will improve sound reception by utilizing the outer ear and will improve the use of cochlear implants. It should be noted that the development of nanogenerators in cochlear implants field is at the very early stage. They will need further design and innovation to achieve miniaturization, low-power electronics, and an implantable microphone, before they meet the requirements of clinical applications.
Conceptual schematics of the cochlear and the basilar membrane. Reprinted with permission from [48]. Copyright © Yudong Liu, et al. 2018.
Electrical signals play an instructive role in many cellular behaviors, including cell proliferation, differentiation and migration, and tissue wound healing and regeneration. Several examples and their required electrical fields are shown in Table 2.
Cells and tissues | Required electrical fields | Reference |
---|---|---|
Migration of nerve cells | 7 mV/mm | [49] |
Migration of embryonic cells | 150 mV/mm | [50] |
Migration of neural crest cell | 150 mV/mm | [51] |
Migration of human keratinocytes | 10–100 mV/mm | [52] |
Wound healing | 40–180 mV/ mm | [53, 54] |
Cultivation of human bone marrow mesenchymal stem cells | 10–600 mV/mm | [55] |
Proliferation of osteoblastic cells | 20 mV/cm | [56] |
Proliferation, migration, and differentiation of muscle precursor cells | Several to tens of nA/cm2 | [57] |
Cardiac adipose tissue-derived progenitor cells | 5 mV/mm | [58] |
Muscle stimulation | mA-level current | [59] |
Required electrical fields for cellular and tissue behaviors.
Nanogenerators can provide electrical stimulation for cells and tissues [60, 61, 62, 63]. A recent report shows that a self-powered well-aligned P(VDF-TrFE) piezoelectric nanofiber nanogenerator can be used as a piezoelectric stimulator for bone tissue engineering, as shown in Figure 4 [35]. The well-aligned piezoelectric P(VDF-TrFE) nanogenerators encouraged the MC3T3 cells to proliferate in vitro under a sustainable piezoelectric stimulus. This provides insights into the application of P(VDF-TrFE) piezoelectric nanofiber nanogenerators as a self-powered electrical stimulation system to assist tissue repair and regeneration.
Proliferation of MC3T3 cells on P80-NG, P100-NG, and control A-NFM. (a) Fluorescence microscopy images of MC3T3 cells on A-NFM, P80-NG, and P100-NG. (b) MC3T3 cells proliferation after 1, 3, and 5 days of culture. The scale bar is 100 μm. The P(VDF-TrFE) nanofiber membranes (NFMs) poled with the electric field of 80 MV/m and 100 MV/m were labeled as P80-NG and P100-NG, respectively. The samples treated by annealing were coded as A-NFM. Reprinted with permission from [35]. Copyright, © 1996–2019 MDPI.
Electrical muscle stimulation is clinically employed for rehabilitative and therapeutic purposes [60]. Figure 5 illustrates recent research using a stacked-layer triboelectric nanogenerator (TENG) through a flexible multiple-channel intramuscular electrode, which permitted electrical muscle stimulation [60]. Such a self-powered system could be potentially used for rehabilitative and therapeutic purposes to treat muscle function loss.
Schematic illustration of direct electrical muscle stimulation powered by a triboelectric nanogenerator. Reprinted with permission from [60]. Copyright (2019) American Chemical Society.
Nanogenerators have also been developed for skin wound healing. Scientists reported an efficient electrical bandage for accelerated skin wound healing [61]. From in vitro studies, they showed that accelerated skin wound healing could be attributed to electric field-facilitated fibroblast migration, proliferation, and transdifferentiation [61]. This research could lead to a facile therapeutic strategy for nonhealing skin wound treatment.
Deep brain stimulation is an effective treatment for a variety of neurological disorders, including Parkinson’s disease, essential tremor, and epilepsy [64, 65, 66]. At present, it involves administering a train of pulses with constant frequency via electrodes implanted in the brain [67]. However, the implantable brain stimulator requires surgery to replace the battery every 3 to 5 years [68]. Self-powered deep brain stimulation is a future technology which does not need external power supply. Scientists have developed a flexible Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 (PIMNT) energy harvester that can be used in a self-powered deep brain stimulator [68]. More researches in this field open a new avenue for future deep brain stimulation using self-powered deep brain stimulator.
Modulation of neural signals using implantable bioelectronics is an emerging field in fields such as neuroprosthesis and bioelectronic medicine [69, 70, 71, 72]. Triboelectric nanogenerators (TENGs) show a promising performance as a power source for neuro-stimulators. Recently, scientists have developed a novel water/air-hybrid TENG that can be used for force-controlled direct stimulation [69]. In another research, scientists present an implanted vagus nerve stimulation system that is battery-free and can spontaneously respond to stomach movement [70]. These provide a concept in therapeutic technology using artificial nerve signal generated from coordinated body activities.
Biodegradable electronics are quite a new scientific term but also an emerging area of research. The general goal is to create human-friendly electronics and enable the integration of electronic circuits with living tissue [73]. Biodegradable electronics, also called transient electronics, are built with degradable organic and inorganic materials, so that they can be integrated with living tissue and used for diagnostic and/or therapeutic purposes during certain physiological processes [74, 75, 76, 77]. Once the therapeutic or diagnostic process is completed, the transient devices can be left behind in the body and will degrade and be absorbed gradually without any residue.
Reports show that a biodegradable triboelectric nanogenerator can degrade and be absorbed by the human body after completing its work cycle, so no operation is needed to remove them, leaving no long-term effects [76, 77]. This demonstrates the potential of nanogenerators as a power source for transient medical devices.
Scientists have recently introduced a fully biodegradable nanogenerator based on gelatin film and electro-spun polylactic acid nanofiber membrane, which is fully biodegradable in water [75]. The TENG are disposable and do not harm or pollute the environment.
In general, biodegradable triboelectric nanogenerators offer a promising green micro-power source for biomedical implants, by harvesting energy from body movements, and then dissolve with no adverse effect. The biodegradable medical device field is an emerging area, which shows a great potential for in vivo sensors and therapeutic devices.
The development of nanotechnologies can greatly advance healthcare systems. Nanogenerators can provide complementary or alternative power to traditional batteries in healthcare electronics. Autonomous biomedical devices might be realized with the development of nanogenerators, which will revolutionize the biomedical device and healthcare systems. We expect that autonomous self-powered biomedical systems with active sensing properties are the future development direction of medical devices.
Currently, the key challenges that need to be solved in the field of self-powered implantable medical devices are miniaturization, encapsulation, and stability. There is a strong demand for implantable medical devices with reduced size and weight, to minimize impact on daily activities and increase patient comfort. Also, TENG performance is greatly affected if moisture or liquid leaks into the device when applied in vivo. To avoid corrosion by body fluids, it will be necessary to develop durable and flexible encapsulation to protect the stability and working efficiency of TENG [5, 6].
Future nanogenerator developments in this field are expected to address the following three aspects. Firstly, output performance and energy conversion efficiency should be increased to meet clinical requirements. Secondly, to be used in the human body, nanogenerators need to be highly flexible, sensitive, and durable. For example, many in vivo movements are gentle, and their amplitude is very small, so the nanogenerator must be sensitive enough to exploit small scale motion [7, 14]. Thirdly, since the in vivo environment can be very complex and challenging, careful packaging is needed using biocompatible and soft materials.
In general, nanogenerators have many advantages, including high efficiency, low cost, light weight, and easy fabrication. Nanogenerators have an excellent potential for application in a variety of uses, to provide a sustainable power source for self-powered biomedical electronics and healthcare monitoring systems. With further cutting-edge research and development in this field, a revolution in biomedical devices and healthcare system will be realized in the future.
In this chapter, we introduced typical nanogenerator materials that have been developed for biomedical applications. We summarized several examples of how nanogenerators can be used in the biomedical field. We included recent research on nanogenerators in self-powered pressure sensors; pacemakers; cochlear implants; stimulators for cells, tissues, and the brain; and biodegradable electronics. We also pointed out the challenges facing current research and future research directions for nanogenerators in medical devices. We hope this work provides insights and inspiration for future biomedical device and nanogenerator research.
This research was supported by the Korea Research Fellowship Program funded by the National Research Foundation of Korea (no. 2017H1D3A1A01054478). This research was also supported by the KUSTAR-KAIST institute, KAIST.
The authors declare no conflict of interest.
Detonative combustion is a potential propulsion method for aerospace systems, offering high efficiency and low mechanical complexity. In comparison, deflagration is generally considered easier to control and has therefore dominated both experimental and real world engine applications. Research into detonation engines has been limited due to the lack of the necessary tools required to design and analyse such systems [1, 2]. As such, practical development of detonation engines, notably the pulsed detonation engine (PDE) and the rotating or rotational detonation engine (RDE), has been limited [3]. Nevertheless, the application of detonation engines for propulsion is very promising, already proving to be compact, whilst providing highly efficient thrust generation [3, 4, 5, 6, 7]. This supersonic thrust could be utilised independently as a rocket engine, or as part of a gas turbine system. Interest in the development of RDE technology has grown and the challenges of utilising a more thermodynamically-efficient cycle have become better understood [8, 9].
\nCombustion can occur at both subsonic and supersonic velocities, known as deflagration and detonation, respectively. Deflagration is typified by a regular flame, which propagates at less than the speed of sound. The heat release may be used to expel the resulting products, generating thrust. Deflagration has been used in a broad range of applications to produce power. However, in theory, deflagration lacks the thermodynamic efficiency of a detonation system, which is a system where combustion is initiated suddenly and “propagates utilising most, if not all, of the heat from combustion in an incredibly rapid shock wave” [10]. The heat generated by the exothermic chemical reaction sustains the shock wave. The concept of using detonation as a propulsion source has been proposed since the 1840s [11], but no substantial work had been completed until the 1950s when the development of models and concepts for a more lightweight and compact engine began [12]. The mechanisms that drive the detonation engine were not well understood at that time, so much of the research over the following decades was centred on the theoretical development of the engine.
