Cell wall composition of alfalfa stems compared to corn stover and corncobs. Other hexoses include the C6 sugars galactose and mannose and other pentoses refers primarily to the C5 sugar arabinose. Data from [13] and [55].
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"}]},book:{item:{type:"book",id:"163",leadTitle:null,fullTitle:"Ultrasound Imaging - Medical Applications",title:"Ultrasound Imaging",subtitle:"Medical Applications",reviewType:"peer-reviewed",abstract:"This book provides an overview of ultrafast ultrasound imaging, 3D high-quality ultrasonic imaging, correction of phase aberrations in medical ultrasound images, etc. \n\nSeveral interesting medical and clinical applications areas are also discussed in the book, like the use of three dimensional ultrasound imaging in evaluation of Asherman's syndrome, the role of 3D ultrasound in assessment of endometrial receptivity and follicular vascularity to predict the quality oocyte, ultrasound imaging in vascular diseases and the fetal palate, clinical application of ultrasound molecular imaging, Doppler abdominal ultrasound in small animals and so on.",isbn:null,printIsbn:"978-953-307-279-1",pdfIsbn:"978-953-51-6452-4",doi:"10.5772/689",price:139,priceEur:155,priceUsd:179,slug:"ultrasound-imaging-medical-applications",numberOfPages:344,isOpenForSubmission:!1,isInWos:1,hash:"aa3c22596ff5852287143fe66a643289",bookSignature:"Igor V. Minin and Oleg V. Minin",publishedDate:"August 23rd 2011",coverURL:"https://cdn.intechopen.com/books/images_new/163.jpg",numberOfDownloads:69154,numberOfWosCitations:43,numberOfCrossrefCitations:35,numberOfDimensionsCitations:61,hasAltmetrics:1,numberOfTotalCitations:139,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 12th 2010",dateEndSecondStepPublish:"November 9th 2010",dateEndThirdStepPublish:"March 15th 2011",dateEndFourthStepPublish:"April 15th 2011",dateEndFifthStepPublish:"June 14th 2011",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"3712",title:"Prof.",name:"Oleg",middleName:null,surname:"Minin",slug:"oleg-minin",fullName:"Oleg Minin",profilePictureURL:"https://mts.intechopen.com/storage/users/3712/images/1774_n.jpg",biography:"Oleg V. Minin received a B.A. in Physics from the Novosibirsk State University, a PhD in Physics from Tomsk State University in 1987 and a Doctor of science from NSTU in 2002. Currently he is a full Professor in the Department of Information Protection at Novosibirsk State Technical University (NSTU), Russia. From 1982 to 2001 he was Chief Research Scientist at the Institute of Applied Physics, Novosibirsk, Russia. Dr. Minin’s research interests are in the areas of diffractive optics and antenna experiment (including explosive plasma antenna), millimeter wave and THz photonics and nanophotonics, information security, detection of hidden weapons as well as development of antiterrorism devices, experiment technologies, explosive physics. He is a member of SPIE, COST-284 and COST-ic0603 and he is the author of several books and book chapters in technical publications. For his work Dr. Minin was awarded the Commendation for Excellence in Technical Communications (LaserFocusWorld, 2003) and commendation by the Minister of Defense of Russia, 2000.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Novosibirsk State Technical University",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"123258",title:"Dr.",name:"Igor",middleName:null,surname:"Minin",slug:"igor-minin",fullName:"Igor Minin",profilePictureURL:"https://mts.intechopen.com/storage/users/123258/images/1782_n.jpg",biography:"Igor V. Minin is a full Professor in the Department of Information Protection at Novosibirsk State Technical University (NSTU), Russia. Dr. Minin received a B.A. in Physics from the Novosibirsk State University, a PhD in Physics from Leningrad Electro-Technical University in 1986. and a Doctor of science from NSTU in 2002. Dr. Minin has over twenty years of international industrial and academic experience and has played key roles in a number of projects including 3D millimeter wave real-time imaging and antiterrorism applications. He is the author or coauthor of approximately 350 research articles, seven monographers (including Diffractive optics of millimeter waves (IOP Publisher, Boston-London, 2004), Basic Principles of Fresnel Antenna Arrays (Springer, 2008)), and has been awarded 24 patents and inventions. He is the author of several books and book chapters in technical publications and has been the Editor of several books including Microwave and Millimeter Wave Technologies Modern UWB antennas and equipment (InTech, Austria 2010) and Microwave and Millimeter Wave Technologies from Photonic Bandgap Devices to Antenna and Applications (InTech, Austria 2010).",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Novosibirsk State Technical University",institutionURL:null,country:{name:"Russia"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1008",title:"Radiology Diagnosis",slug:"radiology-diagnosis"}],chapters:[{id:"18250",title:"Ultrafast Ultrasound Imaging",doi:"10.5772/19729",slug:"ultrafast-ultrasound-imaging",totalDownloads:8742,totalCrossrefCites:26,totalDimensionsCites:36,signatures:"Jeremy Bercoff",downloadPdfUrl:"/chapter/pdf-download/18250",previewPdfUrl:"/chapter/pdf-preview/18250",authors:[{id:"35989",title:"Dr.",name:"Jeremy",surname:"Bercoff",slug:"jeremy-bercoff",fullName:"Jeremy Bercoff"}],corrections:null},{id:"18251",title:"3D High-Quality Ultrasonic Imaging",doi:"10.5772/16460",slug:"3d-high-quality-ultrasonic-imaging",totalDownloads:2736,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"I.V. Minin and O.V. Minin",downloadPdfUrl:"/chapter/pdf-download/18251",previewPdfUrl:"/chapter/pdf-preview/18251",authors:[{id:"3712",title:"Prof.",name:"Oleg",surname:"Minin",slug:"oleg-minin",fullName:"Oleg Minin"}],corrections:null},{id:"18252",title:"Use of Three Dimensional Ultrasound Imaging in Evaluation of Asherman’s Syndrome",doi:"10.5772/16533",slug:"use-of-three-dimensional-ultrasound-imaging-in-evaluation-of-asherman-s-syndrome",totalDownloads:2871,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Catha Fischer and Alan Copperman",downloadPdfUrl:"/chapter/pdf-download/18252",previewPdfUrl:"/chapter/pdf-preview/18252",authors:[{id:"25476",title:"Dr.",name:"Alan",surname:"Copperman",slug:"alan-copperman",fullName:"Alan Copperman"},{id:"38707",title:"Dr.",name:"Catha",surname:"Fischer",slug:"catha-fischer",fullName:"Catha Fischer"}],corrections:null},{id:"18253",title:"Correction of Phase Aberrations in Medical Ultrasound Images Using Signal Redundancy",doi:"10.5772/20146",slug:"correction-of-phase-aberrations-in-medical-ultrasound-images-using-signal-redundancy",totalDownloads:2845,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Yue Li",downloadPdfUrl:"/chapter/pdf-download/18253",previewPdfUrl:"/chapter/pdf-preview/18253",authors:[{id:"37600",title:"Dr.",name:"Yue",surname:"Li",slug:"yue-li",fullName:"Yue Li"}],corrections:null},{id:"18254",title:"The Role of 3D Ultrasound in Assessment of Endometrial Receptivity and Follicular Vascularity to Predict the Quality Oocyte",doi:"10.5772/16500",slug:"the-role-of-3d-ultrasound-in-assessment-of-endometrial-receptivity-and-follicular-vascularity-to-pre",totalDownloads:2982,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"T. Žáčková, I.Y. Järvelä and T. Marděšic",downloadPdfUrl:"/chapter/pdf-download/18254",previewPdfUrl:"/chapter/pdf-preview/18254",authors:[{id:"25327",title:"Dr.",name:"Tamara",surname:"Zackova",slug:"tamara-zackova",fullName:"Tamara Zackova"},{id:"38758",title:"Dr.",name:"Ilkka Y",surname:"Järvelä",slug:"ilkka-y-jarvela",fullName:"Ilkka Y Järvelä"},{id:"38759",title:"Prof.",name:"Tonko",surname:"Mardešič",slug:"tonko-mardesic",fullName:"Tonko Mardešič"}],corrections:null},{id:"18255",title:"Atherosclerotic Plaque Regression and Arterial Reverse Remodelling in Carotid and Femoral Arteries by Statin Use in Primary Prevention Setting: Ultrasound Findings",doi:"10.5772/16560",slug:"atherosclerotic-plaque-regression-and-arterial-reverse-remodelling-in-carotid-and-femoral-arteries-b",totalDownloads:2852,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Cesare Rusconi, Riccardo Raddino, Eleftheria Trichaki and Livio Dei Cas",downloadPdfUrl:"/chapter/pdf-download/18255",previewPdfUrl:"/chapter/pdf-preview/18255",authors:[{id:"25580",title:"Dr",name:"Cesare",surname:"Rusconi",slug:"cesare-rusconi",fullName:"Cesare Rusconi"},{id:"124410",title:"Dr.",name:"Riccardo",surname:"Raddino",slug:"riccardo-raddino",fullName:"Riccardo Raddino"},{id:"124411",title:"Dr.",name:"Eleftheria",surname:"Trichaki",slug:"eleftheria-trichaki",fullName:"Eleftheria Trichaki"},{id:"124412",title:"Dr.",name:"Livio",surname:"Dei Cas",slug:"livio-dei-cas",fullName:"Livio Dei Cas"}],corrections:null},{id:"18256",title:"Ultrasonic Imaging in Liver Disease: From Bench to Bedside",doi:"10.5772/16878",slug:"ultrasonic-imaging-in-liver-disease-from-bench-to-bedside",totalDownloads:5872,totalCrossrefCites:2,totalDimensionsCites:4,signatures:"Celia Resende, Andréia Lessa and Regina C. S. Goldenberg",downloadPdfUrl:"/chapter/pdf-download/18256",previewPdfUrl:"/chapter/pdf-preview/18256",authors:[{id:"26576",title:"Prof.",name:"Regina C.S.",surname:"Goldenberg",slug:"regina-c.s.-goldenberg",fullName:"Regina C.S. Goldenberg"},{id:"26585",title:"Prof.",name:"Celia",surname:"Resende",slug:"celia-resende",fullName:"Celia Resende"},{id:"85809",title:"MSc",name:"Andreia",surname:"Lessa",slug:"andreia-lessa",fullName:"Andreia Lessa"}],corrections:null},{id:"18257",title:"Techniques of Linear Endobronchial Ultrasound",doi:"10.5772/18829",slug:"techniques-of-linear-endobronchial-ultrasound",totalDownloads:5417,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Malay Sharma, Vishal Arya and CS RameshBabu",downloadPdfUrl:"/chapter/pdf-download/18257",previewPdfUrl:"/chapter/pdf-preview/18257",authors:[{id:"32720",title:"Dr.",name:"Malay",surname:"Sharma",slug:"malay-sharma",fullName:"Malay Sharma"},{id:"124413",title:"Dr.",name:"Vishal",surname:"Arya",slug:"vishal-arya",fullName:"Vishal Arya"},{id:"124414",title:"Dr.",name:"CS",surname:"RameshBabu",slug:"cs-rameshbabu",fullName:"CS RameshBabu"}],corrections:null},{id:"18258",title:"Ultrasound Imaging of the Fetal Palate",doi:"10.5772/18306",slug:"ultrasound-imaging-of-the-fetal-palate",totalDownloads:10195,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Hong Soo Wong and Kevin Craig Pringle",downloadPdfUrl:"/chapter/pdf-download/18258",previewPdfUrl:"/chapter/pdf-preview/18258",authors:[{id:"31051",title:"Dr.",name:"Hong Soo",surname:"Wong",slug:"hong-soo-wong",fullName:"Hong Soo Wong"},{id:"39125",title:"Prof.",name:"Kevin Craig",surname:"Pringle",slug:"kevin-craig-pringle",fullName:"Kevin Craig Pringle"}],corrections:null},{id:"18259",title:"Ultrasound Imaging in Vascular Diseases",doi:"10.5772/19236",slug:"ultrasound-imaging-in-vascular-diseases",totalDownloads:2799,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Mariantina Fragou, Andreas Karabinis, Eugene Daphnis, Nicolaos Labropoulos and Dimitrios Karakitsos",downloadPdfUrl:"/chapter/pdf-download/18259",previewPdfUrl:"/chapter/pdf-preview/18259",authors:[{id:"34155",title:"Dr.",name:"Dimitrios",surname:"Karakitsos",slug:"dimitrios-karakitsos",fullName:"Dimitrios Karakitsos"},{id:"38702",title:"Dr.",name:"Mariantina",surname:"Fragou",slug:"mariantina-fragou",fullName:"Mariantina Fragou"},{id:"38703",title:"Dr.",name:"Andreas",surname:"Karabinis",slug:"andreas-karabinis",fullName:"Andreas Karabinis"},{id:"38704",title:"Dr.",name:"Eugene",surname:"Daphnis",slug:"eugene-daphnis",fullName:"Eugene Daphnis"},{id:"38717",title:"Mr",name:"Nicolaos",surname:"Labropoulos",slug:"nicolaos-labropoulos",fullName:"Nicolaos Labropoulos"}],corrections:null},{id:"18260",title:"The Role of Obstetric Ultrasound in Reducing Maternal and Perinatal Mortality",doi:"10.5772/22847",slug:"the-role-of-obstetric-ultrasound-in-reducing-maternal-and-perinatal-mortality",totalDownloads:5349,totalCrossrefCites:2,totalDimensionsCites:4,signatures:"Yaw Amo Wiafe, Alexander T. Odoi and Edward T. Dassah",downloadPdfUrl:"/chapter/pdf-download/18260",previewPdfUrl:"/chapter/pdf-preview/18260",authors:[{id:"27690",title:"Dr.",name:"Edward T.",surname:"Dassah",slug:"edward-t.-dassah",fullName:"Edward T. Dassah"},{id:"49471",title:"Dr.",name:"Yaw",surname:"Wiafe",slug:"yaw-wiafe",fullName:"Yaw Wiafe"},{id:"49487",title:"Dr.",name:"Alexander T.",surname:"Odoi",slug:"alexander-t.-odoi",fullName:"Alexander T. Odoi"}],corrections:null},{id:"18261",title:"Role of the Endoscopic Ultrasonography in the Management of Gastric Lymphomas: Our Experience and Review of Literature",doi:"10.5772/25218",slug:"role-of-the-endoscopic-ultrasonography-in-the-management-of-gastric-lymphomas-our-experience-and-rev",totalDownloads:2011,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Calogero Vetro, Alessandra Romano, Giuseppe A. Palumbo, Giacomo Bonanno and Francesco Di Raimondo",downloadPdfUrl:"/chapter/pdf-download/18261",previewPdfUrl:"/chapter/pdf-preview/18261",authors:[{id:"51837",title:"Prof.",name:"Francesco",surname:"Di Raimondo",slug:"francesco-di-raimondo",fullName:"Francesco Di Raimondo"},{id:"59159",title:"Dr.",name:"Calogero",surname:"Vetro",slug:"calogero-vetro",fullName:"Calogero Vetro"},{id:"59160",title:"Dr.",name:"Alessandra",surname:"Romano",slug:"alessandra-romano",fullName:"Alessandra Romano"},{id:"62541",title:"Dr.",name:"Giuseppe A.",surname:"Palumbo",slug:"giuseppe-a.