The viscoelastic behavior and performance to creep of biocomposites made from fique natural fiber and low-density polyethylene-aluminum (LDPE–Al) obtained from recycled long-life packages were studied. A relationship was observed between the creep mechanical responses of biocomposites with respect to natural fibers. Additionally, the four and six parameters of the mathematical model were calculated from the creep curves. A very good agreement between the experimental data and the theoretical curves was obtained in the fluency region. The relationship between interfacial fiber or filler and the polymer matrix is an indicator of mechanical performance of biocomposite, regardless of the application that you want to give. It is known that the mechanical and viscoelastic properties depend on the application time of loading, the type of load, temperature, micromechanics relationship between the natural fiber and the matrix, the type of anchor prevailing for the transfer effort to micro- and nano-levels and cannot be treated mathematically only by the laws of solids or fluids, viscoelastic behavior of biocomposites. It is possible to obtain mathematical models that fit different rheological phenomena; for example, creep and stress relaxation can be modeled and correlated with biocomposite experiment using dynamic mechanical analysis (DMA).
Part of the book: Composites from Renewable and Sustainable Materials
Biocomposites are materials formed by mixing a polymer matrix and a filler or reinforcement, with the characteristic that at least one should be of biological origin. For this study, biocomposites were obtained from natural fibers of cane bagasse and polypropylene, using bagasse from postindustrial sources, originating from the production of sugarcane from the Valle-Cauca region in Colombia. In addition, cane bagasse fibers were treated chemically, with the purpose of improving the interfacial relationship. Polypropylene homopolymer was used as a polymeric matrix, which was mixed in a twin screw extruder, obtaining different materials as biocomposites. Finally, it was possible to obtain a suitable biocomposite for application in injection molding processes and studying its mechanical, viscoelastic, and thermal behaviors, through DSC, TGA, DMA, and SEM techniques.
Part of the book: Characterizations of Some Composite Materials