\nAs the name implies, the pulse detonation engine (PDE) has been proposed for propulsion using detonations [12, 13]. In a PDE, a detonation chamber is filled with a fuel/oxidiser mixture, which is subsequently detonated. The accelerating detonation propels the exhaust from the chamber, thereby generating thrust. The chamber is then re-primed with fresh reactants, and re-detonated. With sufficiently high cycle speeds, large amounts of thrust may be generated in a small engine [14, 15]. This type of engine has been found to be particularly efficient [3, 16, 17].
\nDevelopment of the concept of a rotating detonation engine (RDE) began as a result of further work into detonative propulsion. This engine type is characterised by one or more detonation waves contained within an open-ended annular chamber. A fuel/oxidiser mixture is fed into one end of the chamber, and the detonation wave consumes these reactants azimuthally, expelling reactants from the open end of the annulus. In some literature, this type of engine may also be referred to as a continuous detonation wave engine (CDWE) or a spin detonation engine [6].
\nEarly research into rotating detonations was conducted in the 1950s [18], with attempts to document the structure of detonation shock waves, including those in spinning detonations, with further developments through the 1960s [1]. Subsequent research has been conducted into the effects of geometry, rotation characteristics, spiralling of the wave, and other variables [6, 19, 20, 21, 22]. Another advancement in general detonation research is improvements in deflagration to detonation transitions (DDTs), leading to a greater understanding of the consumption of fuel in the chamber [23, 24, 25]. Further work has developed prototype RDEs to measure the thrust of small-scale units as a baseline for larger model behaviour, utilising the results from experimental work to verify theoretical results, and to generate new results [26, 27, 28, 29, 30].
\nIn this review, several aspects of RDEs will be examined, starting with a brief comparison of RDEs and PDEs. This will be followed by further exploration into RDE operation, and methods of analysing RDEs, both experimentally and with numerical modelling. Finally, there will be an overview of areas still requiring further work.
\nThe majority of gas turbines that operate with a deflagration follow the Brayton (B) cycle: an isobaric (constant pressure) process, as shown in Figure 1 [31]. In contrast, a detonation is almost isochoric (constant volume) and may be modelled with the Humphrey (H) cycle, or, preferably, with the Fickett-Jacobs (FJ) cycle, which models detonation [3, 31]. The H cycle assumes that combustion occurs in a fixed volume, resulting in a pressure spike as the products expand. Differentiation between the H and FJ cycles in Figure 1 can be seen through the state changes of 2–\n
Thermodynamic cycles: Humphrey, Brayton, and Fickett-Jacobs. Adapted from Wolański [31].
where \n
Fuel | \nBrayton (%) | \nHumphrey (%) | \nFickett-Jacobs (%) | \n
---|---|---|---|
Hydrogen (H2) | \n36.9 | \n54.3 | \n59.3 | \n
Methane (CH4) | \n31.4 | \n50.5 | \n53.2 | \n
Acetylene (C2H2) | \n36.9 | \n54.1 | \n61.4 | \n
Calculated thermodynamic efficiencies for various fuels under different thermodynamic cycles [26].
In a PDE, such as that shown in Figure 2, a detonation chamber is filled with a fuel/oxidiser mixture and then ignited. The deflagration of the reactants accelerates, and through a deflagration-to-detonation transition (DDT), generates a shock wave. The products are accelerated from the end of the chamber, carried by the detonation front, generating thrust [30, 31]. For each cycle, the chamber must be purged and then refilled with fresh fuel/oxidiser mixture and then detonated again, limiting the maximum practical frequency of operation to an order of 100 Hz [32]. This results in poor efficiency when scaled to high thrust levels as the discontinuous thrust cycles may not be fast enough to approximate the continuity required for propulsion purposes [32, 33, 34, 35]. In some designs, it is also necessary to purge the chamber with an inert gas due to some residual combustion products remaining stagnant in the detonation chamber that interfere with the next detonation cycle. This process further restricts the operating frequency to approximately 50 Hz [3, 16].
\nLabelled schematic of a PDE. Adapted from [15].
In order to provide a more compact device, obstacles may be placed in the chamber to accelerate the DDT, but these reduce the specific impulse (\n
An RDE, such as the one shown as a cutaway in Figure 3, consists of an annular combustion chamber, into which fuel and oxidiser, either premixed or non-premixed, are fed through a series of orifices [3, 26, 36]. Each fuel/oxidiser mix requires a slightly different orifice geometry for optimal operation, so some devices have an adjustable injector plate [37, 38].
\nCross-section of a typical rotating detonation engine [38].
A detonation wave is initiated in the chamber, most commonly utilising a high speed flame that undergoes DDT by the time it enters the chamber [39, 40]. As this wave propagates around the chamber, it consumes the fuel, generating a high pressure zone behind it. This zone expands, and due to the geometric constraints, exits the chamber, generating thrust [35, 41]. An example of a CFD representation of the propagating wave can be seen in Figure 4 [42]. Behind the wave, fresh fuel enters the chamber at a constant rate, priming that section of the chamber for the wave to continue on the next revolution, thus making a self-sustaining wave as long as fresh mixture is supplied [35, 43]. The detonation waves generally propagate close to the Chapman-Jouguet velocity (discussed in Section 3.2) for each fuel type (typically 1500–2500 m s−1), so the effective operational frequency of current RDEs is approximately 1–10 kHz. Frequency is dependent on the chamber geometry, fuel, and thermal and frictional losses [31, 44]. The result is quasi-continuous thrust that approximates a continuous thrust through high frequency rotations, suitable for both direct propulsion applications and in the combustor of a gas turbine [31, 32, 45].
\n3D model of the detonation wave propagation in an RDE [42]. The short arrows indicate the flow of fuel/oxidiser into the engine, and the long arrow indicates the direction of detonation propagation.
Important areas of RDE research include determining the wave characteristics, geometric constraints, the effects of pressure on the injection characteristics, determining fuel flow properties, and examining the geometry and structure of the detonation wave [3, 4, 30, 31, 41, 42, 44]. Additionally, there has been research into potential applications of detonation engines in which an RDE may be applied, such as air-breathing vehicles and gas turbines [46]. Despite a growing body of work on RDEs, there are still large gaps in current understanding that restrict practical application. Notably, optimising the system for wave stability, ensuring reliable detonation initiation, and ensuring the RDE does not overheat, are significant challenges facing engine development prior to commercial applications. Further development in this area would allow an engine to operate reliably over extended durations, with well-designed chamber and fuel supply.
\nMost experimental RDEs are geometrically similar in design, consisting of an annulus made up of coaxial cylinders [5, 38, 47]. The chamber width, characterised by \n
There is reasonable consistency across published designs in the methods of initiating detonation waves in the RDE. Detonator tubes, in which a high-speed flame is encouraged to transition from deflagration to detonation, have been regularly and reliably used [26, 31, 32, 39, 49, 51]. It has been shown that the success of the detonation tube makes it an excellent initiator, producing a self-sustaining rotating detonation 95% of the time [26].
\nLike all jet-thrust reaction-based engines, the exhaust from a RDE may be channelled through a nozzle to increase thrust. Outlet and nozzle designs have varied across different RDEs. Many have not attached any nozzle, whilst some have chosen to utilise an aerospike [30, 31, 52]. The use of an aerospike increases performance through higher expansion area ratios, although the increased surface area results in higher heat flux and thus a loss of efficiency from the additional heat transfer [53]. Aerospikes may be directly attached to the end of the reaction chamber [31]. A diverging nozzle was found to increase the specific impulse, although the thrust increase was small, and for angles greater than 10°, the increase with angle was negligible [53]. None have made use of converging or converging-diverging nozzles, because the exhaust is typically flowing at supersonic velocities and thus could be choked through the converging cross-section. This would result in a loss of energy that would decrease the overall efficiency of the system.
\nA typical RDE, 90.2 mm in diameter, has been tested on a thrust sled [54]. It produced a thrust of 680 N using 176 g s−1 of C2H4/O2 propellant at an equivalence ratio of 1.48 [54]. As can be seen from Table 2, this is well below that required for typical supersonic flight applications. The specific impulse (\n
Engine | \nApplication | \nThrust | \nThrust to weight | \n
---|---|---|---|
Rolls-Royce Olympus 593 | \nBAC Concorde | \n38,000 lb (169,000 N) | \n5.4:1 [55] | \n
Teledyne CAE J402 | \nMcDonnell Douglas Harpoon | \n660 lb (2900 N) | \n6.5:1 [56] | \n
Pratt and Whitney F135 | \nLockheed Martin F-35 | \n191,300 N | \n11.47:1 (dry) [57] | \n
General Electric F414-400 | \nBoeing F/A-18E/F | \n98,000 N | \n9:1 [58] | \n
Experimental RDE | \nNone | \n680 N | \n3.47:1* [54] | \n
Thrusts and applications of various engines.
This is the thrust to weight ratio calculated using a pre-weight load cell system.