-palumbo",fullName:"Giuseppe A. Palumbo"},{id:"80449",title:"Dr.",name:"Giacomo",surname:"Bonanno",slug:"giacomo-bonanno",fullName:"Giacomo Bonanno"}],corrections:null},{id:"18262",title:"Endoscopic Ultrasound Elastography in Inflammatory Bowel Disease",doi:"10.5772/23564",slug:"endoscopic-ultrasound-elastography-in-inflammatory-bowel-disease",totalDownloads:1974,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Nadan Rustemovic, Irena Hrstic and Silvija Cukovic-Cavka",downloadPdfUrl:"/chapter/pdf-download/18262",previewPdfUrl:"/chapter/pdf-preview/18262",authors:[{id:"52558",title:"Prof.",name:"Nadan",surname:"Rustemović",slug:"nadan-rustemovic",fullName:"Nadan Rustemović"},{id:"52639",title:"Dr.",name:"Silvija",surname:"Cukovic-Cavka",slug:"silvija-cukovic-cavka",fullName:"Silvija Cukovic-Cavka"},{id:"52640",title:"Dr.",name:"Irena",surname:"Hrstic",slug:"irena-hrstic",fullName:"Irena Hrstic"}],corrections:null},{id:"18263",title:"Foundamentals and Applications of Abdominal Doppler",doi:"10.5772/20333",slug:"foundamentals-and-applications-of-abdominal-doppler",totalDownloads:4783,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Pablo Gomez Ochoa, Delia Lacasta, Ivan Sosa, Manuel Gascon, Juan Jose Ramos and Luis Miguel Ferrer",downloadPdfUrl:"/chapter/pdf-download/18263",previewPdfUrl:"/chapter/pdf-preview/18263",authors:[{id:"38457",title:"Prof.",name:"Pablo",surname:"Gomez Ochoa",slug:"pablo-gomez-ochoa",fullName:"Pablo Gomez Ochoa"},{id:"38474",title:"Prof.",name:"Delia",surname:"Lacasta",slug:"delia-lacasta",fullName:"Delia Lacasta"},{id:"38475",title:"Mr.",name:"Ivan",surname:"Sosa",slug:"ivan-sosa",fullName:"Ivan Sosa"},{id:"38476",title:"Prof.",name:"Luis Miguel",surname:"Ferrer",slug:"luis-miguel-ferrer",fullName:"Luis Miguel Ferrer"},{id:"38477",title:"Prof.",name:"Juan Jose",surname:"Ramos",slug:"juan-jose-ramos",fullName:"Juan Jose Ramos"},{id:"38478",title:"Prof.",name:"Manuel",surname:"Gascon",slug:"manuel-gascon",fullName:"Manuel Gascon"}],corrections:null},{id:"18264",title:"Use of Ultrasound to Assess Drug Efficacy in Orthotopic Rat Models of HCC",doi:"10.5772/20650",slug:"use-of-ultrasound-to-assess-drug-efficacy-in-orthotopic-rat-models-of-hcc",totalDownloads:1679,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Cedo M. Bagi, Terri Swanson and Theresa Tuthill",downloadPdfUrl:"/chapter/pdf-download/18264",previewPdfUrl:"/chapter/pdf-preview/18264",authors:[{id:"39901",title:"Dr.",name:"Cedo M.",surname:"Bagi",slug:"cedo-m.-bagi",fullName:"Cedo M. Bagi"},{id:"39906",title:"Ms.",name:"Terri",surname:"Swanson",slug:"terri-swanson",fullName:"Terri Swanson"},{id:"39907",title:"Mrs",name:"Theresa",surname:"Tuthill",slug:"theresa-tuthill",fullName:"Theresa Tuthill"}],corrections:null},{id:"18265",title:"Feasibility of Clinical Application of Ultrasound Molecular Imaging",doi:"10.5772/17873",slug:"feasibility-of-clinical-application-of-ultrasound-molecular-imaging",totalDownloads:1826,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Kentaro Otani",downloadPdfUrl:"/chapter/pdf-download/18265",previewPdfUrl:"/chapter/pdf-preview/18265",authors:[{id:"29679",title:"Mr",name:"Kentaro",surname:"Otani",slug:"kentaro-otani",fullName:"Kentaro Otani"}],corrections:null},{id:"18266",title:"Clinical Application of Ultrasound Imaging in Radiation Therapy",doi:"10.5772/19245",slug:"clinical-application-of-ultrasound-imaging-in-radiation-therapy",totalDownloads:4223,totalCrossrefCites:2,totalDimensionsCites:3,signatures:"Hayeon Kim, Edward Brandner, M. Saiful Huq and Sushil Beriwal",downloadPdfUrl:"/chapter/pdf-download/18266",previewPdfUrl:"/chapter/pdf-preview/18266",authors:[{id:"34197",title:"MSc",name:"Hayeon",surname:"Kim",slug:"hayeon-kim",fullName:"Hayeon Kim"},{id:"45567",title:"Dr.",name:"Edward",surname:"Brandner",slug:"edward-brandner",fullName:"Edward Brandner"},{id:"45568",title:"Dr.",name:"M. Saiful",surname:"Huq",slug:"m.-saiful-huq",fullName:"M. Saiful Huq"},{id:"45569",title:"Dr.",name:"Sushil",surname:"Beriwal",slug:"sushil-beriwal",fullName:"Sushil Beriwal"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"161",title:"Computational Fluid Dynamics",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"d636946634ddf4e48b6e9bc6a0cd615a",slug:"computational-fluid-dynamics-technologies-and-applications",bookSignature:"Igor V. Minin and Oleg V. Minin",coverURL:"https://cdn.intechopen.com/books/images_new/161.jpg",editedByType:"Edited by",editors:[{id:"3712",title:"Prof.",name:"Oleg",surname:"Minin",slug:"oleg-minin",fullName:"Oleg Minin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"162",title:"Microsensors",subtitle:null,isOpenForSubmission:!1,hash:"3d48614c970df4eb00d2d1a4e1bb5cda",slug:"microsensors",bookSignature:"Igor Minin",coverURL:"https://cdn.intechopen.com/books/images_new/162.jpg",editedByType:"Edited by",editors:[{id:"3712",title:"Prof.",name:"Oleg",surname:"Minin",slug:"oleg-minin",fullName:"Oleg Minin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2266",title:"Infrared Spectroscopy",subtitle:"Life and Biomedical Sciences",isOpenForSubmission:!1,hash:"21ed0818c4fcaf44b2f1e201e68014e3",slug:"infrared-spectroscopy-life-and-biomedical-sciences",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/2266.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3390",title:"Electrodiagnosis in New Frontiers of Clinical Research",subtitle:null,isOpenForSubmission:!1,hash:"ccd9da6b93d7419d735f17e246f78fe2",slug:"electrodiagnosis-in-new-frontiers-of-clinical-research",bookSignature:"Hande Turker",coverURL:"https://cdn.intechopen.com/books/images_new/3390.jpg",editedByType:"Edited by",editors:[{id:"63331",title:"Prof.",name:"Hande",surname:"Turker",slug:"hande-turker",fullName:"Hande Turker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"772",title:"Positron Emission Tomography",subtitle:"Current Clinical and Research Aspects",isOpenForSubmission:!1,hash:"3812ec1b51ddc478d2a17167a0a576d3",slug:"positron-emission-tomography-current-clinical-and-research-aspects",bookSignature:"Chia-Hung Hsieh",coverURL:"https://cdn.intechopen.com/books/images_new/772.jpg",editedByType:"Edited by",editors:[{id:"126167",title:"Dr.",name:"Chia-Hung",surname:"Hsieh",slug:"chia-hung-hsieh",fullName:"Chia-Hung Hsieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"389",title:"Neuroimaging",subtitle:"Methods",isOpenForSubmission:!1,hash:"e4321a4d45346699f9ada729290e156a",slug:"neuroimaging-methods",bookSignature:"Peter Bright",coverURL:"https://cdn.intechopen.com/books/images_new/389.jpg",editedByType:"Edited by",editors:[{id:"49019",title:"Prof.",name:"Peter",surname:"Bright",slug:"peter-bright",fullName:"Peter Bright"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"601",title:"Applied Aspects of Ultrasonography in Humans",subtitle:null,isOpenForSubmission:!1,hash:"1ae2d6052ed8fe2ea909f848105a45f7",slug:"applied-aspects-of-ultrasonography-in-humans",bookSignature:"Phil Ainslie",coverURL:"https://cdn.intechopen.com/books/images_new/601.jpg",editedByType:"Edited by",editors:[{id:"87381",title:"Prof.",name:"Philip",surname:"Ainslie",slug:"philip-ainslie",fullName:"Philip Ainslie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"719",title:"Magnetic Resonance Spectroscopy",subtitle:null,isOpenForSubmission:!1,hash:"22a011ac72d696199044d841c9ac653b",slug:"magnetic-resonance-spectroscopy",bookSignature:"Donghyun Kim",coverURL:"https://cdn.intechopen.com/books/images_new/719.jpg",editedByType:"Edited by",editors:[{id:"85279",title:"Prof.",name:"Dong-Hyun",surname:"Kim",slug:"dong-hyun-kim",fullName:"Dong-Hyun Kim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1481",title:"Radioisotopes",subtitle:"Applications in Bio-Medical Science",isOpenForSubmission:!1,hash:"408245da32dcf9a061e72275dd348b04",slug:"radioisotopes-applications-in-bio-medical-science",bookSignature:"Nirmal Singh",coverURL:"https://cdn.intechopen.com/books/images_new/1481.jpg",editedByType:"Edited by",editors:[{id:"48584",title:"Prof.",name:"Nirmal",surname:"Singh",slug:"nirmal-singh",fullName:"Nirmal Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"722",title:"Medical Imaging",subtitle:null,isOpenForSubmission:!1,hash:"3f49fd64e920334f3d51343640f6ee82",slug:"medical-imaging",bookSignature:"Okechukwu Felix Erondu",coverURL:"https://cdn.intechopen.com/books/images_new/722.jpg",editedByType:"Edited by",editors:[{id:"68312",title:"Prof.",name:"Okechukwu Felix",surname:"Erondu",slug:"okechukwu-felix-erondu",fullName:"Okechukwu Felix Erondu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"65668",slug:"corrigendum-to-clinical-applications-of-mesenchymal-stromal-cells-mscs-in-orthopedic-diseases",title:"Corrigendum to: Clinical Applications of Mesenchymal Stromal Cells (MSCs) in Orthopedic Diseases",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/65668.pdf",downloadPdfUrl:"/chapter/pdf-download/65668",previewPdfUrl:"/chapter/pdf-preview/65668",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/65668",risUrl:"/chapter/ris/65668",chapter:{id:"61187",slug:"clinical-applications-of-mesenchymal-stromal-cells-mscs-in-orthopedic-diseases",signatures:"Jiazhao Yang, Shiyuan Fang, Lei Xu, Li Li, Kai Xie, Jinsen Lu, Hao\nWang, Xujin Wang and Lixin Kan",dateSubmitted:"December 5th 2017",dateReviewed:"March 29th 2018",datePrePublished:"November 5th 2018",datePublished:"January 23rd 2019",book:{id:"6658",title:"Stromal Cells",subtitle:"Structure, Function, and Therapeutic Implications",fullTitle:"Stromal Cells - Structure, Function, and Therapeutic Implications",slug:"stromal-cells-structure-function-and-therapeutic-implications",publishedDate:"January 23rd 2019",bookSignature:"Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/6658.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null}},chapter:{id:"61187",slug:"clinical-applications-of-mesenchymal-stromal-cells-mscs-in-orthopedic-diseases",signatures:"Jiazhao Yang, Shiyuan Fang, Lei Xu, Li Li, Kai Xie, Jinsen Lu, Hao\nWang, Xujin Wang and Lixin Kan",dateSubmitted:"December 5th 2017",dateReviewed:"March 29th 2018",datePrePublished:"November 5th 2018",datePublished:"January 23rd 2019",book:{id:"6658",title:"Stromal Cells",subtitle:"Structure, Function, and Therapeutic Implications",fullTitle:"Stromal Cells - Structure, Function, and Therapeutic Implications",slug:"stromal-cells-structure-function-and-therapeutic-implications",publishedDate:"January 23rd 2019",bookSignature:"Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/6658.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null},book:{id:"6658",title:"Stromal Cells",subtitle:"Structure, Function, and Therapeutic Implications",fullTitle:"Stromal Cells - Structure, Function, and Therapeutic Implications",slug:"stromal-cells-structure-function-and-therapeutic-implications",publishedDate:"January 23rd 2019",bookSignature:"Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/6658.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10830",leadTitle:null,title:"Animal Feed Science",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"b6091426454b1c484f4d38efc722d6dd",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 25th 2020",dateEndSecondStepPublish:"December 16th 2020",dateEndThirdStepPublish:"February 14th 2021",dateEndFourthStepPublish:"May 5th 2021",dateEndFifthStepPublish:"July 4th 2021",remainingDaysToSecondStep:"a month",secondStepPassed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"25",title:"Veterinary Medicine and Science",slug:"veterinary-medicine-and-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,isOpenForSubmission:!1,hash:"75cdacb570e0e6d15a5f6e69640d87c9",slug:"veterinary-anatomy-and-physiology",bookSignature:"Catrin Sian Rutland and Valentina Kubale",coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",editedByType:"Edited by",editors:[{id:"202192",title:"Dr.",name:"Catrin",surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"48108",title:"Enhancing Biomass Utilization for Bioenergy — Crop Rotation Systems and Alternative Conversion Processes",doi:"10.5772/59883",slug:"enhancing-biomass-utilization-for-bioenergy-crop-rotation-systems-and-alternative-conversion-process",body:'
With ever increasing global populations there is a rising demand for energy to support even modest changes in lifestyle. It has been recognized for some time now that with decreasing oil reserves on a global scale there is a need for alternative energy sources. Many of our needs for energy utilizing electricity can be met by alternatives to petroleum and coal-based power generation. Of particularly high potential is the efficient utilization of solar energy. According to Lewis and Nocera [1], the earth receives approximately 7000 times more energy from the sun than is utilized by all of mankind. There are several technologies that are being utilized, ranging from photovoltaic to focusing mirrors to super heat fluids for steam generation in the production of electricity. The continued development of these technologies, along with other types such as wind-driven turbines, geothermal, hydroelectric, and ocean wave motion for electricity production, will greatly lessen the demand on petroleum-based energy. However, a critical need is liquid fuels for transportation. The movement of people and goods over great distances is a vital part of the world economy.
