Types of digesters
\r\n\tIn the book the theory and practice of microwave heating are discussed. The intended scope covers the results of recent research related to the generation, transmission and reception of microwave energy, its application in the field of organic and inorganic chemistry, physics of plasma processes, industrial microwave drying and sintering, as well as in medicine for therapeutic effects on internal organs and tissues of the human body and microbiology. Both theoretical and experimental studies are anticipated.
\r\n\r\n\tThe book aims to be of interest not only for specialists in the field of theory and practice of microwave heating but also for readers of non-specialists in the field of microwave technology and those who want to study in general terms the problem of interaction of the electromagnetic field with objects of living and nonliving nature.
",isbn:"978-1-83968-227-8",printIsbn:"978-1-83968-226-1",pdfIsbn:"978-1-83968-228-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"8f6a41e4f5ce0e9c48628516d7c92050",bookSignature:"Prof. Gennadiy Churyumov",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10089.jpg",keywords:"Electromagnetic Wave, Microwave Energy Application, Electromagnetic Energy Generation, Intelligent Microwave Heating, Microwave Organic Chemistry, Microwave Reactor, Microwave Discharge, Microwave Plasma, Microwave Drying System, Tissue Microwave Heating, Measurement Automation, Industrial Microwave Process",numberOfDownloads:224,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"July 3rd 2020",dateEndSecondStepPublish:"July 24th 2020",dateEndThirdStepPublish:"September 22nd 2020",dateEndFourthStepPublish:"December 11th 2020",dateEndFifthStepPublish:"February 9th 2021",remainingDaysToSecondStep:"7 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Prof. Gennadiy I. Churyumov is a professor at two universities: Kharkiv National University of Radio Electronics, and Harbin Institute of Technology and a senior IEEE member.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"216155",title:"Prof.",name:"Gennadiy",middleName:null,surname:"Churyumov",slug:"gennadiy-churyumov",fullName:"Gennadiy Churyumov",profilePictureURL:"https://mts.intechopen.com/storage/users/216155/images/system/216155.jfif",biography:"Gennadiy I. Churyumov (M’96–SM’00) received the Dipl.-Ing. degree in Electronics Engineering and his Ph.D. degree from the Kharkiv Institute of Radio Electronics, Kharkiv, Ukraine, in 1974 and 1981, respectively, as well as the D.Sc. degree from the Institute of Radio Physics and Electronics, National Academy of Sciences of Ukraine, Kharkiv, Ukraine, in 1997. \n\nHe is a professor at two universities: Kharkiv National University of Radio Electronics, and Harbin Institute of Technology. \n\nHe is currently the Head of a Microwave & Optoelectronics Lab at the Department of Electronics Engineering at the Kharkiv National University of Radio Electronics. \n\nHis general research interests lie in the area of 2-D and 3-D computer modeling of electron-wave processes in vacuum tubes (magnetrons and TWTs), simulation techniques of electromagnetic problems and nonlinear phenomena, as well as high-power microwaves, including electromagnetic compatibility and survivability. \n\nHis current activity concentrates on the practical aspects of the application of microwave technologies.",institutionString:"Kharkiv National University of Radio Electronics (NURE)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"24",title:"Technology",slug:"technology"}],chapters:[{id:"74623",title:"Influence of the Microwaves on the Sol-Gel Syntheses and on the Properties of the Resulting Oxide Nanostructures",slug:"influence-of-the-microwaves-on-the-sol-gel-syntheses-and-on-the-properties-of-the-resulting-oxide-na",totalDownloads:94,totalCrossrefCites:0,authors:[null]},{id:"75284",title:"Microwave-Assisted Extraction of Bioactive Compounds (Review)",slug:"microwave-assisted-extraction-of-bioactive-compounds-review",totalDownloads:12,totalCrossrefCites:0,authors:[null]},{id:"75087",title:"Experimental Investigation on the Effect of Microwave Heating on Rock Cracking and Their Mechanical Properties",slug:"experimental-investigation-on-the-effect-of-microwave-heating-on-rock-cracking-and-their-mechanical-",totalDownloads:28,totalCrossrefCites:0,authors:[null]},{id:"74338",title:"Microwave Synthesized Functional Dyes",slug:"microwave-synthesized-functional-dyes",totalDownloads:21,totalCrossrefCites:0,authors:[null]},{id:"74744",title:"Doping of Semiconductors at Nanoscale with Microwave Heating (Overview)",slug:"doping-of-semiconductors-at-nanoscale-with-microwave-heating-overview",totalDownloads:45,totalCrossrefCites:0,authors:[null]},{id:"74664",title:"Microwave-Assisted Solid Extraction from Natural Matrices",slug:"microwave-assisted-solid-extraction-from-natural-matrices",totalDownloads:25,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"252211",firstName:"Sara",lastName:"Debeuc",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/252211/images/7239_n.png",email:"sara.d@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6826",title:"The Use of Technology in Sport",subtitle:"Emerging Challenges",isOpenForSubmission:!1,hash:"f17a3f9401ebfd1c9957c1b8f21c245b",slug:"the-use-of-technology-in-sport-emerging-challenges",bookSignature:"Daniel Almeida Marinho and Henrique Pereira Neiva",coverURL:"https://cdn.intechopen.com/books/images_new/6826.jpg",editedByType:"Edited by",editors:[{id:"177359",title:"Dr.",name:"Daniel Almeida",surname:"Marinho",slug:"daniel-almeida-marinho",fullName:"Daniel Almeida Marinho"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8494",title:"Gyroscopes",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"cc0e172784cf5e7851b9722f3ecfbd8d",slug:"gyroscopes-principles-and-applications",bookSignature:"Xuye Zhuang and Lianqun Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/8494.jpg",editedByType:"Edited by",editors:[{id:"69742",title:"Dr.",name:"Xuye",surname:"Zhuang",slug:"xuye-zhuang",fullName:"Xuye Zhuang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8878",title:"Advances in Microfluidic Technologies for Energy and Environmental Applications",subtitle:null,isOpenForSubmission:!1,hash:"7026c645fea790b8d1ad5b555ded994d",slug:"advances-in-microfluidic-technologies-for-energy-and-environmental-applications",bookSignature:"Yong Ren",coverURL:"https://cdn.intechopen.com/books/images_new/8878.jpg",editedByType:"Edited by",editors:[{id:"177059",title:"Dr.",name:"Yong",surname:"Ren",slug:"yong-ren",fullName:"Yong Ren"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7714",title:"Emerging Micro",subtitle:"and Nanotechnologies",isOpenForSubmission:!1,hash:"5c6ea07211f78aafb0b53a184224d655",slug:"emerging-micro-and-nanotechnologies",bookSignature:"Ruby Srivastava",coverURL:"https://cdn.intechopen.com/books/images_new/7714.jpg",editedByType:"Edited by",editors:[{id:"185788",title:"Dr.",name:"Ruby",surname:"Srivastava",slug:"ruby-srivastava",fullName:"Ruby Srivastava"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10151",title:"Technology, Science and Culture",subtitle:"A Global Vision, Volume II",isOpenForSubmission:!1,hash:"1a9e7327c929421c873317ccfad2b799",slug:"technology-science-and-culture-a-global-vision-volume-ii",bookSignature:"Sergio Picazo-Vela and Luis Ricardo Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10151.jpg",editedByType:"Edited by",editors:[{id:"293960",title:"Dr.",name:"Sergio",surname:"Picazo-Vela",slug:"sergio-picazo-vela",fullName:"Sergio Picazo-Vela"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9336",title:"Technology, Science and Culture",subtitle:"A Global Vision",isOpenForSubmission:!1,hash:"e1895103eeec238cda200b75d6e143c8",slug:"technology-science-and-culture-a-global-vision",bookSignature:"Sergio Picazo-Vela and Luis Ricardo Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/9336.jpg",editedByType:"Edited by",editors:[{id:"293960",title:"Dr.",name:"Sergio",surname:"Picazo-Vela",slug:"sergio-picazo-vela",fullName:"Sergio Picazo-Vela"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6516",title:"Metrology",subtitle:null,isOpenForSubmission:!1,hash:"09e6966a3d9fadcc90b1b723e30d81ca",slug:"metrology",bookSignature:"Anil",coverURL:"https://cdn.intechopen.com/books/images_new/6516.jpg",editedByType:"Edited by",editors:[{id:"190673",title:"Associate Prof.",name:"Anil",surname:"Akdogan",slug:"anil-akdogan",fullName:"Anil Akdogan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"17433",title:"Dry Digestion of Organic Residues",doi:"10.5772/16398",slug:"dry-digestion-of-organic-residues",body:'Sustainable development closely links to the context of energy. Replacing fossil fuels with sustainably produced biomass or organic residues will not only be a way to cope with the depletion of fossil fuel resources but also to reduce the CO2 emissions into the atmosphere and therefore minimise the risk of global warming. A large variety of methods of biomass energy conversion are available today. Some technologies produce secondary fuel such as methanol or biomass oil which then can be utilized for various purposes. Especially for electricity generation efficient processes might be direct combustion, thermal gasification or the production of biogas.