RDEs have been found to be successfully operable with a range of gaseous fuels including hydrogen, acetylene and butane, as well as various jet fuels [30, 31]. Air, pure oxygen, and oxygen-enriched air have all be used as oxidisers [31]. Each of these has a variety of advantages and disadvantages, in both performance characteristics, and ease of obtaining, transporting, and storing the oxidiser. Particular difficulty is noted in the transport of gases such as H2 and O2 due to the high risk regarding transportation and significant compression of these chemical species [59]. In the case of transporting liquid fuels such as LH2 and LOx cryogenic units are also required, adding to the already challenging process. The performance characteristics for several of these fuel types will be discussed further in Section 4.4.
\nThe detonation wave velocity in operational H2/air RDEs has been found to be on the order of 1000 m s−1 [30, 39]. In these RDEs, the operational frequencies are on the order of 4000 Hz, which produces quasi-continuous thrust [3, 32]. As wave speed is a key factor in the development of thrust, stable waves with high speeds are ideal for propulsion purposes. Stable detonation waves have reached maximum speeds in the range of 1500–2000 m s−1 in most designs using a H2/air or H2/O2 fuel/oxidiser combination (more commonly the former), suggesting that there is open research into whether there is upper limit for detonation wave speed, and subsequently the thrust that may be produced [3, 22, 26, 60]. However, at very high frequencies (19–20 kHz), there may be multiple waves rotating around the annulus [60, 61, 62]. Multiple wave modes of propagation appear to be affected by fuel/oxidant equivalence ratio as well as total mass flow rate through the system. The high frequencies are a result of multiple waves travelling at approximately the same speed as the normal single wave. This phenomenon has the potential to provide more continuous thrust, though the higher frequency may limit \n
There are several methods of recording data from an operating RDE. Thrust generated may be measured with a thrust plate, and the flow rates of fuel and oxidiser may be measured or controlled within the supply lines [30]. The details of the shock may be recorded with pressure sensors attached to the chamber head, and external cameras [30]. Pressure sensors record the increased pressure generated by the shock, and by using multiple sensors, the detonation wave propagation velocity may be determined. A high-speed camera may be set up to capture the operation of the engine, allowing various parameters to be recorded, including the detonation wave propagation velocity, although this method is limited by spatial resolution, as the channel width can be quite small [30, 39]. A camera may also be used to image from the side, if the outer surface of the annulus is made of a transparent material [63]. Additionally, OH* chemiluminescence may be used to detect, record, and analyse the detonation waves in UV-transparent optically-accessible RDEs [64, 65]. These radicals are indicative of the reaction zone, and so, by analysis of their chemiluminescence, the structure of the detonation can be inferred. Often this detection is done through a quartz side window integrated into the RDE [63]. Peak intensity of the OH* chemiluminescence indicates the location of the detonation front, and so the effects of varying factors such as equivalence ratio and chamber geometries can be documented. Images are often phase-averaged and can by “unwrapped” for comparison to equivalent two-dimensional, “linearised”, simulations and designs.
\nThe structure of shock waves in gases was examined in detail by Voitsekhovskii in 1969, including those of shock waves in spinning detonations [66]. These examinations resulted in the first diagram of the structure of a spinning shock wave, and the identification of a number of features, which are identified from the computational model of an RDE shown in Figure 5 [32]. This model used premixed hydrogen/air as the fuel/oxidiser mixture and has been “unwrapped” into two-dimensions (this approach is described in Section 5.1). Feature A is the primary detonation front; Feature B is an oblique shock wave that propagates from the top of the detonation wave; Feature C is a slip line between the freshly detonated products and older products from the previous cycle; Feature D is a secondary shock wave; Feature E is a mixing region between the fresh premixture and the product gases, where deflagration may occur [67]; Feature F is the region where the injector nozzles are blocked; and Feature G is the unreacted premixture.
\nPressure contour indicating the cell structure of a detonation wave in an RDE with a premixed supply, taken from a computational modelling study [32]. (a) Pressure contour indicating the full structure of detonation in an RDE, “unwrapped” into two dimensions. Feature A is the detonation wave, Feature B is the oblique shock wave, Feature C is the slip line between the freshly detonated products and products, Feature D is a secondary shock wave, Feature E is a mixing region between the fresh premixture and the product gases, Feature F is the region with blocked injector nozzles, and Feature G is the unreacted premixture. The arrow denotes the direction of travel of the detonation wave. (b) A close-up image of the detonation front.
In both Figure 5b and Figure 8c (Section 4.3) the detonation cell structure can be seen, with high pressure zones outlining each cell. These lines of high pressure contain triple points, where the transverse and oblique shocks meet the Mach stem of the detonation wave [68, 69]. The concentrated pressure at these triple points is the point of maximum energy release, and the subsequent pressure spike when two triple points collide generates new detonation cells [68, 70]. While this generation is the main reason behind the propagation of detonation waves, the triple points still require further investigation as to the effects they have on the overall characteristics of a detonation wave [70]. The direction of these triple points can be seen as the white lines in Figure 8c with trailing high pressure zones forming the walls of the detonation cells. As the detonation cell width is defined by the geometry of the system and the chemical composition of the detonating fuel, it seems that the triple point velocity and direction must also directly relate to these factors, although limited research has been done to formally connect these points.
\nIn an RDE, the detonation wave remains attached to the base of the annulus, as illustrated in Figure 5b and in Figure 6 [3, 6, 71]. This is due to the continuous fuel/oxidant supply [3, 71], as a premixture or allowed to mix in the chamber ahead of the detonation wave [32, 39]. There is also some evidence that stable, lifted waves may also be possible if there is insufficient mixing between the fuel and oxidant [27, 44]. The propagating detonation wave combusts the reactants [32, 39] which generates a region of extremely high pressure immediately behind the wave. This pressure is on the order of 15–30 times higher than the pressure ahead of the detonation, preventing flow through the injectors [3]. The high pressure zone expands in a Prandtl–Meyer fan, allowing fresh fuel and oxidiser to enter the chamber [35]. This expansion propels the mixed products axially along the engine, generating thrust. In addition to the primary shock, an oblique shock and a secondary attached shock are also generated (Features B and D in Figure 5a).
\nDiagram showing the general structure of the detonation in an unwrapped RDE [3].
At the interface between the premixed reactants and the combustion products, there is a significant difference between the conditions of the unburnt fuel/oxidiser mixture and the products. This causes some deflagration along the slip line, as shown in Figure 6, generating Kelvin-Helmholz instabilities, which vary the detonation propagation velocity [3, 22, 72, 73]. This decrease in the propagation velocity results in an increase in the pressure, disturbing the oncoming shock wave and forcing the sonic flow directly behind the shock wave to undergo supersonic flow acceleration [74]. As shown in Figure 6 there is a section of injector flow blockage that occurs as the wave passes the fuel array. The high pressure front from the shock wave causes stagnation of the injector flow, or even back-flow which, if not handled, could cause catastrophic failure of the system [3, 6, 36]. This back-flow is a strong reason as to why the fuel and oxidants should not be premixed in practical systems or experimental investigations as it can result in flashback.
\nThe Chapman-Jouguet (CJ) condition can be defined as the requirements for the leading shock of a detonation to not be weakened by the rarefactions of the upstream detonation products [75]. This sonic plane then acts to allow the supersonic expansion of the detonated gases to occur without disturbance by rarefactions downstream of the flow [75]. The CJ condition can be used to approximate the detonation velocities in three-dimensional models but is better suited to a one dimensional analysis with an infinitesimally thin detonation front [76]. Despite this, it is used in most instances of numerical modelling as a guide as to whether the wave is performing as expected for the given parameters of the RDE [4, 6, 27, 31, 32, 42, 75, 77]. Chapman and Jouguet’s theory only applies to kinetic energy, disregarding the chemical energy of the reacting species, and hence, the Zel’Dovich-von Neumann-Doring (ZND) model is used as a more complete representation of the shock, taking into account the finite chemical reaction area directly upstream of the leading shock [3, 21, 45, 75, 78, 79, 80].
\nThere are two methods which may be used to initiate the detonative shock in an RDE—directly in the chamber, or indirectly via a high speed flame in a deflagration to detonation transition (DDT) tube [26, 31, 39, 49, 51]. These tubes are very similar in structure to a PDE. Directly initiating the detonation in the chamber via commercial spark plugs has been found to be generally unreliable, with only a 40% success rate for shock initiation when using CH4 in O2 [26]. Particular difficulty is noted in ensuring the detonation travels in the desired direction [26, 32]. In contrast, indirect initiation via a DDT tube has had a 95% success rate for the same fuel/oxidant combination [26, 31]. The indirect method involves using a detonator tube that can be set up in any orientation relative to the chamber, although tangential is favoured for initiating the detonation direction. Initiation is then caused by a small volume of a highly detonative mixture being ignited by spark plugs before DDT occurs, thus initiating the RDE. Perpendicular initiation can also be used, but this often results in the development of two detonation waves that rotate around the chamber in opposite directions [31]. Collision of these opposing waves usually destabilises the system as the waves weaken and reflect back in the direction of origin [31]. Desired direction also appears to be affected by initial total pressure and ignition distribution around the fuel plenum [27, 81]. For a desired single wave direction and propagation, tangential initiation is the most suitable method. Although slightly less compact due to the initiator tube, this may be reduced by placing obstacles in the tube to accelerate the DDT, or by using a more detonative fuel than that used in the primary process [31, 48, 62, 82, 83]. Using an initiator tube, however, may produce small wavelets ahead of the main detonation front, which, if present, reduce the detonation propagation velocity by up to 60% [84]. Once the main detonation is running, the interface between the initiator tube and main chamber must be closed off prior to the shock completing a revolution of the chamber [84]. Additionally, there may be a slight delay, on the order of milliseconds, between the detonation exiting the DDT tube and the commencement of full RDE operation in order to purge the spent reactants from the DDT process [85]. This delay seems to only be transient with no large effects on shock structure or stability, and the excess products are expelled along with the rest of the exhaust [85].