Part of the answer may still lie in the utilization of solar energy; not in a direct manner to power vehicles (cars, trucks, trains, and airplanes), but what it has been doing for billions of years in providing energy to growing plants. Conversion of plant biomass to energy or the production of bio-based liquid fuels (biofuels) has received greater attention in the last couple of decades. Although there is a tremendous amount of potential energy stored in the total plant biomass as it goes through its normal life cycle, much of the current technology has focused on the utilization of grains (corn, cereals, and soybeans) or sugars from storage organs of specialty plants (sugar cane, sugar beets). This has allowed a rapid ramping up of liquid fuel production in the form of ethanol. The technology needed for this production was not something that required a lot of development, but was basically a matter of scale. After all the brewing industry has been utilizing this process for centuries. For corn grain and cereals, it is a matter of converting starch to glucose, a simple enzymatic process followed by the fermentation of glucose by yeast to ethanol. In the case of sugar cane or sugar beets, the same technology was already being utilized to efficiently remove the sugar (sucrose) from plant biomass and easily convert to sugars fermentable with yeast [2]. Even for the production of plant-derived biodiesel, the grains from oil-producing crops are pressed to release oils in which the fatty acids can be methyl- or ethyl–esterified, producing a suitable diesel alternative. Biodiesel lags well behind other types of biofuel production systems and seems to be focused primarily on the utilization of waste products from the food industry[3].
With current scenarios, the ethanol industry will have to compete with increasing demands on grains for feed and food [2]. A concern has been the diversion of land from food production to energy production and rightly so with increasing world populations. With this in mind, much attention has been directed to the conversion of cellulosic biomass to liquid fuels. This subject has been highly reviewed in the past few years, addressing a wide range of concerns and potential advantages. It is clear that crop residues will play a key role in meeting the projected total biomass needed to provide the amount of liquid fuel to meet the goal of replacing 30% of U.S petroleum consumption by 2030 [2]. Dedicated biofuel crops such as switchgrass and fast-growing poplar also figure prominently into meeting this goal. It is envisioned that the dedicated energy crops could be grown on marginal lands poorly suited for the high capacity needs of feed and food [4]. Recently Schmer et.al.,2008 [5]demonstrated that switchgrass grown in areas considered to be margin cropland could be an effective source of biomass for biofuels. It has been proposed that establishment of low input man made prairies could be an economical way of producing biomass for biofuels [6]. Although this could be a way to supply some of the required biomass it may fall well short of the amount needed per acre to make it a practical enterprise for harvest and transportation. Well-managed switchgrass plots on marginal croplands supplied higher estimated ethanol yields per acre (93% greater than poor management) [5]. Genetic improvement is a critical component to establish switchgrass as a major biomass source that can meet the demands for more biofuels [7]. It should be kept in mind that biofuel programs must fit into an agricultural system that maximizes the production potential of each acre of farmland while protecting the environment. In this respect switchgrass on marginal croplands could also provide a nutrient sink for nitrogen waste from animal production. Switchgrass needs little nitrogen input but as with any crop production increases with the application of nitrogen [5]. Well-managed switchgrass plots could extend the useful life of croplands no longer fit for typical row crop production. Perennial grasses such as switchgrass can provide runoff protection as buffer strips along streams and rivers to keep nutrients out of waterways and lakes, thus providing dual benefits.
Although there have been a wide range of crop residues proposed to contribute to the total biomass needed for biofuel production, corn stover would be the largest contributor. It has been estimated that corn stover would contribute as much as 20% of the total biomass requirement [2]. One of the concerns of removing crop residues is the long-term impact upon soils. Removing large portions of the residues leaves the soil surface vulnerable to wind and water erosion. Guidelines have been proposed for leaving sufficient biomass on the fields to keep this from becoming too much of a problem [8]. In addition, removing large portions of the biomass leads to a depletion of the soil organic carbon levels [9]. If sufficient amounts were left in place to meet these demands, this in turn would limit the amount of biomass for biofuel production [10]. With anticipated small profit margins, especially in the early going, there will be a temptation to remove more of the biomass, leaving the soils vulnerable to erosion and risking soil organic carbon depletion. Once these soils have reached high depletion levels, productivity will be severely restricted and returning them to better productivity will be a monumental task. Switching these lands to crops such as switchgrass that can do well in marginal soils would help the biofuels industry, but some of the most productive farmland for food and feed would be lost. This would most certainly sharpen the debate over land use for biofuels vs. food. No matter the approach it is clear multiple scenarios will need to be investigated to meet biomass for biofuel needs in a sustainable manner. The driving force behind future directions should be one of maintaining our existing high production lands while capturing increased value from lands that are should not be in continuous crop production. The challenge moving forward is to develop farming systems that are both economic and environmentally sustainable while meeting the increasing demands of food, feed, fiber, and now bioenergy. There is no doubt that crop residues, especially corn stocks, play a major part in making this vision a reality but as already pointed out it is walking a fine line between productivity and maintaining soil health.
At one time crop rotations utilizing nitrogen fixing legumes were much more prevalent on the landscape due to the cost and availability of commercial fertilizers. With the availability of commercial fertilizers there was no longer a need for utilizing legume forages that are particularly good at fixing nitrogen to be used for subsequent crop production. In the most productive regions in the United States particularly the Midwest Breadbasket there is economic pressure to produce monocultures of crops such as corn. This is made possible due to the relatively cheap source of commercial nitrogen-based fertilizer [11] and to the development of pesticides and herbicides. The Haber-Bosch process to produce ammonia requires large amounts of energy and appropriate catalysts to complete the transformation of hydrogen and nitrogen into ammonia. The commercialization of this process has been referred to as the detonator for the world population explosion because lands could now produce much higher levels of food to support increased populations [12]. Although this has allowed increased grain production the cost of nitrogen fertilizers has increased nearly 8 to 14 fold from a low in early 1970s to 2013 (USDA-REE statistics, http://www.ers.usda.gov/dataproducts/ferti izer-use-and-price.aspx#.VDwPcOe9i-Q). Much of the increased cost of nitrogen based commercial fertilizers has been driven by rising energy costs not only for production of anhydrous ammonia but also for transportation. As fossil based fuels continue to become in greater demand and at some point become limiting the price of fertilizers will continue to go up (See fertilizer price trends USDA-REE statistics) putting greater pressure on the value of crops produced on each acre of land. An alternative is to find other methods of increasing soil fertility. In farming regions where animal production is an integral part of the farming system, animal waste provides a valuable nutrient source (e.g., dairy production). Although a good source of nitrogen based nutrients for crops, good management is critical to maintaining nutrient availability for crop production and preventing excessive soil erosion.
Diagram of alfalfa production with environmental and economic impacts. Alfalfa as a rich source of protein in its leaves can have multiple uses in terms uses as animal feedstuff. The high fiber stem fraction could be used for bioenergy production. There are also many benefits to the environment by including alfalfa into crop rotations to allow sustainable production systems.
Production of forage legumes in rotation with row crops provides opportunities for increasing nitrogen for crop production while stabilizing and improving the environment (Figure 1). In 2010, a workshop (organized by National Alfalfa & Forage Alliance, Pioneer, USDA-Agricultural Research Service, and the National Corn Growers Association) was held to discuss the feasibility and benefits of establishing alfalfa-corn rotations to meet food and feed demands, as well as providing biomass for biofuel production (proceedings available online: www.alfalfa-forage.org). Workshop attendees evaluated the feasibility of using crop rotations to maintain soil fertility while providing sufficient biomass for biofuel production. Jung reported [13] alfalfa (Medicago sativa L.) is a deep-rooted perennial legume forage typically used as a feed source for ruminant animal production. Because of its high capacity to fix nitrogen, there is no need for the addition of nitrogen fertilizer for its own growth. Nitrogen stored in the roots after two years of growth would be sufficient to supply approximately 75% of the next two years of corn production [13]. This result would have several positive environmental impacts: 1) decreased greenhouse gas emissions from reduced dependence upon commercial fertilizers; 2) reduced soil erosion; 3) reduced nutrient run-off; and 4) improved carbon sequestration [13]. A potential advantage of such a rotation system would be the accumulation of soil organic carbon if proper soil/plant management was put into place [14] (Figure 1). However, Baker [15] cautions that assessing changes in soil organic carbon is not easy in a rotation system due to the relatively short duration of the alfalfa in its rotation sequence especially in the early years of adaption of such a farming system. Having the organic matter incorporated into the soil already in the form of extensive root systems eliminates the need for soil tillage to assist in moving organic matter in crop residue to the soil biome.
Accumulation of fixed nitrogen in alfalfa is substantial (152 kg N ha-1 over a range of environments and soil types) [16]. This decreases the need for application of commercial fertilizer that is dependent upon fossil fuels in the form of methane for production. As a perennial legume, alfalfa’s early spring growth as well as late fall growth provides cover for soils when row crops would be planted and after harvest when soils are most vulnerable to erosion. This does not remove the need for good management practices during the corn production part of the cycle; the severity is greatly reduced over a continual corn or corn-soybean rotation. According to Vadas et.al., [17] alfalfa-corn rotations for bioenergy production can have significant advantages mostly in terms of efficiency of energy production and decreased soil erosion and less nitrogen leaching compared to continuous corn. The bottom line was continuous corn had the greatest production costs but also had the greatest profit potential. This is not assigning a cost to the soil erosion. Scientists at the U.S. Dairy Forage Research Center in conjunction with University of Wisconsin-Madison researchers Grabber, Renz, and Lauer have shown that inter-seeding alfalfa with corn can double the first-year yields from the alfalfa [18]. Such a practice would insure cover-crop availability once the corn is harvested and would provide a jumpstart on the production of alfalfa the following spring [19]. The use of alfalfa as a cover crop would appear to have some drag on total corn production during the establishment year but alfalfa production would to significantly increased during the first full year of production. Most importantly the soil would be better protected during the last year of corn production and during the alfalfa establishment decreasing soil erosion potential during alfalfa establishment. Additionally since alfalfa is a deep-rooted perennial it can recover nitrogen that has leached beyond the limited root zone of corn, helping prevent further leaching and contamination of ground water.
