High dielectric (high-k) polymer nanocomposites that can electrostatically store energy are widely used in electronics and electric power systems due to their high breakdown strengths (Eb), durability, and ability to configure in various shapes. However, these nanocomposites suffer from a limited working temperature regime, thus limiting their extreme applications, such as hybrid and electric vehicles, aerospace power electronics, and deep ground fuel exploration. Furthermore, the Eb and the electric displacement (D) of polymer nanocomposites must be simultaneously enhanced for high-density capacitor applications, which prove to be difficult to modify concurrently. This chapter thoroughly reviews (investigates) the recent developments in the high-k polymer nanocomposites synthesis, characterization, and energy storage applications. Consequently, the aim of this chapter is to provide an overview of the novel developmental strategies in order to develop high-dielectric nanocomposites perovskite ceramics that can be incorporated in high-energy-density (HED) applications.
Part of the book: Polymer Dielectrics
Sol‐gel‐derived zinc oxide (ZnO)‐based materials with an improved microstructure are consumed in electronics and electrical frameworks owing to their crystal structure dependent properties, which can be exploited for optical, electrical, and photocatalytic applications. Despite research articles published each year on the strategies to improve the optoelectronic properties of ZnO, the topic is still actively pursued in literature. This chapter provides an insight into the recent developments for the sol‐gel‐derived processing of the pure and doped ZnO thin films. It also highlights the challenges and opportunities surrounding the processing of these devices. The recent developments in the synthesis of pure, doped ZnO, and corresponding applications of these films will be discussed in detail. Consequently, the aim of this chapter is to provide an overview of the novel developmental strategies to improve ZnO‐based thin films by a sol‐gel route with enhanced optical properties for practical applications ranging from optical and electrical circuits to sensing.
Part of the book: Recent Applications in Sol-Gel Synthesis