\nThree-dimensional modelling has shown that increasing the width of the channel—whilst maintaining the equivalence ratio, injection pressure, chamber length, and injector configuration—increases the detonation velocity, but the transverse shock wave ceases to be aligned with the radial direction [22, 27, 86]. As can be seen in Figure 7, the point of contact with the inner wall begins to lead the detonation wave as the channel width increases [22]. This phenomenon generates reflected shocks from the outer annulus wall, which may produce instabilities in the primary shock. It has been suggested through qualitative observation, however, that the effect of upstream reflected shocks on the shock structure may only be minimal [39, 87]. Once the channel becomes sufficiently wide, as shown in Figure 7c, the shock wave detaches from the inner wall, briefly forming a horseshoe shape against the outer wall [22]. This allows significant amounts of fuel to pass through the engine without combusting, and produces large instabilities and fragmentation in the detonation wave, which causes the structure to collapse [22]. These lead to a significant loss of performance, and secondary detonations in the exhaust [22]. It has been noted that increasing the channel width also results in increased variance of \n
Schematic of three different RDE designs showing the effect of varying the channel width on detonation structure. Arrows show detonation wave propagation direction. The red line is detonation wave, indicative only. Based on research from [22]. (a) Narrow channel, (b) mid-sized channel, and (c) wide channel.
It has been found that using a fuel-rich mixture produces stable waves with high detonation velocity and efficiency [80, 88]. Higher mass flow rates have also been attributed to increasing the chance of a stable wave being formed [6, 89]. Additionally, it has been shown that the equivalence ratio has a strong influence on the effectiveness of detonation and the stability of the system [80]. Detailed investigation has shown that the stability of the system is improved with increased equivalence ratio, but indicated a maximum equivalence ratio of 1.27, before the detonation wave became short-lived and transient, which is unsuitable for practical purposes [60]. Whether this is a universal limit, or a limit of that particular investigation is unclear, and requires further research. Furthermore, the findings indicated that lower equivalence ratio influences the number of wave fronts produced, with stoichiometric seeming to be a transition point to a stable one wave propagation mode [60, 86, 90]. It is interesting to note that for lean mixtures, the initial channel pressure needs to be higher for a stable detonation to propagate [88].
\nThe wave propagation velocity varies with the fuel/oxidiser combination. A variety of mixtures have been tested in a detonation tube of an RDE, with their wave propagation velocities and wavefront pressures shown in Table 3, which is indicative of their varying performance in an RDE. It should be noted that the pressure, energy and specific impulse in Table 3 are determined with a detonation tube, and provide a numerical comparison between each fuel/oxidiser combination. Hydrogen/oxygen mixes have been ideal for modelling purposes due to the simple chemistry involved, and are often used in experimental work due to the predictable behaviour. Additionally, the high detonation propagation velocity and wavefront pressure of hydrogen makes it a suitable fuel for real applications. Another common fuel choice is methane, due to the satisfactory propagation velocity and specific impulse in testing [31]. As mentioned in Section 2, the theoretical \n
Fuel mixture | \nDetonation speed (m s−1) | \nWavefront pressure (atm) | \n\n\n | \n\n\n | \n
---|---|---|---|---|
Hydrogen/oxygen | \n2836 | \n18.5 | \n8.43 | \n289.39 | \n
Hydrogen/air | \n1964 | \n15.5 | \n3.48 | \n200.41 | \n
Ethylene/oxygen | \n2382 | \n31.9 | \n5.23 | \n243.06 | \n
Ethylene/air | \n1821 | \n18.2 | \n2.85 | \n185.82 | \n
Ethane/oxygen | \n2257 | \n29.0 | \n4.87 | \n230.31 | \n
Ethane/air | \n1710 | \n15.8 | \n2.49 | \n174.49 | \n
Propane/oxygen | \n2354 | \n34.2 | \n5.18 | \n240.20 | \n
Propane/air | \n1797 | \n17.5 | \n2.80 | \n183.37 | \n
Fuels, wave propagation velocities and pressures, heat of combustion (\n
Transportability of fuel, and maintenance of fuel lines, are deciding factors in determining which fuels can be used. These issues are especially important for aerospace applications. Gases such as H2 and O2 are particularly volatile and reactive, hence can be difficult to transport in the large quantities needed for use in an RDE. Therefore, gaseous fuels and non-air oxidisers are challenging and largely unsuitable for real world applications [5]. However, H2 does have a high heat of combustion that is not matched by liquid hydrocarbon fuels. Jet fuel, kerosene, octane and other long-chain hydrocarbons provide a practical alternative to the H2/O2 mixture though. High volumetric energy density as a result of liquid state, as well as greater ease of transportability makes these hydrocarbons a more feasible fuel choice.
\nThere are several issues regarding fuel choice that deserve further discussion. In particular, the use of cryogenic fuels for cooling the engine is a beneficial approach, increasing thermal efficiency, as well as reducing the thermal load on other components such as mounting systems [3]. Another advantage is a higher volumetric energy density that comes from the compression of normally gaseous fuel sources. Testing of liquid oxygen (LOx) and gaseous or liquid hydrogen (GH2/LH2) fuel/oxidant systems for viability has been performed, but implementation in real world scenarios is challenging [92, 93]. Liquid hydrocarbons require further investigation to demonstrate their effectiveness in producing thrust through detonation [30], particularly because of the need for flash vapourisation to avoid multiphase effects in the mixing process [30, 51].
\nAn axial fuel injection process through a circumferential orifice plate was consistent across most simulations and real world models as an injection scheme [5, 6, 22, 26, 30, 32, 36, 38, 39, 41, 42, 42, 52, 61, 62, 82, 86, 88, 92, 94, 95, 96, 97, 98, 99]. Further research is required into fuel blockage effects due to the high pressure of the shock wave, with particular emphasis on the effects of increasing fuel pressure to alleviate blockage and increase overall engine performance [100]. In the majority of numerical and physical models, such as Figure 3, fuel and oxidiser are injected through an orifice place around the annulus, allowing them to continually feed the propagating detonation wave. Typically, the fuel and oxidiser are fed in separately, and allowed to mix in the chamber [26]. This design is also used in most numerical models, although some have used premixed fuel/oxidiser as a simplified boundary condition. Almost all physical designs have been built without a premixed fuel/oxidant injection scheme due to concerns with flashback [99]. In a premixed design, the shock wave may propagate into the injection plenum, carrying with it the reaction front. With sufficient pressure though, typically 2.3–3 times the chamber pressure, this can be avoided [32].
\nInvestigation into flow characteristics of a turbulent inflow have shown that there are specific zones within the chamber which favour different forms of combustion: some zones favour deflagration, and others favour detonation [101]. The larger deflagration zones created reduce the thermodynamic efficiency of the engine, indicating that fuel flowrate influences the reliability of an RDE [101]. It has been suggested that high inlet velocities generate incomplete combustion and hot spots, reducing detonation wave stability and reducing system efficiency, although further research is required [102]. As indicated in Section 3.3, the introduction of instabilities in the flow profile can decrease the efficiency of the engine as well as disrupt the detonation wave itself. Further findings indicate that increasing the fuel injection area, particularly by increasing the number of orifices, results in more efficient pressure gain [86, 97, 99, 103]. This produces a larger expansion wave of the previous combustion reactants, generating higher thrust, without disrupting the flow-field characteristics [98]. However, with lower fuel injection velocities comes an increased risk of flashback. There is, therefore, some optimal fuel injection area for operation which requires further work to verify [98]. Finally, the pressure ratio between the inlets and the engine outlet also has an effect on the \n
Existing RDEs tend to be relatively small, and therefore may need to be scaled up, or arranged in parallel, to produce thrust required for practical applications, such as those listed in Table 2. One method of scaling RDEs is to run multiple identical devices in parallel, in a similar manner to that used to run multiple PDEs [34, 104]. However, this would require more complex plumbing, increasing the weight of the overall system, and thus decreasing the thrust-to-weight ratio. However, this solution has not been explored in any depth and its viability is unknown.
\nIn order to make larger RDEs, in-depth research into the geometry of the combustion chamber is required. A number of relationships between the critical detonation wave height and the various dimensions have been identified [27, 30]. Detonation structure, as described in Section 3.1 is composed of small diamond shaped detonation cells that make up the front. The widths of these cells are dependent on the energy of the detonation (related to the fuel in use) as well as the available geometry for detonation. In this way, the equivalence ratio can be a large determining factor [30, 105, 106]. Critical minimum fill height is the minimum mixture height required for a detonation wave to propagate through a given fuel/oxidiser mixture. It has been found that the critical minimum fill height, \n
and the minimum channel width, \n
Finally, the minimum axial length of an RDE, \n
although lengths under 2–3 times the minimum result in reduced efficiency due to incomplete combustion [27]. However, in simulations, it has been suggested that for low inlet-nozzle pressure ratios the wave the wave height grew with the chamber length, reducing the \n
Geometric parameters of an RDE. The red area is the area filled by the fuel/oxidiser mix in which the detonation propagates. (a) Top view, (b) side view, and (c) detonation cell width adapted from [79].