In the early 90s (1993 to 2000) a pilot program was initiated to test the feasibility of alfalfa-corn rotation for energy production [13]. The alliance involved the University of Minnesota, USDA-Agricultural Research Service, Minnesota Valley Alfalfa Producers, and the DOE. The proposed system utilized dry baled alfalfa from which stems were mechanically separated from the leaves creating two feedstock components; one being the high fiber stems for energy production and the other leaf meal as a high protein fraction. Feeding trials with the alfalfa leaf meal found that it could successfully replace other protein sources such as soybean meal in diets of calves, dairy cows, and feedlot steers [13]. Although the early work indicated feasibility and advantages of alfalfa-corn rotations in a bioenergy production system the project fell apart before it could move to the next stages of testing and the project abandoned. However, these initial results indicated an existing infrastructure for handling alfalfa that could be easily adapted to a biofuel production program.
There is no doubt that rotation of corn and alfalfa would have significant environmental benefits over continuous corn. What is the economic and environmental impact upon available biomass for biofuels and the need for feed and food? Alfalfa leaves can contain as much as 30% or more protein as a fraction of the total dry matter. Typically during plant development, the stem becomes an increasing proportion of the total biomass; being lower in protein, the total plant protein decreases [20]. Harvesting schemes currently in place requires cutting the alfalfa at early-bud stage of development to keep the fiber content as low as possible and the protein content as high as possible. The down side to this harvesting practice is the need for frequent trips over the field to catch plant development at the early-bud stage. This may be reasonable for feed production for ruminant animals, but does not lend itself to practices that would be widely adopted in corn-alfalfa rotations. However, due to the high protein content of the leaves, separation of leaves from stems results in a rich source of protein for a potentially wide range of uses (Figure 2).
Earlier work using a dry fractionation system to separate leaves from stems resulted in an alfalfa leaf meal (pellets) with an estimated value of $200/ton [21]. However, there are few, if any, existing processing plants in North America today to determine if the value would be more or less than this predicted value [22]. A newly proposed system for harvesting alfalfa separates the leaves from the stems as they are harvested in the field, producing two components.
A comparison of the conventional harvest system for alfalfa compared to the proposed system of harvest and fractionation of leaves and stems into two component streams. This harvest system creates a high protein fraction and a high fiber fraction that allows better utilization of materials grown to fit specific needs whether it is animal feed or high fiber material for biofuels production. It is envisioned that the high protein leaf fraction could be utilized for a wide range of different animal production systems from dairy cows to poultry to enriched protein for aquaculture. The stems would be used for meeting fiber needs of ruminants (less than what would actually be produced per acre) to providing a feedstock for biofuels.
One fraction is rich in protein (leaves) and the other is rich in fiber (stems) [23]. The leaf fraction could be used in a wide range of applications including direct ensiling for high-protein feed, or dehydrated as alfalfa meal or other value-added products requiring high-protein materials [22]. The stems could be used as a source of biomass for biofuel production or for feed depending upon the needs of fiber in the ruminants diet. Because the alfalfa leaf does not change appreciably in protein content over the development of the plant, harvest can be delayed to allow greater amounts of total biomass accumulation [24]. According to Shinners, the advantages of field harvesting and fractionation include 1) production of a high-value protein fraction that avoids losses due to weather, 2) fractionation occurs at harvest so no further processing steps or equipment are needed, 3) capital costs of fractionation equipment are low, 4) fractionation occurs on the farm so only the desired fractions need leave the farm, and 5) ruminant feeds can be recombined to produce high-quality rations[22]. This system would provide an alternative to the harvesting/marketing system that is available today for alfalfa and may provide the farmer with a cash crop incentive to produce more alfalfa in conjunction with corn (See Figure 3).
It is envisioned harvesting alfalfa using in field fractionation creates two product streams to enhance the total value of the alfalfa crop. Prototype machines have been built to effectively remove the leaves from stems creating two alfalfa components at harvest [23]. One of the real advantages of this type of harvest system is the ability to open the harvest window to avoid bad weather and to decrease the total number of harvests. A prototype leaf stripper was used to harvest alfalfa leaves and stems during the summer of 2013 to test the feasibility of creating high quality diets for dairy cows when harvesting late in plant development (full bloom stage). The idea is to decrease the number of harvests per season to limit production costs, but be able to recombine the two fractions in appropriate amounts of stems and leaves to meet the needs of a high producing dairy cow. Results of feeding trial indicated total milk production and quality of the milk remained the same and excess stems could be used for other applications such as biofuel production [25]. Although this was centered around a feeding trial it demonstrated the feasibility of having a viable harvest system that creates two value components from the alfalfa plant. Energy inputs into such a harvest system are less than what is required under the normal production scenarios [22]. Separation of leaves from the stems also allows additional in field processing to render the stems more digestible. Maceration breaks the stem material open allowing easier access of enzymes or microbes to enhance degradability/digestibility [26]. Processing the stems separately from the leaves does not risk the loss of protein from the leaf due to juicing this material during the maceration process. Hence the high protein fraction is preserved and the high fiber fraction is processed in the field requiring less post harvest processing at the biofuel production sites.
Prototype alfalfa leaf stripper. A. Process of stripping the leaf fraction from alfalfa plants. In this prototype machine, harvesting stems was a separate activity from harvesting of the leaf fraction. The stem fraction was left standing in the field until leaves had been removed and then stems were cut and chopped for ensiling. Next generation harvesters would combine these two operations into a single pass over the field. B. Alfalfa stems with 80-90% of the leaves removed.
The genetic make up of alfalfa has been studied over the past 20 years to maximize quality and digestibility. A key component of this research in the past has been genetic selection for alfalfa germplasm that can withstand frequent cuttings as opposed to the accumulation of large amounts of biomass. Now there is interest to exploit the genetic potential to increase more biomass then is currently available for alfalfa. Efforts to genetically select for a biomass-type alfalfa that produces larger stems and more branching with greater total yields has been successful[13, 24, 27]. According to Lamb et.al.,[24, 27] alfalfa genetically selected for increased biomass production and managed to maximize yields resulted in a 40% increase in tons per acre. Revised management techniques amounted to decreased stand density providing more space for individual plant growth and development coupled with a delayed harvest i.e., switching from early bud stage to plants at 50% bloom or later. This provides the biomass alfalfa plant to accumulate higher amounts of total plant material, both leaves and stems. With the larger more robust stems lodging is minimized compared to the typical hay type alfalfa [13]. Coupled with a new harvesting technique of in-field fractionation, this could improve the amount of biomass for biofuels while still producing a high-protein fraction for value-added products. The theoretical ethanol yield for alfalfa stems would be 137 gal/acre compared to 174 gal/acre for corn stover assuming only half of the stover is removed to maintain soil health and long term productivity[13]. Including the grain for ethanol production (473 gal/acre), corn far outpaces the amount of ethanol potential from alfalfa. However, the estimated protein yield per acre would be 0.49 tons/acre for alfalfa leaves, zero for the corn stover and 0.34 tons/acre for corn grain [13]. In the face of growing world populations protein production will be of increasing concern. In terms of outright biomass production, the system of crop rotations between corn and alfalfa lags behind year after year of corn production. From an economic perspective alfalfa-corn rotations provide several advantages in the corn production following alflalfa; 1) yield benefit of $30 to 60/acre, 2) lower fertilizer nitrogen inputs required (2 year time frame) $75 to 150/acre, and 3) no insecticide required the first of corn production $15/acre [13]. This results in an accumulative savings potential of $120 to 225/acre. The rotation system does provide for a more sustainable system, both from an environmental and economic standpoint, primarily from decreasing the application of commercial fertilizers by 75% over two years of production. These economic values do not take in to account the impact of carbon sequestration that would help offset aggressive removal of corn stover during that phase of the rotation cycle.
Current technologies rely primarily on the yeast-ethanol platform to create liquid fuels. The process has been well studied and continues to undergo development to utilize more of the cell wall sugars in addition to the cellulosic glucose. Much of the current biofuel industry is based on yeast fermentation of glucose that is derived from starch primarily from corn grain, although any cereal grain could be used. Brazil has adopted a slightly different approach and has based much of its ethanol production on sugarcane using yeast fermentation. These systems are not sustainable in the long run due to ever increasing populations with increasing demands for food. Capturing biomass for conversion to biofuels is a big part of the vision for decreasing dependence upon fossil fuels. Biomass to biofuels does not directly compete with production needs for food and feed and provides opportunities to maximize utilization of our landscape in ways that are sustainable and improves productivity. However, converting biomass to biofuels efficiently is a critical part of the story.
Cell wall model showing formation of lignin in grass wall matrix. Lignin in grasses is attached to ferulates that are shuttled out into the wall attached to arabinosyl side chains of arabinoxylans. This creates a tightly integrated wall matrix of lignin with wall structural polysaccharides. Similar cross-linking most likely occurs in dicot walls except the ferulates are not likely to be the most prominent anchor points to the wall carbohydrates. Treatment of walls with hot dilute acid solutions removes most of the non-cellulosic polysaccharides opening up the matrix to be more easily degraded by the addition of cellulosic enzyme cocktails.
\n\t\t\t\tCell wall\n\t\t\t\t \n\t\t\t\tComponent\n\t\t\t | \n\t\t\t\n\t\t\t\tAlfalfa\n\t\t\t\t \n\t\t\t\tStem (N=153)\n\t\t\t | \n\t\t\t\n\t\t\t\tCorn\n\t\t\t | \n\t\t|
\n\t\t\t\tStover\n\t\t\t\t \n\t\t\t\t(N=32)\n\t\t\t | \n\t\t\t\n\t\t\t\tCob\n\t\t\t\t \n\t\t\t\t(N=56)\n\t\t\t | \n\t\t||
\n\t\t\t | \n\t\t\t | % Dry Matter | \n\t\t\t\n\t\t |
Glucose | \n\t\t\t18-37 | \n\t\t\t23-34 | \n\t\t\t20-33 | \n\t\t
Other Hexoses | \n\t\t\t21-41 | \n\t\t\t26-36 | \n\t\t\t23-34 | \n\t\t
Xylose | \n\t\t\t5-13 | \n\t\t\t15-23 | \n\t\t\t18-33 | \n\t\t
Other Pentoses | \n\t\t\t6-15 | \n\t\t\t18-27 | \n\t\t\t22-35 | \n\t\t
Lignin | \n\t\t\t7-22 | \n\t\t\t6-12 | \n\t\t\t3-15 | \n\t\t
At this time ethanol production is the main form of biofuel product proposed for biomass[1-2]. This system utilizes yeast-based fermentation using primarily glucose as the substrate for ethanol production. The challenge in using corn stover or any other source of biomass in this process is the complexity of the plant cell wall. Cell walls are complex matrices composed of largely of cellulose microfibrils embedded in a matrix of structural polysaccharides. Once cell walls have reach their maximum size lignification occurs producing a hydrophobic polymer that drives the water from free spaces within the wall as it fills in these open areas (Figure 4) imparting additional strengthen to the wall. This process creates regions within the cell wall that are difficult to hydrolyze especially once the wall has been dried. A comparison of alfalfa stem cell wall composition with that of corn stover provides similar proportions of glucose on a kilogram of dry matter basis (Table 1). To render the glucose available for fermentation current technologies for ethanol production rely heavily on pretreatments to release sufficient amounts of the cellulosic portion of the wall for enzymatic conversion to glucose [28]. Pretreatments are designed to disrupt the cell wall matrix allowing cellulytic enzymes access to the cellulosic components while minimizing the formation of degradation products. Typically dilute acids combined with high temperatures are the most common form of biomass pretreatment [28]. In the case of grasses pretreatments effectively disrupt cross-linking of cell wall arabinoxylans via ferulate dimers and to lignin via ferulate bridges (Figure 4) [29]. Acid treatments easily hydrolyzed arabinofuranose side chains of arabinoxylans, including those with attached ferulates allowing the wall to relax and expand for easier access by wall hydrolyzing enzymes. Treatment of alfalfa stems with low levels of acid during ensiling increased the amount of ethanol that could be produced [30]. However, best ethanol production was obtained after washing stem material after the acid treatment to remove degradation products that would interfere with yeast fermentation. A problem with acid hydrolysis of cell walls especially at high temperatures is the production of furfurals that inhibit yeast. The advantage of coupling dilute acid with ensiling is avoiding the need for high temperatures. Instead utilizing the longer-term storage of the biomass to allow limited degradation of the polysaccharides while minimizing the formation furfurals and other degradation products[30]. There may be highly effective means of solubilizing the cell wall (e.g., complete acid hydrolysis of all cell wall polysaccharides to monomeric sugars), but such methods are prohibitively expensive or make it difficult to remove byproducts. To prevent unwanted microbial fermentation of the released sugar, yeast-based fermentation must be maintained in a sterile environment. Providing and maintaining a sterile environment must be factored into the sequence of events from pretreatment to fermentation; it can be achieved, but at an additional cost to the overall process. From a utilization of the total biomass standpoint yeast fermentation leaves a 20 to 40% of potentially fermentable carbohydrates behind (Table 1) simply because yeast cannot deal effectively with them. This leaves a good deal of potential energy forming material off the table.
Ethanol is not the only biofuel under consideration as a product for biomass. Alternative systems for the conversion of biomass to biofuel are the syngas platform (details of this system can be found on the National Renewable Energy Laboratory website: www.nrel.gov/biomass/biorefinery.html) and the carboxylate platform. The syngas platform requires large inputs of energy to produce effective amounts of a useful biofuel. The carboxylate platform requires undefined mixed bacterial cultures under anaerobic conditions [31] (Figure 5). One of the big advantages of this system is the flexibility of the undefined mixed bacterial cultures to handle a wide range of substrates going into the system. More importantly they do not require a sterile environment in which to function. Popular sources of mixed anaerobic cultures are sewage sludge digesters and marine sediments[31-32]. The carboxylate platform works by the process of anaerobic degradation of carbohydrates to produce volatile fatty acids primarily acetic (C2), propionic (C3), and butyric (C4) acids although other VFAs can be produced.