There is not yet any theoretical data for \n
Modelling a large-scale RDE presents a challenge due to increasing computational requirements with increasing size, so limited work has been done in this area. Nevertheless, a larger scale experimental RDE has been demonstrated [5]. This RDE had an outer chamber diameter of 406 mm, and a channel width of 25 mm, and an air inlet slit that could be varied across the range 2–15 mm [5]. It produced a consistent thrust of 6 kN with a combined fuel/oxidiser flow rate of 7.5 kg s−1, whilst also producing an \n
The design used in most simulations and experimental work is a coaxial cylinder structure [3, 27, 31, 35]. This simple geometry is advantageous for both modelling and manufacturing. Design variations including using nozzles, aerospikes such as that shown in Figure 9, or an entirely hollow cylinder, have been utilised in several RDE designs [5, 52].
\nExample of an aerospike nozzle configuration [52].
Alternative chamber geometries have been largely limited to adjustments in the diameters of the chamber [4, 42], including with different sized engines [15, 31, 39, 54]. Other work has been conducted on a single RDE with interchangeable outer wall sections [22, 30]. As noted in Section 2 and Section 3, both of these factors influence the stability and the performance of RDEs. The effect of varying the length of the chamber on the detonation propagation has been investigated, which led to the previously mentioned requirement that the chamber be at least twice, and preferably four to six times, the fuel fill height [4, 96].
\nHollow RDEs, dubbed “centrebodiless” designs, have been tested with two different designs [50, 61]. One design was identical to a conventional RDE 100 mm across, but the inner cylinder terminated parallel to the fuel/oxidiser injectors [61]. In this design, tested with 169.7 g s−1 of CH4/O2 at an equivalence ratio of 1.154, it was found that the detonation was unstable [61]. The fuel and oxidiser were free to move into the space usually occupied by the centre body, and thus insufficiently mixed to sustain a stable detonation [61]. However, when the same geometry was tested with 253.3 g s−1 of CH4/O2 at an equivalence ratio of 0.665, the mixture became sufficiently mixed to sustain a stable four-wave detonation structure [61]. Another design was completely hollow, allowing oxygen-enriched air to be pumped through the centre of the chamber, and fuel was supplied around the edge [50]. In this design, stable detonations, operating at \n
The attachment of turbines to RDEs has been proposed [8, 9, 31, 32, 45]. It has also been noted that there is a secondary shock propagating from the detonation, which exits the outlet of the chamber [32]. However, turbine blades are sensitive to shocks. As such, the effect of the secondary shocks on the blades of potential turbines must be investigated. It is worth noting that an experimental PDE array has been tested with an attached turbine, in the form of an automotive turbocharger [31]. In that case, a buffer chamber was inserted between the PDE and the turbine [31], and such a technology may be suitable for RDEs.
\nComputational fluid dynamics (CFD) modelling is a powerful tool for the analysis of rotating detonations prior to, or in tandem with, experimental systems. The majority of numerical studies have aimed to provide in-depth understanding and details of the detonation structure [22, 41, 62, 67, 72, 94, 107, 108] or assess the physical and modelling factors influencing performance [32, 67, 73, 109].
\nComputational models of the azimuthal detonations in RDEs may use full three-dimensional geometries [20, 22, 67, 94, 95, 107, 110] or simplified, two-dimensional geometries [6, 32, 41, 43, 62, 72, 73, 108, 109, 111, 112, 113, 114]. The former, higher-fidelity, approach can incorporate complex geometric and flow features, although require \n
Two-dimensional modelling of RDEs assumes that the flowfield along the centre of the channel is representative of shock and deflagration structure across the entire width. Consequently, this inherently assumes slip-wall conditions and that the detonation-front is normal to the two-dimensional geometry. In the unwrapped two-dimensional geometry, all fuel is injected axially from one edge (the bottom edge in Figure 5a [32]) and is exhausted through the opposite edge (the top edge in Figure 5a) [6, 32, 72, 111]. It therefore follows that all exhaust products must leave the domain axially, due to conversation of angular momentum. This was confirmed in early two-dimensional modelling, which found that the density-averaged azimuthal velocity was less than 3% of the axial velocity [41]. Such a criterion could be extended to assessing whether a three-dimensional model, at some fixed radius within the channel, could be treated as an unwrapped planar domain.
\nDetonation wave curvature, imperfect mixing, three-dimensional turbulent structures and transverse shocks are features reported in three-dimensional computational modelling [22, 67, 79, 94, 107] and experimental studies [62]. These features arise from the effects of channel size [22], discrete injectors [79] and interactions between transverse waves and walls [62, 79]. These features are inherently three-dimensional and cannot be captured using planar, periodic models, and require more complex computational geometries.
\nFuel/oxidiser inlets may be modelled as simple points, lines, surfaces or complex, discrete injectors. The latter may be treated as a series of inlets in two-dimensional models, assuming upstream micro-mixing [109, 112]. Differences in the injector configuration can lead to differences in detonation pressure [112], or lifted flame behaviour in the event of poor mixing in a partially premixed system [109]. The study which observed the latter phenomenon, however, was undertaken using the Euler equations, which may affect the fidelity of modelled mixing (discussed later in this section), and a simplified induction parameter model (described in Section 5.4) [109], although this has also been observed experimentally in C2H2-fuelled RDEs [115].
\nInlet boundary conditions in premixed models, are often defined by inlet throat-to-nozzle-exit ratios. These, and the set upstream pressure, control whether the inlets are blocked, subsonic or choked and are chosen to range from 0.1–0.2 [6, 109, 110, 112], although ranges as large as 0.07–0.3 have shown little effect on \n
Rotating detonation engines have often been numerically modelled using the compressible Euler Equations [6, 20, 32, 41, 43, 62, 72, 95, 108, 110, 111, 112]. The Euler equations conserve momentum, mass and energy, but do not account for viscosity, following the assumption that the detonation structure dominates viscous dissipation. Viscous effects may, however, be incorporated into numerical studies of RDEs through the use Reynolds-averaged Navier Stokes (RANS) modelling [107, 113], LES, LES-RANS hybrids such as [improved] delayed detached eddy simulations (IDDES) [67, 94], or DNS [22]. Of these approaches, Euler, IDDES and DNS studies [22, 41, 67] have all been able to capture Kelvin-Helmholtz instabilities in the unreacted/reacted and the post-shock mixing layers (see Figure 5a as an example), using sufficiently small element sizing in both two- and three-dimensional models.
\nThe grid required to resolve large structures in RDE mixing layers is dependent on the size of the geometry. Elements of 200 μm have been shown to predict shear layer instabilities using either Euler equations or IDDES in an RDE with a mid-channel diameter of 90 mm [67] and an \n
Both viscosity and species diffusion have been stated as critical features in non-premixed models of RDEs, promoting the use of IDDES or LES in modelling studies [67]. In contrast, a negligible dependence of detonation velocity or \n
Although the Euler equations cannot account for viscous effects, such as wall shear-stress and heat transfer, these have a small, but non-negligible, effect (\n
Incorporating viscosity and thermal wall-effects into IDDES simulations requires significant computational resources. One such study required a computational mesh of \n
The majority of numerical RDEs works to date targeted H2/air and H2/O2 systems [6, 20, 22, 41, 62, 72, 73, 79, 94, 95, 111, 112, 118, 121, 122], given their relatively simple chemistry in comparison with both small and large hydrocarbons. Nevertheless, limited data are also available for linearised CH4/air and C2H4/air systems [114].
\nThe simplest approach to describe the chemistry is that of a one-step irreversible reaction [6, 43, 62, 95, 108, 109]. This assumption has been widely used to numerically investigate various aspects of fully premixed canonical RDE cases and useful insights have been gained [6, 32, 95]. However, it is well known that such a simplification is not able to accurately quantify many detonation responses of interest (e.g. upstream deflagration phenomena [109], triple shocks structure [79, 116]), mainly due to the sensitive Arrhenius nature of the reaction rate to temperature variations. Also, the use of ad hoc correlations of the experimental data with adjustable kinetic parameters (e.g. reaction order, activation energy) are only valid for a limited range of the system and thermodynamic parameters [116].
\nSimplified approaches to chemical kinetics may employ a one-step reversible reaction [20, 62] or a two-step mechanism [22, 41] to describe the chemistry within a system. In particular, for the one-step case, the forward reaction rate is calculated using the classical Arrhenius equation with the reaction rate constants tuned from a reference case while the backward reaction rate is calculated from the assumption of local chemical equilibrium [20, 62]. This approach has been validated against detailed chemistry for a 1D model [20]. For canonical 2D premixed RDEs, a one-step reversible reaction is not able to accurately capture the post-detonation temperature while it is able to predict both the experimental pressure and velocity fields [20]. In addition, it was also found that this approach can be successfully implemented to describe stratification effects in three-dimensional non-premixed RDE systems [62].
\nFor the one-step case, a number of two- and three-dimensional premixed RDE simulations employ an induction-time parameter model (IPM) to compute the chemical source terms [6, 32, 43, 109]. The IPM has shown reasonable accuracy for the prediction of detonation wave propagation in premixed systems [108], as the induction time is derived from the same configuration as the CJ wave-speed [116]. In addition, it is computationally inexpensive as a global induction parameter allows for release of energy over a finite period of time. Nevertheless, the IPM lacks the flexibility to accurately describe the physics occurring in more realistic non-premixed systems [94]. The thermodynamic properties of the single product species employed in this model are dependent upon the equivalence ratio of the fuel/air mixture. Therefore, this approach cannot easily handle the spatially varying local equivalence ratio occurring in a non-premixed system [116]. This model also lacks the capability to capture the low-pressure heat release and the change in equilibrium chemistry of post-detonation products. Finally, this method requires a priori calculation of the CJ induction time, but the computed detonation velocities in detailed simulations can be significantly higher than that of CJ velocity [94]. If this approach is extended to a two-step reaction model (consisting of an induction reaction followed by an exothermic recombination reaction), two progress variables are obtained and need to be solved in lieu of individual species concentrations. This approach is termed two-parameter progress variable, and it has been successfully applied for premixed systems [22, 41]. Nevertheless, the variation of the two source terms is extremely sensitive to the choice of the constants adopted [22]. Global chemistry has also been implemented through the well-known PDF method [107], although this approach is generally used for detailed chemistry in combustion processes [123].