Schematic of biofuel production systems. Ethanol platform is the typical process proposed for conversion of plant biomass to liquid fuels. The carboxylate platform is an alternative method of producing liquid fuels using mixed anaerobic bacteria (ruminal microbes have advantages over typical systems utilizing sewage sludge or marine sediments) to produce VFAs for conversion to volatile fuel components. Cultures can be manipulated to produce higher ratios of C5, C6 and C7 VFAs for more energy dense molecules.
An advantage of the carboxylate platform is the general low inputs needed to obtain materials that can be modified to produce biofuels or bio-refinery products. Pre-treatments are minimized and may be confined to particle size reduction or mild chemical treatments providing the greatest advantages[31]. Most importantly the carboxylate platform does not require an antiseptic environment in which to operate, greatly simplifying handling of raw materials going into digesters. Significant work has been done on carboxylate platforms utilizing mixed cultures from sewage sludge treatments [31, 33]. Such systems have a great deal of flexibility when it comes to handling a wide range and complexity of crop residues or other carbon based materials from agricultural practices. These organic materials may be relatively abundant and of relative low value in their present form before fermentation to VFAs. A disadvantage of the sewage sludge inoculum is the general slow conversion rate and methanogens producing large amounts of methane[31]. In the case of manure or other organic waste digesters where time is not a limiting factor this is quite acceptable and the methane can be easily captured and used as an energy source. With the right type of microbial mix, it is possible to produce longer-chain carboxylates caproate (C6) and caprylate (C8) from acetate in addition to the typical acetate, propionate, and butyrate through a process referred to as reverse β-oxidation[34]. The potential down side of this approach is the process tends to be slow and requires inhibition of methanogens to force the system to produce larger quantities of the longer-chain VFAs, e.g., n-caproate (C6) and n-caprylate (C8). Inhibition of methanogens can be efficiently achieved with compounds like bromoethane sulfonic acid, but this is relatively expensive and would be prohibitive on a large scale[31].
An alternative source of anaerobic microbes for the carboxylate platform for the conversion of plant biomass would be the cow’s rumen. In comparison to waste stream anaerobic microbes, the rumen is a more specialized system having evolved to extract nutrient value out of a wide range of plant materials [35]. Although cell wall degradation and total feed utilization by dairy and beef cows can be improved, the microbial community in these ruminants has evolved to degrade fibrous plant material relatively quickly to supply needed nutrients to the animal [36]. The rumen is a mixed culture of anaerobic organisms effectively degrades carbohydrates, proteins, and fats present in feed mixtures to produce short-chain VFAs. The efficiency of this ruminal system appears to be much greater than what is in the typical waste stream systems[37]. The advantage of a ruminant-based carboxylate platform is the ability to degrade all the organic materials (polysaccharides, proteins, fats, and oils) with the exception of the lignin within short time periods of 24-72 hours. High producing ruminants like the dairy cow must be able to extract sufficient energy from feed materials within 48 hours to support her maintenance and milk production. Cow ruminant microbial communities have evolved over time to handle a diversity of substrates (i.e., easily degraded starch to more recalcitrant fiber materials). Ruminal microbial communities are quite complex with redundancy in the types of hydrolytic abilities that may come into play as substrates change coming into the cow [36]. Due to the relatively short incubation times slower growing acetogens (convert C3-C6 VFAs to acetate) and the methanogens (convert acetate to methane) do not have a chance to become well established. This in turn restricts methane production (8-15% of total energy) in this type of carboxylate platform avoiding the need to add specific methane inhibitors [36]. The small amount of methane that is produced could be captured and utilized as an energy input to maintain incubation temperatures.
Recently Weimer et.al., 2014 [38] demonstrated the ability of rumen microbial cultures to produce large amounts of valeric and caproic in short time periods of 48-72 hour incubations. It has been demonstrated that the addition of dilute amounts of ethanol to mixed culture fermentations in the carboxylate platform results in the extension of the short chain VFAs to medium length molecules thus capturing the fuel value of ethanol in a form that could be more easily recovered [34, 39]. What is unique and promising about the work of Weimer et.al., is the ability to speed up this process using ruminal mixed culture fermentations as opposed to the typical source of sewage digesters [38]. In addition they found that supplementing the mixture with ruminal derived Clostridiumum kluyveri an ethanol-utilizing bacteria resulted in production levels of 4.9-6.1 g/L of caproate in 48-72 hours using either switchgrass or alfalfa stems as the substrate. The level of caproate production seen by the Weimer group is similar to what others have achieved [34, 40], but in a 10 to 30 times less time frame for incubation. Being able to generate longer VFAs increases the energy density in each molecule increasing the value of the material for liquid fuels. In addition, the longer chain VFAs are easier to extract from the fermentation media decreasing recovery costs[38-39]. For any biomass to biofuel production process a key element is being able to produce sufficient amounts of fuel molecules in short periods of time and with limited inputs. The carboxylate platform based on ruminal microbes supplemented with additional strains of more specialized bacteria (e.g., Clostridiumum kluyveri) appears to hold a great deal of promise for biomass conversion. Little sample preparation was needed to treat the switchgrass and alfalfa stems for biofuel production using the ruminal microbial system. The fermentation process described here could be combined with other platforms that produce ethanol. For example concept of consolidated bioprocessing (CBP) [36, 41] is considered as a possible avenue for the production of ethanol from biomass to avoid the need for the addition of expensive hydrolytic enzymes. In most cases the CBP system does not produce sufficient ethanol to be cost effective [41]. However, coupled with a ruminal microbial based carboxylate platform the limited ethanol production could be effectively utilized to produce longer chain VFAs increasing energy density of each molecule [38].
Multiple pathways for converting VFAs to volatile compounds that can serve as biofuels or as intermediates for the formation of additional organic compounds.
Volatile fatty acids must be converted to a form that increases their volatility to be good energy molecules. The medium length VFAs can be recovered by extraction [42] to allow additional modifications. Conversion of VFAs can be accomplished in different ways depending upon the tis desirable end product and its potential use. Possible conversion practices could utilize pure cultures of specific bacteria, electrochemical and thermochemical process. Useful end products that could be used for energy, solvents, or other biorefinery intermediates include ketones, aldehydes, alcohols, and alkanes (Figure 6). Due to the flexibility in the type of end product there are several avenues available to reach the desired outcome. Conversion process can be accomplished in a multitude of different ways using a single or multiple steps to reach desired products. Products such as ketones from VFAs using catalytic coupling [43] or ketones and secondary alcohols as produced in the MixAlco process [33]. The formation of volatile esters can be formed as demonstrated by Lange et.al., [44],Levy et.al., [45] or using microbial systems [46]. Production of alkanes can be achieved by decarboxylation of using pure cultures of microbes [47] or the use of electrochemical process using the Kolbe and/or the Hoefer-Moest processes [48]. The conversion of VFAs especially the medium length (C4-C6) increases volatility and at the same time decreases miscibility with water improving extraction process to isolate the biofuel molecules. The added advantage of VFA production (C2-C6 or longer) coupled with conversion technologies is the flexibility to produce a wide range of molecules that can be used for higher energy density fuel molecules or as starting molecules for other organic materials.
Typically biomass to biofuel systems are envisioned with a centrally located processing plant to handle large amounts of biomass. Unlike the grain ethanol production systems in which the grain is of relatively high density in terms of potential energy per volume, biomass tends to be much bulkier unless it is pelletized to increase bulk density [49]. When one is considering the utilization of corn stover and/or alfalfa stems these materials can be field processed into relatively high-density bales to improve the efficiency of shipping [50]. This is just one step in the complete process of collecting and moving biomass to centralized points for conversion to biofuels [51]. The challenge is keeping the collection, improving bulk density, and transportation costs to minimal levels to help final economic returns and the minimizing the carbon footprint associated with biomass to biofuels[50]. Perhaps it would be feasible to consider on farm conversion at least for the initial steps of the conversion process. In this scenario the harvested plant material (corn stover, alfalfa stems, switchgrass, etc) would be stored on the farm more with an ensiling process compared to dry storage. This provides an opportunity to add enzymes or dilute chemicals to enhance the subsequent digestion of the materials. Size reduction could also be incorporated into the process and storing materials wet eliminates the need for rehydration for fermentation. It could be envisioned that small on farm digesters could be used to process the biomass materials to produce VFAs (select additions of pure cultures and ethanol to create products for special uses) that would be recovered and transported to conversion sites. Processing on farm eliminates the need for consolidating biomass for shipment to centralized processing plants and open opportunities for other types of storage that could enhance conversion efficiency. Recovery of the VFAs or conversion on site to intermediates followed by extraction results in a improvements in energy density and allows materials to be shipped greater distances for further processing into molecules that provide the greatest benefit either as biofuels or as precursors for other organic based materials.
One of the challenges of any biomass conversion platform is dealing with the fermentation residual materials. Lignin is a primary component of the fermentation waste and in many schemes it is recovered and burned to supply energy for other steps in the complete process. With the carboxylate platform based upon mixed ruminal microbes, one of the by products could be the microbial protein as a value-added material. In the normal rumination process, formation of microbial protein is an important component to supply needed protein to the animal. In dairy production, microbial protein helps supply critical amino acids required for milk production, especially methionine and lysine that are often low or lacking in many forage-based diets [52]. Harvesting the microbial protein after biomass conversion to biofuels could provide an important protein supplement for dairy cow diets that is enriched in methionine and lysine. The microbial proteins would be insoluble along with the typical insoluble materials, i.e., lignin and other cell wall components. Recovery of these insoluble materials would be relatively straightforward. As an alternative the lignin-microbial-carbohydrate residue from the fermentation process could be used to replace phenolic-formaldehyde based adhesives[53]. Many of the ruminal microbes contain glycocalyx materials surrounding the individual cells that help them adhere to plant materials during digestion. The glycocalyx is a glycoprotein-polysaccharide complex that surrounds the cell membrane of some bacteria[54]. It has also been demonstrated that the lignin-microbial residues from ruminal fermentations, as proposed for the carboxylate platform, could be used to replace phenol-formaldehyde compounds as adhesives in the production of plywood composites[53]. Up to 70% of the typical phenol-formaldehyde formulation could be replaced by the more environmentally friendly residues that are byproducts of ruminal-based fermentations. Even if it would not be possible to replace all of the phenol-formaldehyde adhesive, decreasing significant amounts of this material would provide for healthier composites by decreasing the amount of formaldehyde outgassing that are a human health concern[53]. Key to the effectiveness of fermentation residues is creating the correct balance of lignin, the blend of rumen microbes and the types of glycocalyx material, and other minor phenolic materials in the plant materials.
This chapter is not meant to be a comprehensive assessment of biomass to biofuels, but rather a look at unconventional approaches that would enhance the sustainability of the entire process. To meet the goals of biofuel production by 2030 will require optimizing land use for food, feed, and bioenergy production. It should be approached from a standpoint of developing a viable biofuel production system that increases the amount of energy stored in the molecules making up the biofuels, i.e., longer-chain molecules, more energy per unit of fuel. To be sustainable into the future we must be willing to develop alternative systems that supply a range of biomaterials. Although the producing energy alternatives is of major concern at the present time we should be evaluating and developing bioenergy systems that allow flexibility not only in terms of feedstock going in, but the products coming out. Development of biomass to biofuels systems should look at how we can maximize the value of the total process, that is, optimize land use, embrace farming systems that decrease or eliminate soil/nutrient losses, improve economics of production, utilization of value-added products, and total energy production versus inputs. The entire process must also be sustainable from an environmental standpoint and provide economic advantages to the producer. Our vision into the future should be one of maximizing the productivity of each acre of farmland while meeting the needs for feed, food, and energy along with improving the soil for future generations. Decisions made today should not be overly influenced solely by short term economic gains.
Research methodology is the path through which researchers need to conduct their research. It shows the path through which these researchers formulate their problem and objective and present their result from the data obtained during the study period. This research design and methodology chapter also shows how the research outcome at the end will be obtained in line with meeting the objective of the study. This chapter hence discusses the research methods that were used during the research process. It includes the research methodology of the study from the research strategy to the result dissemination. For emphasis, in this chapter, the author outlines the research strategy, research design, research methodology, the study area, data sources such as primary data sources and secondary data, population consideration and sample size determination such as questionnaires sample size determination and workplace site exposure measurement sample determination, data collection methods like primary data collection methods including workplace site observation data collection and data collection through desk review, data collection through questionnaires, data obtained from experts opinion, workplace site exposure measurement, data collection tools pretest, secondary data collection methods, methods of data analysis used such as quantitative data analysis and qualitative data analysis, data analysis software, the reliability and validity analysis of the quantitative data, reliability of data, reliability analysis, validity, data quality management, inclusion criteria, ethical consideration and dissemination of result and its utilization approaches. In order to satisfy the objectives of the study, a qualitative and quantitative research method is apprehended in general. The study used these mixed strategies because the data were obtained from all aspects of the data source during the study time. Therefore, the purpose of this methodology is to satisfy the research plan and target devised by the researcher.
The research design is intended to provide an appropriate framework for a study. A very significant decision in research design process is the choice to be made regarding research approach since it determines how relevant information for a study will be obtained; however, the research design process involves many interrelated decisions [1].
This study employed a mixed type of methods. The first part of the study consisted of a series of well-structured questionnaires (for management, employee’s representatives, and technician of industries) and semi-structured interviews with key stakeholders (government bodies, ministries, and industries) in participating organizations. The other design used is an interview of employees to know how they feel about safety and health of their workplace, and field observation at the selected industrial sites was undertaken.
Hence, this study employs a descriptive research design to agree on the effects of occupational safety and health management system on employee health, safety, and property damage for selected manufacturing industries. Saunders et al. [2] and Miller [3] say that descriptive research portrays an accurate profile of persons, events, or situations. This design offers to the researchers a profile of described relevant aspects of the phenomena of interest from an individual, organizational, and industry-oriented perspective. Therefore, this research design enabled the researchers to gather data from a wide range of respondents on the impact of safety and health on manufacturing industries in Ethiopia. And this helped in analyzing the response obtained on how it affects the manufacturing industries’ workplace safety and health. The research overall design and flow process are depicted in Figure 1.
Research methods and processes (author design).
To address the key research objectives, this research used both qualitative and quantitative methods and combination of primary and secondary sources. The qualitative data supports the quantitative data analysis and results. The result obtained is triangulated since the researcher utilized the qualitative and quantitative data types in the data analysis. The study area, data sources, and sampling techniques were discussed under this section.
According to Fraenkel and Warren [4] studies, population refers to the complete set of individuals (subjects or events) having common characteristics in which the researcher is interested. The population of the study was determined based on random sampling system. This data collection was conducted from March 07, 2015 to December 10, 2016, from selected manufacturing industries found in Addis Ababa city and around. The manufacturing companies were selected based on their employee number, established year, and the potential accidents prevailing and the manufacturing industry type even though all criterions were difficult to satisfy.
It was obtained from the original source of information. The primary data were more reliable and have more confidence level of decision-making with the trusted analysis having direct intact with occurrence of the events. The primary data sources are industries’ working environment (through observation, pictures, and photograph) and industry employees (management and bottom workers) (interview, questionnaires and discussions).
Desk review has been conducted to collect data from various secondary sources. This includes reports and project documents at each manufacturing sectors (more on medium and large level). Secondary data sources have been obtained from literatures regarding OSH, and the remaining data were from the companies’ manuals, reports, and some management documents which were included under the desk review. Reputable journals, books, different articles, periodicals, proceedings, magazines, newsletters, newspapers, websites, and other sources were considered on the manufacturing industrial sectors. The data also obtained from the existing working documents, manuals, procedures, reports, statistical data, policies, regulations, and standards were taken into account for the review.
In general, for this research study, the desk review has been completed to this end, and it had been polished and modified upon manuals and documents obtained from the selected companies.
The study population consisted of manufacturing industries’ employees in Addis Ababa city and around as there are more representative manufacturing industrial clusters found. To select representative manufacturing industrial sector population, the types of the industries expected were more potential to accidents based on random and purposive sampling considered. The population of data was from textile, leather, metal, chemicals, and food manufacturing industries. A total of 189 sample sizes of industries responded to the questionnaire survey from the priority areas of the government. Random sample sizes and disproportionate methods were used, and 80 from wood, metal, and iron works; 30 from food, beverage, and tobacco products; 50 from leather, textile, and garments; 20 from chemical and chemical products; and 9 from other remaining 9 clusters of manufacturing industries responded.
A simple random sampling and purposive sampling methods were used to select the representative manufacturing industries and respondents for the study. The simple random sampling ensures that each member of the population has an equal chance for the selection or the chance of getting a response which can be more than equal to the chance depending on the data analysis justification. Sample size determination procedure was used to get optimum and reasonable information. In this study, both probability (simple random sampling) and nonprobability (convenience, quota, purposive, and judgmental) sampling methods were used as the nature of the industries are varied. This is because of the characteristics of data sources which permitted the researchers to follow the multi-methods. This helps the analysis to triangulate the data obtained and increase the reliability of the research outcome and its decision. The companies’ establishment time and its engagement in operation, the number of employees and the proportion it has, the owner types (government and private), type of manufacturing industry/production, types of resource used at work, and the location it is found in the city and around were some of the criteria for the selections.
The determination of the sample size was adopted from Daniel [5] and Cochran [6] formula. The formula used was for unknown population size Eq. (1) and is given as
where n = sample size, Z = statistic for a level of confidence, P = expected prevalence or proportion (in proportion of one; if 50%, P = 0.5), and d = precision (in proportion of one; if 6%, d = 0.06). Z statistic (Z): for the level of confidence of 95%, which is conventional, Z value is 1.96. In this study, investigators present their results with 95% confidence intervals (CI).
The expected sample number was 267 at the marginal error of 6% for 95% confidence interval of manufacturing industries. However, the collected data indicated that only 189 populations were used for the analysis after rejecting some data having more missing values in the responses from the industries. Hence, the actual data collection resulted in 71% response rate. The 267 population were assumed to be satisfactory and representative for the data analysis.
The sample size for the experimental exposure measurements of physical work environment has been considered based on the physical data prepared for questionnaires and respondents. The response of positive were considered for exposure measurement factors to be considered for the physical environment health and disease causing such as noise intensity, light intensity, pressure/stress, vibration, temperature/coldness, or hotness and dust particles on 20 workplace sites. The selection method was using random sampling in line with purposive method. The measurement of the exposure factors was done in collaboration with Addis Ababa city Administration and Oromia Bureau of Labour and Social Affair (AACBOLSA). Some measuring instruments were obtained from the Addis Ababa city and Oromia Bureau of Labour and Social Affair.
Data collection methods were focused on the followings basic techniques. These included secondary and primary data collections focusing on both qualitative and quantitative data as defined in the previous section. The data collection mechanisms are devised and prepared with their proper procedures.
Primary data sources are qualitative and quantitative. The qualitative sources are field observation, interview, and informal discussions, while that of quantitative data sources are survey questionnaires and interview questions. The next sections elaborate how the data were obtained from the primary sources.
Observation is an important aspect of science. Observation is tightly connected to data collection, and there are different sources for this: documentation, archival records, interviews, direct observations, and participant observations. Observational research findings are considered strong in validity because the researcher is able to collect a depth of information about a particular behavior. In this dissertation, the researchers used observation method as one tool for collecting information and data before questionnaire design and after the start of research too. The researcher made more than 20 specific observations of manufacturing industries in the study areas. During the observations, it found a deeper understanding of the working environment and the different sections in the production system and OSH practices.
Interview is a loosely structured qualitative in-depth interview with people who are considered to be particularly knowledgeable about the topic of interest. The semi-structured interview is usually conducted in a face-to-face setting which permits the researcher to seek new insights, ask questions, and assess phenomena in different perspectives. It let the researcher to know the in-depth of the present working environment influential factors and consequences. It has provided opportunities for refining data collection efforts and examining specialized systems or processes. It was used when the researcher faces written records or published document limitation or wanted to triangulate the data obtained from other primary and secondary data sources.
This dissertation is also conducted with a qualitative approach and conducting interviews. The advantage of using interviews as a method is that it allows respondents to raise issues that the interviewer may not have expected. All interviews with employees, management, and technicians were conducted by the corresponding researcher, on a face-to-face basis at workplace. All interviews were recorded and transcribed.
The main tool for gaining primary information in practical research is questionnaires, due to the fact that the researcher can decide on the sample and the types of questions to be asked [2].
In this dissertation, each respondent is requested to reply to an identical list of questions mixed so that biasness was prevented. Initially the questionnaire design was coded and mixed up from specific topic based on uniform structures. Consequently, the questionnaire produced valuable data which was required to achieve the dissertation objectives.
The questionnaires developed were based on a five-item Likert scale. Responses were given to each statement using a five-point Likert-type scale, for which 1 = “strongly disagree” to 5 = “strongly agree.” The responses were summed up to produce a score for the measures.
The data was also obtained from the expert’s opinion related to the comparison of the knowledge, management, collaboration, and technology utilization including their sub-factors. The data obtained in this way was used for prioritization and decision-making of OSH, improving factor priority. The prioritization of the factors was using Saaty scales (1–9) and then converting to Fuzzy set values obtained from previous researches using triangular fuzzy set [7].
The researcher has measured the workplace environment for dust, vibration, heat, pressure, light, and noise to know how much is the level of each variable. The primary data sources planned and an actual coverage has been compared as shown in Table 1.
Planned versus actual coverage of the survey.
The response rate for the proposed data source was good, and the pilot test also proved the reliability of questionnaires. Interview/discussion resulted in 87% of responses among the respondents; the survey questionnaire response rate obtained was 71%, and the field observation response rate was 90% for the whole data analysis process. Hence, the data organization quality level has not been compromised.
This response rate is considered to be representative of studies of organizations. As the study agrees on the response rate to be 30%, it is considered acceptable [8]. Saunders et al. [2] argued that the questionnaire with a scale response of 20% response rate is acceptable. Low response rate should not discourage the researchers, because a great deal of published research work also achieves low response rate. Hence, the response rate of this study is acceptable and very good for the purpose of meeting the study objectives.
The pretest for questionnaires, interviews, and tools were conducted to validate that the tool content is valid or not in the sense of the respondents’ understanding. Hence, content validity (in which the questions are answered to the target without excluding important points), internal validity (in which the questions raised answer the outcomes of researchers’ target), and external validity (in which the result can generalize to all the population from the survey sample population) were reflected. It has been proved with this pilot test prior to the start of the basic data collections. Following feedback process, a few minor changes were made to the originally designed data collect tools. The pilot test made for the questionnaire test was on 10 sample sizes selected randomly from the target sectors and experts.
The secondary data refers to data that was collected by someone other than the user. This data source gives insights of the research area of the current state-of-the-art method. It also makes some sort of research gap that needs to be filled by the researcher. This secondary data sources could be internal and external data sources of information that may cover a wide range of areas.
Literature/desk review and industry documents and reports: To achieve the dissertation’s objectives, the researcher has conducted excessive document review and reports of the companies in both online and offline modes. From a methodological point of view, literature reviews can be comprehended as content analysis, where quantitative and qualitative aspects are mixed to assess structural (descriptive) as well as content criteria.
A literature search was conducted using the database sources like MEDLINE; Emerald; Taylor and Francis publications; EMBASE (medical literature); PsycINFO (psychological literature); Sociological Abstracts (sociological literature); accident prevention journals; US Statistics of Labor, European Safety and Health database; ABI Inform; Business Source Premier (business/management literature); EconLit (economic literature); Social Service Abstracts (social work and social service literature); and other related materials. The search strategy was focused on articles or reports that measure one or more of the dimensions within the research OSH model framework. This search strategy was based on a framework and measurement filter strategy developed by the Consensus-Based Standards for the Selection of Health Measurement Instruments (COSMIN) group. Based on screening, unrelated articles to the research model and objectives were excluded. Prior to screening, researcher (principal investigator) reviewed a sample of more than 2000 articles, websites, reports, and guidelines to determine whether they should be included for further review or reject. Discrepancies were thoroughly identified and resolved before the review of the main group of more than 300 articles commenced. After excluding the articles based on the title, keywords, and abstract, the remaining articles were reviewed in detail, and the information was extracted on the instrument that was used to assess the dimension of research interest. A complete list of items was then collated within each research targets or objectives and reviewed to identify any missing elements.
Data analysis method follows the procedures listed under the following sections. The data analysis part answered the basic questions raised in the problem statement. The detailed analysis of the developed and developing countries’ experiences on OSH regarding manufacturing industries was analyzed, discussed, compared and contrasted, and synthesized.
Quantitative data were obtained from primary and secondary data discussed above in this chapter. This data analysis was based on their data type using Excel, SPSS 20.0, Office Word format, and other tools. This data analysis focuses on numerical/quantitative data analysis.
Before analysis, data coding of responses and analysis were made. In order to analyze the data obtained easily, the data were coded to SPSS 20.0 software as the data obtained from questionnaires. This task involved identifying, classifying, and assigning a numeric or character symbol to data, which was done in only one way pre-coded [9, 10]. In this study, all of the responses were pre-coded. They were taken from the list of responses, a number of corresponding to a particular selection was given. This process was applied to every earlier question that needed this treatment. Upon completion, the data were then entered to a statistical analysis software package, SPSS version 20.0 on Windows 10 for the next steps.
Under the data analysis, exploration of data has been made with descriptive statistics and graphical analysis. The analysis included exploring the relationship between variables and comparing groups how they affect each other. This has been done using cross tabulation/chi square, correlation, and factor analysis and using nonparametric statistic.
Qualitative data analysis used for triangulation of the quantitative data analysis. The interview, observation, and report records were used to support the findings. The analysis has been incorporated with the quantitative discussion results in the data analysis parts.
The data were entered using SPSS 20.0 on Windows 10 and analyzed. The analysis supported with SPSS software much contributed to the finding. It had contributed to the data validation and correctness of the SPSS results. The software analyzed and compared the results of different variables used in the research questionnaires. Excel is also used to draw the pictures and calculate some analytical solutions.