\nFinite-rate kinetics and the associated kinetic mechanisms are needed to capture complex phenomena such as near-limit propagation leading to quenching of the detonation wave [116]. This is mainly because the use of a one-step reaction precludes the influence of chain-branching-termination mechanisms that are invariably multi-step in nature. In this regard, an advanced approach is the induction-length model, which concerns determining the induction length for adiabatic propagation and using it to estimate global detonation parameters such as the cell size of steady propagation and the wave curvature at quenching [116]. This study showed that at least a four-step mechanism is required to achieve acceptable predictions in CJ detonation.
\nModels of RDEs using H2/air, H2/O2, CH4/air and C2H4/air mixtures have employed detailed chemistry and simplified configurations [68, 72, 73, 79, 111, 112, 114, 118, 122], although only limited studies are available in comparison with simplified (one- or two-step) chemistry, given the relatively large computational expense required and the current computational resources. A set of 8–9 chemical species and 18–21 elementary reactions are generally employed for H2 systems [72, 112], while 21–22 species and 34–38 reactions are used for simple hydrocarbons systems [114]. These studies highlighted that the use of detailed chemistry is needed to accurately predict the energy-release pattern in RDEs and complex characteristics, including re-ignition, number of triple points and transverse waves [68].
\nA linearised model may be constructed to simulate the operation of an RDE [79, 124]. These models, shown in Figure 10, are known as linearised model detonation engines (LMDEs). In this model, fuel is fed into the chamber, and a transverse shock wave propagates through it. This occurs in much the same manner as in an RDE. However, the chamber is rectangular, and so the detonation only makes a single pass through the chamber [79, 124]. Both computer models and practical experiments have been run in three different modes, all using fresh supplies [79, 125]:
The chamber is pre-filled with premixed fuel/oxidiser, and then the detonation is initiated.
The chamber is pre-filled with an inert gas, then premixed fuel/oxidiser is injected and the detonation is initiated simultaneously.
The chamber is pre-filled with oxidiser, then fuel is injected and the detonation is initiated simultaneously.
An example linearised model detonation engine [79].
LMDEs have been used to characterise the detonation process, by allowing both sides of the chamber to be imaged through quartz walls, or the density field imaged through the use of the Schlieren technique [79, 126]. It has been found that the critical fill height of an LMDE is about \n
Computer modelling of an LMDE indicated that the propagation of a detonation wave was not affected by the turbulence caused by in-chamber mixing of fuel and oxidiser [118]. However, the presence of this turbulence did cause the reaction zone to trail the detonation wave [118]. A model of an LMDE was also used to test the result of applying different back pressures, such as might occur if a nozzle or a turbine was attached to an RDE [114]. This indicated that increased back pressure also increased the detonability of the fuel mixture, but also restricted the acceleration of the products, which, in some cases, led to the production of tertiary shock waves to sufficiently compress the flow to match the exit plane conditions [114]. However, as noted previously in Section 2, nozzles have very limited benefit [53], and, as noted in Section 4 the effect of secondary and tertiary shocks on a turbine may be problem.
\nRotating detonation engines have the potential to provide a significantly more efficient combustion cycle than deflagration-based engines. The application of this technology to turbines promises to increase the thermodynamic efficiency of these engines to previously unattainable levels. Additionally, RDEs as a standalone engine hold significant promise for both air-breathing and air-independent rocket propulsion. However, there exists a large body of research and development work still-to-be undertaken, including:
Nozzles have been shown to have limited benefit to the thrust generated by RDEs. However, varying the angles of the walls of an RDE, either independently or together, may simulate the effect of a nozzle to provide a slight benefit to performance. It remains unknown what effect such modifications to the conventional cylinder might have.
Comparisons of thrust to weight ratios between experimental RDEs and conventional rocket engines show similar values, indicating that an RDE could represent a method of propulsion in space. This has not been widely explored as an option, and would benefit from experimental work in vacuum conditions or microgravity conditions.
It has been suggested that there may be a maximum equivalence ratio at which an RDE will operate, but further investigation is required to determine if this is a universal limit, and identify ways to lower the limit.
Triple points appear to have significant effect on the propagation of the detonation wave but little work has been done on determining the constraints, besides chemical composition, on the formation of stable and consistent triple points as well as the effect of those parameters on other characteristics of the triple points such as peak pressure and propagation direction. Findings would be beneficial in terms of properly defining the parameters that affect \n
Very few studies have provided a mathematical relationship between the detonation cell width and the geometry requirements of the chamber. More supporting work to help refine and verify or dispute the relationships that have been established needs to be done, so that in the future, specialised design needs can be catered for through knowing the geometry and cell width of fuel types.
Varying the channel width has been noted to affect the stability of the detonation wave in an RDE. As such, this is likely to affect the performance of such devices. Further research is required to determine what the optimal width would be for different design requirements.
It is established that RDE chambers need to be at least twice as long as the fuel fill height, and increasing the length four to six times the fill height improves the efficiency. However, depending on the ratio of inlet pressure to nozzle pressure, such a length increase may also result in reduced \n
So-called “centrebodiless” designs have been explored, and proposed for use in afterburners. However, they have not been modelled or tested with heated high velocity air, as would be typically found at the outlet of a conventional jet engine, so their potential performance remains unknown.
It has been demonstrated that the thrust produced by RDEs scales non-linearly with engine size, but they are not yet approaching the size required to replace most existing gas turbines. It remains unknown if an RDE can be scaled up sufficiently to provide the thrust levels offered by contemporary gas turbine engines.
It has been suggested that a turbine could be attached to an RDE. However, the effects of the various shocks on a turbine have not been explored. In particular, the oblique shock (Feature B in Figure 5a) has been shown to propagate out of the chamber, and is likely to have significant effect on the viability of using a turbine.
The invsicid Euler equations have been demonstrated to over-predict deflagration in three-dimensional computational models of premixed RDEs, even with the use of detailed chemistry. Their validity in non-premixed RDE configurations, with deflagration upstream of the detonation and the potential to produce lifted detonation waves, still requires rigorous assessment.
Viscous and thermal wall-effects in RDEs have significant effect on RDE performance characteristics, and may be essential in accurately reproducing experimentally measured values. Understanding of the appropriate numerical modelling approaches of these effects, however, is still immature, owing to the computational resources required for sufficiently fine resolution of near-wall grids.
The computationally predicted wave-speeds and plenum pressures in RDEs are significantly different to those measured experimentally. It has been proposed that this could be partially due to baroclinic vorticity, resulting from interactions between detonation waves, fresh reactants, deflagration reaction-zones and post-combustion products, although this is yet to be analysed in detail in either full RDEs or linearised models.
"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges".
\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.