The reliability of measurements specifies the amount to which it is without bias (error free) and hence ensures consistent measurement across time and across the various items in the instrument [8]. In reliability analysis, it has been checked for the stability and consistency of the data. In the case of reliability analysis, the researcher checked the accuracy and precision of the procedure of measurement. Reliability has numerous definitions and approaches, but in several environments, the concept comes to be consistent [8]. The measurement fulfills the requirements of reliability when it produces consistent results during data analysis procedure. The reliability is determined through Cranach’s alpha as shown in Table 2.
Internal consistency and reliability test of questionnaires items.
K stands for knowledge; M, management; T, technology; C, collaboration; P, policy, standards, and regulation; H, hazards and accident conditions; PPE, personal protective equipment.
Cronbach’s alpha is a measure of internal consistency, i.e., how closely related a set of items are as a group [11]. It is considered to be a measure of scale reliability. The reliability of internal consistency most of the time is measured based on the Cronbach’s alpha value. Reliability coefficient of 0.70 and above is considered “acceptable” in most research situations [12]. In this study, reliability analysis for internal consistency of Likert-scale measurement after deleting 13 items was found similar; the reliability coefficients were found for 76 items were 0.964 and for the individual groupings made shown in Table 2. It was also found internally consistent using the Cronbach’s alpha test. Table 2 shows the internal consistency of the seven major instruments in which their reliability falls in the acceptable range for this research.
Face validity used as defined by Babbie [13] is an indicator that makes it seem a reasonable measure of some variables, and it is the subjective judgment that the instrument measures what it intends to measure in terms of relevance [14]. Thus, the researcher ensured, in this study, when developing the instruments that uncertainties were eliminated by using appropriate words and concepts in order to enhance clarity and general suitability [14]. Furthermore, the researcher submitted the instruments to the research supervisor and the joint supervisor who are both occupational health experts, to ensure validity of the measuring instruments and determine whether the instruments could be considered valid on face value.
In this study, the researcher was guided by reviewed literature related to compliance with the occupational health and safety conditions and data collection methods before he could develop the measuring instruments. In addition, the pretest study that was conducted prior to the main study assisted the researcher to avoid uncertainties of the contents in the data collection measuring instruments. A thorough inspection of the measuring instruments by the statistician and the researcher’s supervisor and joint experts, to ensure that all concepts pertaining to the study were included, ensured that the instruments were enriched.
Insight has been given to the data collectors on how to approach companies, and many of the questionnaires were distributed through MSc students at Addis Ababa Institute of Technology (AAiT) and manufacturing industries’ experience experts. This made the data quality reliable as it has been continually discussed with them. Pretesting for questionnaire was done on 10 workers to assure the quality of the data and for improvement of data collection tools. Supervision during data collection was done to understand how the data collectors are handling the questionnaire, and each filled questionnaires was checked for its completeness, accuracy, clarity, and consistency on a daily basis either face-to-face or by phone/email. The data expected in poor quality were rejected out of the acting during the screening time. Among planned 267 questionnaires, 189 were responded back. Finally, it was analyzed by the principal investigator.
The data were collected from the company representative with the knowledge of OSH. Articles written in English and Amharic were included in this study. Database information obtained in relation to articles and those who have OSH area such as interventions method, method of accident identification, impact of occupational accidents, types of occupational injuries/disease, and impact of occupational accidents, and disease on productivity and costs of company and have used at least one form of feedback mechanism. No specific time period was chosen in order to access all available published papers. The questionnaire statements which are similar in the questionnaire have been rejected from the data analysis.
Ethical clearance was obtained from the School of Mechanical and Industrial Engineering, Institute of Technology, Addis Ababa University. Official letters were written from the School of Mechanical and Industrial Engineering to the respective manufacturing industries. The purpose of the study was explained to the study subjects. The study subjects were told that the information they provided was kept confidential and that their identities would not be revealed in association with the information they provided. Informed consent was secured from each participant. For bad working environment assessment findings, feedback will be given to all manufacturing industries involved in the study. There is a plan to give a copy of the result to the respective study manufacturing industries’ and ministries’ offices. The respondents’ privacy and their responses were not individually analyzed and included in the report.
The result of this study will be presented to the Addis Ababa University, AAiT, School of Mechanical and Industrial Engineering. It will also be communicated to the Ethiopian manufacturing industries, Ministry of Labor and Social Affair, Ministry of Industry, and Ministry of Health from where the data was collected. The result will also be availed by publication and online presentation in Google Scholars. To this end, about five articles were published and disseminated to the whole world.
The research methodology and design indicated overall process of the flow of the research for the given study. The data sources and data collection methods were used. The overall research strategies and framework are indicated in this research process from problem formulation to problem validation including all the parameters. It has laid some foundation and how research methodology is devised and framed for researchers. This means, it helps researchers to consider it as one of the samples and models for the research data collection and process from the beginning of the problem statement to the research finding. Especially, this research flow helps new researchers to the research environment and methodology in particular.
There is no “conflict of interest.”
IntechOpen's Authorship Policy is based on ICMJE criteria for authorship. An Author, one must:
',metaTitle:"Authorship Policy",metaDescription:"IN TECH's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, one must:",metaKeywords:null,canonicalURL:"/page/authorship-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\\n\\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\\n\\nCHANGES IN AUTHORSHIP
\\n\\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\\n\\nAFFILIATION
\\n\\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\\n\\nPolicy last updated: 2017-05-29
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\n\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\n\nCHANGES IN AUTHORSHIP
\n\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\n\nAFFILIATION
\n\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\n\nPolicy last updated: 2017-05-29
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10243},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15647}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:11},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:62},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5141},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"113",title:"Chemical Engineering",slug:"engineering-chemical-engineering",parent:{title:"Engineering",slug:"engineering"},numberOfBooks:38,numberOfAuthorsAndEditors:1203,numberOfWosCitations:1892,numberOfCrossrefCitations:936,numberOfDimensionsCitations:2487,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"engineering-chemical-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7353",title:"Paraffin",subtitle:"an Overview",isOpenForSubmission:!1,hash:"37902d2ff0f7e495b628ab41622be6e4",slug:"paraffin-an-overview",bookSignature:"Fathi Samir Soliman",coverURL:"https://cdn.intechopen.com/books/images_new/7353.jpg",editedByType:"Edited by",editors:[{id:"270842",title:"Dr.",name:"Fathi Samir",middleName:null,surname:"Soliman",slug:"fathi-samir-soliman",fullName:"Fathi Samir Soliman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7323",title:"Processing of Heavy Crude Oils",subtitle:"Challenges and Opportunities",isOpenForSubmission:!1,hash:"a019fb5c826a5049700528cfc505f0db",slug:"processing-of-heavy-crude-oils-challenges-and-opportunities",bookSignature:"Ramasamy Marappa Gounder",coverURL:"https://cdn.intechopen.com/books/images_new/7323.jpg",editedByType:"Edited by",editors:[{id:"209620",title:"Dr.",name:"Ramasamy",middleName:null,surname:"Marappa Gounder",slug:"ramasamy-marappa-gounder",fullName:"Ramasamy Marappa Gounder"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8448",title:"Glycerine Production and Transformation",subtitle:"An Innovative Platform for Sustainable Biorefinery and Energy",isOpenForSubmission:!1,hash:"63834d3e01c2550240908758fb0fbe34",slug:"glycerine-production-and-transformation-an-innovative-platform-for-sustainable-biorefinery-and-energy",bookSignature:"Marco Frediani, Mattia Bartoli and Luca Rosi",coverURL:"https://cdn.intechopen.com/books/images_new/8448.jpg",editedByType:"Edited by",editors:[{id:"53209",title:"Dr.",name:"Marco",middleName:null,surname:"Frediani",slug:"marco-frediani",fullName:"Marco Frediani"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6829",title:"Petroleum Chemicals",subtitle:"Recent Insight",isOpenForSubmission:!1,hash:"058919afbb548d3448e70238b4637e84",slug:"petroleum-chemicals-recent-insight",bookSignature:"Mansoor Zoveidavianpoor",coverURL:"https://cdn.intechopen.com/books/images_new/6829.jpg",editedByType:"Edited by",editors:[{id:"92105",title:"Dr.",name:"Mansoor",middleName:null,surname:"Zoveidavianpoor",slug:"mansoor-zoveidavianpoor",fullName:"Mansoor Zoveidavianpoor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6770",title:"Laboratory Unit Operations and Experimental Methods in Chemical Engineering",subtitle:null,isOpenForSubmission:!1,hash:"a139364b1ca4b347f2321a0430079830",slug:"laboratory-unit-operations-and-experimental-methods-in-chemical-engineering",bookSignature:"Omar M. Basha and Badie I. Morsi",coverURL:"https://cdn.intechopen.com/books/images_new/6770.jpg",editedByType:"Edited by",editors:[{id:"174770",title:"Dr.",name:"Omar M.",middleName:null,surname:"Basha",slug:"omar-m.-basha",fullName:"Omar M. Basha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7230",title:"Recent Advances in Ionic Liquids",subtitle:null,isOpenForSubmission:!1,hash:"cebbba5d7b2b6c41fafebde32f87f90b",slug:"recent-advances-in-ionic-liquids",bookSignature:"Mohammed Muzibur Rahman",coverURL:"https://cdn.intechopen.com/books/images_new/7230.