",metaTitle:"About Open Access",metaDescription:"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges.\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.",metaKeywords:null,canonicalURL:"about-open-access",contentRaw:'[{"type":"htmlEditorComponent","content":"The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\\n\\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\\n\\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nOAI-PMH
\\n\\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\\n\\nLicense
\\n\\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\\n\\nPeer Review Policies
\\n\\nAll scientific works are Peer Reviewed prior to publishing. Read more
\\n\\nOA Publishing Fees
\\n\\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\n\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\n\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\n\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\n\nOAI-PMH
\n\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\n\nLicense
\n\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\n\nPeer Review Policies
\n\nAll scientific works are Peer Reviewed prior to publishing. Read more
\n\nOA Publishing Fees
\n\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\n\nDigital Archiving Policy
\n\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:117095},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{},books:[{type:"book",id:"7724",title:"Climate Issues in Asia and Africa - Examining Climate, Its Flux, the Consequences, and Society's Responses",subtitle:null,isOpenForSubmission:!0,hash:"c1bd1a5a4dba07b95a5ae5ef0ecf9f74",slug:null,bookSignature:" John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/7724.jpg",editedByType:null,editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7829",title:"Psychosis - Phenomenology, Psychopathology and Pathophysiology",subtitle:null,isOpenForSubmission:!0,hash:"a211068a33e47af974e3823f33feaa43",slug:null,bookSignature:"Dr. Kenjiro Fukao",coverURL:"https://cdn.intechopen.com/books/images_new/7829.jpg",editedByType:null,editors:[{id:"32519",title:"Dr.",name:"Kenjiro",surname:"Fukao",slug:"kenjiro-fukao",fullName:"Kenjiro Fukao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7901",title:"Advances in Germ Cell Biology – New Technologies, Applications and Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"4adab31469b82dd5a99eec04dbbe09f2",slug:null,bookSignature:"Ph.D. Sonia Oliveira and Prof. Maria De Lourdes Pereira",coverURL:"https://cdn.intechopen.com/books/images_new/7901.jpg",editedByType:null,editors:[{id:"323848",title:"Ph.D.",name:"Sonia",surname:"Oliveira",slug:"sonia-oliveira",fullName:"Sonia Oliveira"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7921",title:"Optogenetics",subtitle:null,isOpenForSubmission:!0,hash:"3ae7e24d8f03ff3932bceee4b8d3e727",slug:null,bookSignature:"Dr. Thomas Heinbockel",coverURL:"https://cdn.intechopen.com/books/images_new/7921.jpg",editedByType:null,editors:[{id:"70569",title:"Dr.",name:"Thomas",surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8485",title:"Weather Forecasting",subtitle:null,isOpenForSubmission:!0,hash:"eadbd6f9c26be844062ce5cd3b3eb573",slug:null,bookSignature:"Associate Prof. Muhammad Saifullah",coverURL:"https://cdn.intechopen.com/books/images_new/8485.jpg",editedByType:null,editors:[{id:"320968",title:"Associate Prof.",name:"Muhammad",surname:"Saifullah",slug:"muhammad-saifullah",fullName:"Muhammad Saifullah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8575",title:"Animal Regeneration",subtitle:null,isOpenForSubmission:!0,hash:"689b9f46c48cd54a2874b8da7386549d",slug:null,bookSignature:"Dr. Hussein Abdelhay Essayed Kaoud",coverURL:"https://cdn.intechopen.com/books/images_new/8575.jpg",editedByType:null,editors:[{id:"265070",title:"Dr.",name:"Hussein Abdelhay",surname:"Essayed Kaoud",slug:"hussein-abdelhay-essayed-kaoud",fullName:"Hussein Abdelhay Essayed Kaoud"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8737",title:"Rabies Virus",subtitle:null,isOpenForSubmission:!0,hash:"49cce3f548da548c718c865feb343509",slug:null,bookSignature:"Dr. Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:null,editors:[{id:"61139",title:"Dr.",name:"Sergey",surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8950",title:"Birds - Challenges and Opportunities for Business, Conservation and Research",subtitle:null,isOpenForSubmission:!0,hash:"404a05af45e47e43871f4a0b1bedc6fd",slug:null,bookSignature:"Dr. Heimo Juhani Mikkola",coverURL:"https://cdn.intechopen.com/books/images_new/8950.jpg",editedByType:null,editors:[{id:"144330",title:"Dr.",name:"Heimo",surname:"Mikkola",slug:"heimo-mikkola",fullName:"Heimo Mikkola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9008",title:"Vitamin K - Recent Advances, New Perspectives and Applications for Human Health",subtitle:null,isOpenForSubmission:!0,hash:"8b43add5389ba85743e0a9491e4b9943",slug:null,bookSignature:"Prof. Hiroyuki Kagechika and Dr. Hitoshi Shirakawa",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",editedByType:null,editors:[{id:"180528",title:"Prof.",name:"Hiroyuki",surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9016",title:"Psychoneuroendocrinology",subtitle:null,isOpenForSubmission:!0,hash:"cb4ce09b8e853bef06c572df42933500",slug:null,bookSignature:"Dr. Ifigenia Kostoglou-Athanassiou",coverURL:"https://cdn.intechopen.com/books/images_new/9016.jpg",editedByType:null,editors:[{id:"307495",title:"Dr.",name:"Ifigenia",surname:"Kostoglou-Athanassiou",slug:"ifigenia-kostoglou-athanassiou",fullName:"Ifigenia Kostoglou-Athanassiou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9046",title:"Amyloidosis History and Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"371a4ad514bb6d6703406741702a19d0",slug:null,bookSignature:"Dr. Jonathan Harrison",coverURL:"https://cdn.intechopen.com/books/images_new/9046.jpg",editedByType:null,editors:[{id:"340843",title:"Dr.",name:"Jonathan",surname:"Harrison",slug:"jonathan-harrison",fullName:"Jonathan Harrison"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9226",title:"Intelligent User Interfaces",subtitle:null,isOpenForSubmission:!0,hash:"2540a73b78f2f13158366ac0ab9d62a1",slug:null,bookSignature:"Dr. Rüdiger Heimgärtner",coverURL:"https://cdn.intechopen.com/books/images_new/9226.jpg",editedByType:null,editors:[{id:"135236",title:"Dr.",name:"Rüdiger",surname:"Heimgärtner",slug:"rudiger-heimgartner",fullName:"Rüdiger Heimgärtner"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:17},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:314},popularBooks:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9534",title:"Banking and Finance",subtitle:null,isOpenForSubmission:!1,hash:"af14229738af402c3b595d7e124dce82",slug:"banking-and-finance",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",editors:[{id:"206517",title:"Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5124},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1204",title:"Vitaminology",slug:"pharmacology-toxicology-and-pharmaceutical-science-pharmacology-vitaminology",parent:{title:"Pharmacology",slug:"pharmacology-toxicology-and-pharmaceutical-science-pharmacology"},numberOfBooks:2,numberOfAuthorsAndEditors:59,numberOfWosCitations:2,numberOfCrossrefCitations:8,numberOfDimensionsCitations:17,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"pharmacology-toxicology-and-pharmaceutical-science-pharmacology-vitaminology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6222",title:"A Critical Evaluation of Vitamin D",subtitle:"Clinical Overview",isOpenForSubmission:!1,hash:"8d98de6741a343ee917a6727f09d2ab3",slug:"a-critical-evaluation-of-vitamin-d-clinical-overview",bookSignature:"Sivakumar Gowder",coverURL:"https://cdn.intechopen.com/books/images_new/6222.jpg",editedByType:"Edited by",editors:[{id:"118572",title:"Dr.",name:"Sivakumar Joghi",middleName:null,surname:"Thatha Gowder",slug:"sivakumar-joghi-thatha-gowder",fullName:"Sivakumar Joghi Thatha Gowder"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5269",title:"A Critical Evaluation of Vitamin D",subtitle:"Basic Overview",isOpenForSubmission:!1,hash:"9e0a1073183dd1859da3abac7344d03c",slug:"a-critical-evaluation-of-vitamin-d-basic-overview",bookSignature:"Sivakumar Gowder",coverURL:"https://cdn.intechopen.com/books/images_new/5269.jpg",editedByType:"Edited by",editors:[{id:"118572",title:"Dr.",name:"Sivakumar Joghi",middleName:null,surname:"Thatha Gowder",slug:"sivakumar-joghi-thatha-gowder",fullName:"Sivakumar Joghi Thatha Gowder"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"52067",doi:"10.5772/64516",title:"Nanoparticles for Delivery of Vitamin D: Challenges and Opportunities",slug:"nanoparticles-for-delivery-of-vitamin-d-challenges-and-opportunities",totalDownloads:1821,totalCrossrefCites:3,totalDimensionsCites:7,book:{slug:"a-critical-evaluation-of-vitamin-d-clinical-overview",title:"A Critical Evaluation of Vitamin D",fullTitle:"A Critical Evaluation of Vitamin D - Clinical Overview"},signatures:"Maria J. Ramalho, Manuel A.N. Coelho and Maria C. Pereira",authors:[{id:"82791",title:"Dr.",name:"Maria Carmo",middleName:null,surname:"Pereira",slug:"maria-carmo-pereira",fullName:"Maria Carmo Pereira"},{id:"183035",title:"Dr.",name:"Manuel Álvaro Neto",middleName:null,surname:"Coelho",slug:"manuel-alvaro-neto-coelho",fullName:"Manuel Álvaro Neto Coelho"},{id:"183036",title:"MSc.",name:"Maria João",middleName:null,surname:"Ramalho",slug:"maria-joao-ramalho",fullName:"Maria João Ramalho"}]},{id:"51750",doi:"10.5772/64503",title:"Clinical and Biochemical Features of Patients with CYP24A1 Mutations",slug:"clinical-and-biochemical-features-of-patients-with-cyp24a1-mutations",totalDownloads:972,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"a-critical-evaluation-of-vitamin-d-basic-overview",title:"A Critical Evaluation of Vitamin D",fullTitle:"A Critical Evaluation of Vitamin D - Basic Overview"},signatures:"Fay Joanne Hill and John A. Sayer",authors:[{id:"181499",title:"Prof.",name:"John",middleName:"Andrew",surname:"Sayer",slug:"john-sayer",fullName:"John Sayer"}]},{id:"52311",doi:"10.5772/65103",title:"Vitamin D and Physical Activity",slug:"vitamin-d-and-physical-activity",totalDownloads:1460,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"a-critical-evaluation-of-vitamin-d-basic-overview",title:"A Critical Evaluation of Vitamin D",fullTitle:"A Critical Evaluation of Vitamin D - Basic Overview"},signatures:"Nikolaos E. Koundourakis and Andrew N. Margioris",authors:[{id:"181819",title:"Dr.",name:"Nikolaos",middleName:"E",surname:"Koundourakis",slug:"nikolaos-koundourakis",fullName:"Nikolaos Koundourakis"}]}],mostDownloadedChaptersLast30Days:[{id:"52555",title:"Synthesis of Low Abundant Vitamin D Metabolites and Assaying Their Distribution in Human Serum by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) as a New Tool for Diagnosis and Risk Prediction of Vitamin DRelated Diseases",slug:"synthesis-of-low-abundant-vitamin-d-metabolites-and-assaying-their-distribution-in-human-serum-by-li",totalDownloads:1201,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"a-critical-evaluation-of-vitamin-d-basic-overview",title:"A Critical Evaluation of Vitamin D",fullTitle:"A Critical Evaluation of Vitamin D - Basic Overview"},signatures:"Lars Kattner and Dietrich A. Volmer",authors:[{id:"181793",title:"Dr.",name:"Lars",middleName:null,surname:"Kattner",slug:"lars-kattner",fullName:"Lars Kattner"},{id:"186108",title:"Prof.",name:"Dietrich A.",middleName:null,surname:"Volmer",slug:"dietrich-a.-volmer",fullName:"Dietrich A. Volmer"}]},{id:"52067",title:"Nanoparticles for Delivery of Vitamin D: Challenges and Opportunities",slug:"nanoparticles-for-delivery-of-vitamin-d-challenges-and-opportunities",totalDownloads:1821,totalCrossrefCites:3,totalDimensionsCites:7,book:{slug:"a-critical-evaluation-of-vitamin-d-clinical-overview",title:"A Critical Evaluation of Vitamin D",fullTitle:"A Critical Evaluation of Vitamin D - Clinical Overview"},signatures:"Maria J. Ramalho, Manuel A.N. Coelho and Maria C. Pereira",authors:[{id:"82791",title:"Dr.",name:"Maria Carmo",middleName:null,surname:"Pereira",slug:"maria-carmo-pereira",fullName:"Maria Carmo Pereira"},{id:"183035",title:"Dr.",name:"Manuel Álvaro Neto",middleName:null,surname:"Coelho",slug:"manuel-alvaro-neto-coelho",fullName:"Manuel Álvaro Neto Coelho"},{id:"183036",title:"MSc.",name:"Maria João",middleName:null,surname:"Ramalho",slug:"maria-joao-ramalho",fullName:"Maria João Ramalho"}]},{id:"51838",title:"Role of Vitamin D in Myogenesis",slug:"role-of-vitamin-d-in-myogenesis",totalDownloads:1042,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"a-critical-evaluation-of-vitamin-d-basic-overview",title:"A Critical Evaluation of Vitamin D",fullTitle:"A Critical Evaluation of Vitamin D - Basic Overview"},signatures:"Akira Wagatsuma",authors:[{id:"182113",title:"Dr.",name:"Akira",middleName:null,surname:"Wagatsuma",slug:"akira-wagatsuma",fullName:"Akira Wagatsuma"}]},{id:"51790",title:"Vitamin D Affects Neuronal Peptides in Neurodegenerative Disease: Differences of V-D2 and V-D3 for Affinity to Amyloid-β and Scrapie Prion Protein In Vitro",slug:"vitamin-d-affects-neuronal-peptides-in-neurodegenerative-disease-differences-of-v-d2-and-v-d3-for-af",totalDownloads:975,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"a-critical-evaluation-of-vitamin-d-clinical-overview",title:"A Critical Evaluation of Vitamin D",fullTitle:"A Critical Evaluation of Vitamin D - Clinical Overview"},signatures:"Yoichi Matsunaga, Midori Suenaga, Hironobu Takahashi and Akiko\nFuruta",authors:[{id:"181884",title:"Prof.",name:"Yoichi",middleName:null,surname:"Matsunaga",slug:"yoichi-matsunaga",fullName:"Yoichi Matsunaga"},{id:"185871",title:"Dr.",name:"Midori",middleName:null,surname:"Suenaga",slug:"midori-suenaga",fullName:"Midori Suenaga"},{id:"185963",title:"Ph.D.",name:"Hironobu",middleName:null,surname:"Takahashi",slug:"hironobu-takahashi",fullName:"Hironobu Takahashi"},{id:"185964",title:"Ph.D.",name:"Akiko",middleName:null,surname:"Furuta",slug:"akiko-furuta",fullName:"Akiko Furuta"}]},{id:"53619",title:"The Multiple Roles of Vitamin D Besides Calcium-Phosphorus Metabolism",slug:"the-multiple-roles-of-vitamin-d-besides-calcium-phosphorus-metabolism",totalDownloads:1069,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"a-critical-evaluation-of-vitamin-d-basic-overview",title:"A Critical Evaluation of Vitamin D",fullTitle:"A Critical Evaluation of Vitamin D - Basic Overview"},signatures:"Jia Guo and Zhangsuo Liu",authors:[{id:"181830",title:"Dr.",name:"Jia",middleName:null,surname:"Guo",slug:"jia-guo",fullName:"Jia Guo"},{id:"182131",title:"Dr.",name:"Jia",middleName:null,surname:"Guo",slug:"jia-guo",fullName:"Jia Guo"}]},{id:"52525",title:"Vitamin D in Oxidative Stress and Diseases",slug:"vitamin-d-in-oxidative-stress-and-diseases",totalDownloads:1523,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"a-critical-evaluation-of-vitamin-d-basic-overview",title:"A Critical Evaluation of Vitamin D",fullTitle:"A Critical Evaluation of Vitamin D - Basic Overview"},signatures:"Francesca Uberti, Vera Morsanuto and Claudio Molinari",authors:[{id:"181353",title:"Dr.",name:"Francesca",middleName:null,surname:"Uberti",slug:"francesca-uberti",fullName:"Francesca Uberti"},{id:"185861",title:"Dr.",name:"Vera",middleName:null,surname:"Morsanuto",slug:"vera-morsanuto",fullName:"Vera Morsanuto"},{id:"185862",title:"Prof.",name:"Claudio",middleName:null,surname:"Molinari",slug:"claudio-molinari",fullName:"Claudio Molinari"}]},{id:"54240",title:"Vitamin D and Human Reproduction",slug:"vitamin-d-and-human-reproduction",totalDownloads:1455,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"a-critical-evaluation-of-vitamin-d-basic-overview",title:"A Critical Evaluation of Vitamin D",fullTitle:"A Critical Evaluation of Vitamin D - Basic Overview"},signatures:"Fahimeh Ramezani Tehrani and Samira Behboudi-Gandevani",authors:[{id:"171267",title:"Prof.",name:"Fahimeh",middleName:null,surname:"Ramezani Tehrani",slug:"fahimeh-ramezani-tehrani",fullName:"Fahimeh Ramezani Tehrani"}]},{id:"51920",title:"Vitamin D, Its Receptor Gene Polymorphism and Breast Cancer",slug:"vitamin-d-its-receptor-gene-polymorphism-and-breast-cancer",totalDownloads:1177,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"a-critical-evaluation-of-vitamin-d-clinical-overview",title:"A Critical Evaluation of Vitamin D",fullTitle:"A Critical Evaluation of Vitamin D - Clinical Overview"},signatures:"Mehir un Nisa Iqbal and Taseer Ahmed Khan",authors:[{id:"181226",title:"Dr.",name:"Taseer Ahmed",middleName:null,surname:"Khan",slug:"taseer-ahmed-khan",fullName:"Taseer Ahmed Khan"},{id:"182669",title:"Ms.",name:"Mehr Un Nisa",middleName:null,surname:"Iqbal",slug:"mehr-un-nisa-iqbal",fullName:"Mehr Un Nisa Iqbal"}]},{id:"51954",title:"Therapeutic and Prophylactic Potential of Vitamin D for Multiple Sclerosis",slug:"therapeutic-and-prophylactic-potential-of-vitamin-d-for-multiple-sclerosis",totalDownloads:1089,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"a-critical-evaluation-of-vitamin-d-clinical-overview",title:"A Critical Evaluation of Vitamin D",fullTitle:"A Critical Evaluation of Vitamin D - Clinical Overview"},signatures:"Sofia F.G. Zorzella-Pezavento, Larissa L.W. Ishikawa, Thais F.C.\nFraga-Silva, Luiza A.N. Mimura and Alexandrina Sartori",authors:[{id:"182841",title:"Prof.",name:"Alexandrina",middleName:null,surname:"Sartori",slug:"alexandrina-sartori",fullName:"Alexandrina Sartori"},{id:"182843",title:"Dr.",name:"Sofia Fernanda Gonçalves",middleName:null,surname:"Zorzella-Pezavento",slug:"sofia-fernanda-goncalves-zorzella-pezavento",fullName:"Sofia Fernanda Gonçalves Zorzella-Pezavento"},{id:"183406",title:"Dr.",name:"Larissa Lumi Watanabe",middleName:null,surname:"Ishikawa",slug:"larissa-lumi-watanabe-ishikawa",fullName:"Larissa Lumi Watanabe Ishikawa"},{id:"183407",title:"MSc.",name:"Luiza Ayumi Nishiyama",middleName:null,surname:"Mimura",slug:"luiza-ayumi-nishiyama-mimura",fullName:"Luiza Ayumi Nishiyama Mimura"},{id:"183408",title:"Ms.",name:"Thais Fernanda De Campos",middleName:null,surname:"Fraga-Silva",slug:"thais-fernanda-de-campos-fraga-silva",fullName:"Thais Fernanda De Campos Fraga-Silva"}]},{id:"51505",title:"Pleiotropic Effects of Vitamin D in Kidney Disease",slug:"pleiotropic-effects-of-vitamin-d-in-kidney-disease",totalDownloads:1244,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"a-critical-evaluation-of-vitamin-d-clinical-overview",title:"A Critical Evaluation of Vitamin D",fullTitle:"A Critical Evaluation of Vitamin D - Clinical Overview"},signatures:"Chia-Chao Wu and Kuo-Cheng Lu",authors:[{id:"62224",title:"Dr.",name:"Chia-Chao",middleName:null,surname:"Wu",slug:"chia-chao-wu",fullName:"Chia-Chao Wu"},{id:"101728",title:"Dr.",name:"Kuo-Cheng",middleName:null,surname:"Lu",slug:"kuo-cheng-lu",fullName:"Kuo-Cheng Lu"}]}],onlineFirstChaptersFilter:{topicSlug:"pharmacology-toxicology-and-pharmaceutical-science-pharmacology-vitaminology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/192132/vasco-azevedo",hash:"",query:{},params:{id:"192132",slug:"vasco-azevedo"},fullPath:"/profiles/192132/vasco-azevedo",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()