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6186",title:"Carbon Dioxide Chemistry, Capture and Oil Recovery",subtitle:null,isOpenForSubmission:!1,hash:"720a601cd2b5476cbeb817906a4ab2dd",slug:"carbon-dioxide-chemistry-capture-and-oil-recovery",bookSignature:"Iyad Karamé, Janah Shaya and Hassan Srour",coverURL:"https://cdn.intechopen.com/books/images_new/6186.jpg",editedByType:"Edited by",editors:[{id:"145512",title:"Prof.",name:"Iyad",middleName:null,surname:"Karamé",slug:"iyad-karame",fullName:"Iyad Karamé"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6730",title:"Palm Oil",subtitle:null,isOpenForSubmission:!1,hash:"96d058f3abbc8d0660dcd56042a8ece8",slug:"palm-oil",bookSignature:"Viduranga Waisundara",coverURL:"https://cdn.intechopen.com/books/images_new/6730.jpg",editedByType:"Edited by",editors:[{id:"194281",title:"Dr.",name:"Viduranga Yashasvi",middleName:null,surname:"Waisundara",slug:"viduranga-yashasvi-waisundara",fullName:"Viduranga Yashasvi Waisundara"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6631",title:"Heat Transfer",subtitle:"Models, Methods and Applications",isOpenForSubmission:!1,hash:"18bd3ce3b071e4f0cb9d4f58ac33c2fa",slug:"heat-transfer-models-methods-and-applications",bookSignature:"Konstantin Volkov",coverURL:"https://cdn.intechopen.com/books/images_new/6631.jpg",editedByType:"Edited by",editors:[{id:"118184",title:"Dr.",name:"Konstantin",middleName:null,surname:"Volkov",slug:"konstantin-volkov",fullName:"Konstantin Volkov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5758",title:"Pyrolysis",subtitle:null,isOpenForSubmission:!1,hash:"536c8699f8fa7504a63a23de45158a24",slug:"pyrolysis",bookSignature:"Mohamed Samer",coverURL:"https://cdn.intechopen.com/books/images_new/5758.jpg",editedByType:"Edited by",editors:[{id:"175050",title:"Prof.",name:"Mohamed",middleName:null,surname:"Samer",slug:"mohamed-samer",fullName:"Mohamed Samer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5452",title:"Distillation",subtitle:"Innovative Applications and Modeling",isOpenForSubmission:!1,hash:"ec5881c323f1825291a733ddb8356285",slug:"distillation-innovative-applications-and-modeling",bookSignature:"Marisa Fernandes Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/5452.jpg",editedByType:"Edited by",editors:[{id:"35803",title:"Dr.",name:"Marisa",middleName:null,surname:"Mendes",slug:"marisa-mendes",fullName:"Marisa Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5143",title:"Chemical Enhanced Oil Recovery (cEOR)",subtitle:"a Practical Overview",isOpenForSubmission:!1,hash:"a0b7842ba790370b5485de1694611376",slug:"chemical-enhanced-oil-recovery-ceor-a-practical-overview",bookSignature:"Laura Romero-Zeron",coverURL:"https://cdn.intechopen.com/books/images_new/5143.jpg",editedByType:"Edited by",editors:[{id:"109465",title:"Dr.",name:"Laura",middleName:null,surname:"Romero-Zerón",slug:"laura-romero-zeron",fullName:"Laura Romero-Zerón"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:38,mostCitedChapters:[{id:"13254",doi:"10.5772/13474",title:"Insight Into Adsorption Thermodynamics",slug:"insight-into-adsorption-thermodynamics",totalDownloads:6549,totalCrossrefCites:58,totalDimensionsCites:154,book:{slug:"thermodynamics",title:"Thermodynamics",fullTitle:"Thermodynamics"},signatures:"Papita Saha and Shamik Chowdhury",authors:[{id:"13943",title:"Dr.",name:"Papita",middleName:null,surname:"Saha",slug:"papita-saha",fullName:"Papita Saha"},{id:"24184",title:"Mr.",name:"Shamik",middleName:null,surname:"Chowdhury",slug:"shamik-chowdhury",fullName:"Shamik Chowdhury"}]},{id:"23520",doi:"10.5772/20206",title:"Dissolution Trapping of Carbon Dioxide in Reservoir Formation Brine – A Carbon Storage Mechanism",slug:"dissolution-trapping-of-carbon-dioxide-in-reservoir-formation-brine-a-carbon-storage-mechanism",totalDownloads:5058,totalCrossrefCites:30,totalDimensionsCites:80,book:{slug:"mass-transfer-advanced-aspects",title:"Mass Transfer",fullTitle:"Mass Transfer - Advanced Aspects"},signatures:"Stefan Iglauer",authors:[{id:"37799",title:"Dr.",name:"Stefan",middleName:null,surname:"Iglauer",slug:"stefan-iglauer",fullName:"Stefan Iglauer"}]},{id:"13466",doi:"10.5772/13548",title:"Microwave Heating Applied to Pyrolysis",slug:"microwave-heating-applied-to-pyrolysis",totalDownloads:5118,totalCrossrefCites:18,totalDimensionsCites:76,book:{slug:"advances-in-induction-and-microwave-heating-of-mineral-and-organic-materials",title:"Advances in Induction and Microwave Heating of Mineral and Organic Materials",fullTitle:"Advances in Induction and Microwave Heating of Mineral and Organic Materials"},signatures:"Yolanda Fernandez, Ana Arenillas and J. Angel Menendez",authors:[{id:"14045",title:"Dr.",name:"J. Angel",middleName:null,surname:"Menéndez Díaz",slug:"j.-angel-menendez-diaz",fullName:"J. Angel Menéndez Díaz"},{id:"15134",title:"Dr.",name:"Ana",middleName:null,surname:"Arenillas",slug:"ana-arenillas",fullName:"Ana Arenillas"},{id:"15135",title:"Dr.",name:"Yolanda",middleName:null,surname:"Fernandez",slug:"yolanda-fernandez",fullName:"Yolanda Fernandez"}]}],mostDownloadedChaptersLast30Days:[{id:"56034",title:"Pyrolysis: A Sustainable Way to Generate Energy from Waste",slug:"pyrolysis-a-sustainable-way-to-generate-energy-from-waste",totalDownloads:5261,totalCrossrefCites:12,totalDimensionsCites:17,book:{slug:"pyrolysis",title:"Pyrolysis",fullTitle:"Pyrolysis"},signatures:"Chowdhury Zaira Zaman, Kaushik Pal, Wageeh A. Yehye, Suresh\nSagadevan, Syed Tawab Shah, Ganiyu Abimbola Adebisi, Emy\nMarliana, Rahman Faijur Rafique and Rafie Bin Johan",authors:[{id:"198251",title:"Dr.",name:"Zaira",middleName:null,surname:"Chowdhury",slug:"zaira-chowdhury",fullName:"Zaira Chowdhury"},{id:"208451",title:"Associate Prof.",name:"Kaushik",middleName:null,surname:"Pal",slug:"kaushik-pal",fullName:"Kaushik Pal"}]},{id:"44033",title:"Ion-Exchange Chromatography and Its Applications",slug:"ion-exchange-chromatography-and-its-applications",totalDownloads:27013,totalCrossrefCites:6,totalDimensionsCites:16,book:{slug:"column-chromatography",title:"Column Chromatography",fullTitle:"Column Chromatography"},signatures:"Özlem Bahadir Acikara",authors:[{id:"109364",title:"Dr.",name:"Özlem",middleName:null,surname:"Bahadır Acıkara",slug:"ozlem-bahadir-acikara",fullName:"Özlem Bahadır Acıkara"}]},{id:"59836",title:"Carbon Dioxide Conversion to Methanol: Opportunities and Fundamental Challenges",slug:"carbon-dioxide-conversion-to-methanol-opportunities-and-fundamental-challenges",totalDownloads:3896,totalCrossrefCites:2,totalDimensionsCites:5,book:{slug:"carbon-dioxide-chemistry-capture-and-oil-recovery",title:"Carbon Dioxide Chemistry, Capture and Oil Recovery",fullTitle:"Carbon Dioxide Chemistry, Capture and Oil Recovery"},signatures:"Sajeda A. Al-Saydeh and Syed Javaid Zaidi",authors:[{id:"193992",title:"Prof.",name:"Syed",middleName:null,surname:"Zaidi",slug:"syed-zaidi",fullName:"Syed Zaidi"},{id:"233125",title:"MSc.",name:"Sajeda",middleName:null,surname:"Alsaydeh",slug:"sajeda-alsaydeh",fullName:"Sajeda Alsaydeh"}]},{id:"57510",title:"Solvents for Carbon Dioxide Capture",slug:"solvents-for-carbon-dioxide-capture",totalDownloads:2173,totalCrossrefCites:4,totalDimensionsCites:10,book:{slug:"carbon-dioxide-chemistry-capture-and-oil-recovery",title:"Carbon Dioxide Chemistry, Capture and Oil Recovery",fullTitle:"Carbon Dioxide Chemistry, Capture and Oil Recovery"},signatures:"Fernando Vega, Mercedes Cano, Sara Camino, Luz M. Gallego\nFernández, Esmeralda Portillo and Benito Navarrete",authors:[{id:"10704",title:"Prof.",name:"Benito",middleName:null,surname:"Navarrete",slug:"benito-navarrete",fullName:"Benito Navarrete"},{id:"209759",title:"Dr.",name:"Fernando",middleName:null,surname:"Vega",slug:"fernando-vega",fullName:"Fernando Vega"},{id:"218843",title:"Dr.",name:"Mercedes",middleName:null,surname:"Cano",slug:"mercedes-cano",fullName:"Mercedes Cano"},{id:"218844",title:"Mrs.",name:"Sara",middleName:null,surname:"Camino",slug:"sara-camino",fullName:"Sara Camino"},{id:"218845",title:"Mrs.",name:"Luz. M.",middleName:null,surname:"Gallego Fernández",slug:"luz.-m.-gallego-fernandez",fullName:"Luz. M. Gallego Fernández"},{id:"218846",title:"Mrs.",name:"Esmeralda",middleName:null,surname:"Portillo",slug:"esmeralda-portillo",fullName:"Esmeralda Portillo"}]},{id:"52155",title:"EOR Processes, Opportunities and Technological Advancements",slug:"eor-processes-opportunities-and-technological-advancements",totalDownloads:4284,totalCrossrefCites:9,totalDimensionsCites:12,book:{slug:"chemical-enhanced-oil-recovery-ceor-a-practical-overview",title:"Chemical Enhanced Oil Recovery (cEOR)",fullTitle:"Chemical Enhanced Oil Recovery (cEOR) - a Practical Overview"},signatures:"Lezorgia Nekabari Nwidee, Stephen Theophilus, Ahmed Barifcani,\nMohammad Sarmadivaleh and Stefan Iglauer",authors:[{id:"37799",title:"Dr.",name:"Stefan",middleName:null,surname:"Iglauer",slug:"stefan-iglauer",fullName:"Stefan Iglauer"},{id:"179076",title:"Dr.",name:"Lezorgia",middleName:"Nekabari",surname:"Nwidee",slug:"lezorgia-nwidee",fullName:"Lezorgia Nwidee"},{id:"179077",title:"Prof.",name:"Ahmed",middleName:null,surname:"Barifcani",slug:"ahmed-barifcani",fullName:"Ahmed Barifcani"},{id:"179078",title:"Prof.",name:"Stephen",middleName:null,surname:"Theophilus",slug:"stephen-theophilus",fullName:"Stephen Theophilus"},{id:"189371",title:"Dr.",name:"Mohammad",middleName:null,surname:"Sarmadivaleh",slug:"mohammad-sarmadivaleh",fullName:"Mohammad Sarmadivaleh"}]},{id:"54078",title:"Distillation Techniques in the Fruit Spirits Production",slug:"distillation-techniques-in-the-fruit-spirits-production",totalDownloads:3686,totalCrossrefCites:6,totalDimensionsCites:12,book:{slug:"distillation-innovative-applications-and-modeling",title:"Distillation",fullTitle:"Distillation - Innovative Applications and Modeling"},signatures:"Nermina Spaho",authors:[{id:"189124",title:"Associate Prof.",name:"Nermina",middleName:null,surname:"Spaho",slug:"nermina-spaho",fullName:"Nermina Spaho"}]},{id:"60752",title:"Biomaterial from Oil Palm Waste: Properties, Characterization and Applications",slug:"biomaterial-from-oil-palm-waste-properties-characterization-and-applications",totalDownloads:1669,totalCrossrefCites:7,totalDimensionsCites:12,book:{slug:"palm-oil",title:"Palm Oil",fullTitle:"Palm Oil"},signatures:"Rudi Dungani, Pingkan Aditiawati, Sri Aprilia, Karnita Yuniarti, Tati\nKarliati, Ichsan Suwandhi and Ihak Sumardi",authors:[{id:"220081",title:"Dr.",name:"Pingkan",middleName:null,surname:"Aditiawati",slug:"pingkan-aditiawati",fullName:"Pingkan Aditiawati"},{id:"234728",title:"Dr.",name:"Rudi",middleName:null,surname:"Dungani",slug:"rudi-dungani",fullName:"Rudi Dungani"},{id:"249537",title:"Dr.",name:"Sri",middleName:null,surname:"Aprilia",slug:"sri-aprilia",fullName:"Sri Aprilia"},{id:"249539",title:"Dr.",name:"Karnita",middleName:null,surname:"Yuniarti",slug:"karnita-yuniarti",fullName:"Karnita Yuniarti"},{id:"249541",title:"Dr.",name:"Tati",middleName:null,surname:"Karliati",slug:"tati-karliati",fullName:"Tati Karliati"},{id:"249542",title:"Dr.",name:"Ichsan",middleName:null,surname:"Suwandi",slug:"ichsan-suwandi",fullName:"Ichsan Suwandi"},{id:"249543",title:"Dr.",name:"Ihak",middleName:null,surname:"Sumardi",slug:"ihak-sumardi",fullName:"Ihak Sumardi"},{id:"256251",title:"Dr.",name:"Sri",middleName:null,surname:"Hartati",slug:"sri-hartati",fullName:"Sri Hartati"}]},{id:"51915",title:"Microbial Enhanced Oil Recovery",slug:"microbial-enhanced-oil-recovery-2016-10-14",totalDownloads:3903,totalCrossrefCites:3,totalDimensionsCites:8,book:{slug:"chemical-enhanced-oil-recovery-ceor-a-practical-overview",title:"Chemical Enhanced Oil Recovery (cEOR)",fullTitle:"Chemical Enhanced Oil Recovery (cEOR) - a Practical Overview"},signatures:"Aliya Yernazarova, Gulzhan Kayirmanova, Almagul Baubekova and\nAzhar Zhubanova",authors:[{id:"178534",title:"Ph.D.",name:"Aliya",middleName:null,surname:"Yernazarova",slug:"aliya-yernazarova",fullName:"Aliya Yernazarova"},{id:"179203",title:"Dr.",name:"Gulzhan",middleName:null,surname:"Kaiyrmanova",slug:"gulzhan-kaiyrmanova",fullName:"Gulzhan Kaiyrmanova"},{id:"191673",title:"Dr.",name:"Almagul",middleName:null,surname:"Baubekova",slug:"almagul-baubekova",fullName:"Almagul Baubekova"},{id:"194422",title:"Dr.",name:"Azhar",middleName:null,surname:"Zhubanova",slug:"azhar-zhubanova",fullName:"Azhar Zhubanova"}]},{id:"58728",title:"Techniques for the Fabrication of Super-Hydrophobic Surfaces and Their Heat Transfer Applications",slug:"techniques-for-the-fabrication-of-super-hydrophobic-surfaces-and-their-heat-transfer-applications",totalDownloads:1622,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"heat-transfer-models-methods-and-applications",title:"Heat Transfer",fullTitle:"Heat Transfer - Models, Methods and Applications"},signatures:"Hafiz Muhammad Ali, Muhammad Arslan Qasim, Sullahuddin Malik\nand Ghulam Murtaza",authors:[{id:"187624",title:"Dr.",name:"Hafiz Muhammad",middleName:null,surname:"Ali",slug:"hafiz-muhammad-ali",fullName:"Hafiz Muhammad Ali"},{id:"233669",title:"MSc.",name:"Arslan",middleName:null,surname:"Qasim",slug:"arslan-qasim",fullName:"Arslan Qasim"},{id:"236423",title:"MSc.",name:"Sullahuddin",middleName:null,surname:"Malik",slug:"sullahuddin-malik",fullName:"Sullahuddin Malik"},{id:"236424",title:"MSc.",name:"Ghulam",middleName:null,surname:"Murtaza",slug:"ghulam-murtaza",fullName:"Ghulam Murtaza"}]},{id:"38711",title:"Hydrogen Storage for Energy Application",slug:"hydrogen-storage-for-energy-application",totalDownloads:11233,totalCrossrefCites:11,totalDimensionsCites:20,book:{slug:"hydrogen-storage",title:"Hydrogen Storage",fullTitle:"Hydrogen Storage"},signatures:"Rahul Krishna, Elby Titus, Maryam Salimian, Olena Okhay, Sivakumar Rajendran, Ananth Rajkumar, J. M. G. Sousa, A. L. C. Ferreira, João Campos Gil and Jose Gracio",authors:[{id:"25491",title:"Dr.",name:"Elby",middleName:null,surname:"Titus",slug:"elby-titus",fullName:"Elby Titus"}]}],onlineFirstChaptersFilter:{topicSlug:"engineering-chemical-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/191318/abdul-rahim-abdul-rachman",hash:"",query:{},params:{id:"191318",slug:"abdul-rahim-abdul-rachman"},fullPath:"/profiles/191318/abdul-rahim-abdul-rachman",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()