Anaerobic digestion (AD) with biogas production, including utilisation of the organic fraction of waste materials and of residues, is a particularly promising choice and experiences increasing interest worldwide. AD does not only supply a clean and versatile energy carrier, thus displacing other energy sources such as fossil energy, but is well suited to contribute towards appropriate waste management schemes in urban areas and in agriculture. Biogas production has high potential worldwide, and it is in particular digestion of solid materials which is of increasing interest. As a result, it is to be expected that so-called dry digestion systems, operated with an elevated content of total solids (TS) in the reactor, will experience more widespread implementation.
Agricultural residues in general are left on field or are brought back to field in order to supply fertilizers and to improve soil quality. Anaerobic digestion offers the possibility to produce renewable energy, and at the same time generates a digestate with an improved fertilizer value.
Currently the most common strategy for management of municipal solid waste (MSW) worldwide is still landfill. As a result of higher environmental awareness, and often based on favourable legislative backgrounds, more and more emphasis is given to recycling and recovery, and in particular to efficient use of organic materials. Composting and anaerobic digestion are state-of-the-art for treating organic substrates.
Germany today is leading in the area of biogas production. Around 6,000 AD plants are in operation, and the number is further increasing. Most plants are in the agricultural sector, but currently at least 100 plants are run solely on the organic fraction of MSW, a direct result of introduction of source-segregation schemes for household waste. Due to favourable frameworks the number of AD plants in the municipal field will significantly rise in the coming years (along with more agricultural plants to be build).
Different types of biomass can be used for biogas production, including organic waste from gastronomy/food waste, the organic fraction of MSW, organic waste from industry/commercial waste, sewage sludge, excreta, agricultural residues, and for energy generation purposes grown energy crops. This book chapter focuses on biogas production with solid waste materials. The main principles are common in digestion of all materials, though solid substrates require adaptation of the processes. Separate collection of organic fractions and diversion from landfill is among the main success criteria.
Biogas is produced in the absence of oxygen (anaerobic digestion) through biological activity of different microorganisms if the environment is friendly for the microbes (water content, temperature, nutrients). The substrate must provide all components necessary for the metabolic processes (C, N, O, H, S, P, K, Ca, Mg), including micronutrients such as nickel, iron, zinc, manganese, copper, molybdenum, selenium, wolfram. Material should not have inhibiting substances (e.g. disinfectants, antibiotics, heavy metals). Inhibitory or toxic effects are in general related to concentration and process conditions. As metabolic (intermediate) products can also have inhibitory effects (NH3, H2S, volatile fatty acids, H2), process conditions need to be controlled.
Anaerobic digestion with biogas production is the result of an anaerobic reaction chain with several steps. Each of the steps hydrolysis, acidification, acetogenesis, methanogenesis involves specific groups of microorganisms with individual requirements. Efficient biogas production necessitates that process conditions are favourable (or at least tolerable) for each of the groups. Microbiology, together with different characteristics of manifold potential substrates, is one explanation for the large variety of technical solutions to be found in full-scale applications.
During anaerobic digestion a large part of the energy contained in the biomass is transformed into methane, an energy carrier which then can be used for example to produce electricity. Anaerobic digestion of glucose for example leads to biogas which contains 85 % of the energy content of glucose (2868 kJ/mol contained in glucose after having been formed in the photosynthesis pathway), see Fig. 1.
Biogas has a wide variety of possible applications, the most common ones are:
Direct use for cooking and lighting (small-scale AD plants at household level)
Utilisation for heat generation
Generation of electricity (several engine types can be fuelled with biogas; electricity generation is often accompanied by heat generation in combined heat and power plants/ CHP)
Fuel for cars/vehicles
Feeding into the natural gas grid (after upgrading to natural gas quality; now one standard in industrialized countries when produced at large scale; different upgrading technologies exist)
Compared to other renewable energies, it is one advantage of the energy carrier biogas that it can be stored to be used according to fluctuating demands or to availability of alternative energies. Biogas can be a particularly advantageous choice e.g. in hybrid power systems for electricity supply in remote areas or islands (Borges Neto at al., 2010). It is not necessary to make use of biogas directly at the production site. Local biogas grids can be an intelligent solution to provide biogas to where it can be used at highest efficiency (Panic et al., 2011).
Energy balance of aerobic and anaerobic degradation of glucose (based on Kranert, 1989)
During digestion, the amount of organic material is reduced in the substrate whereas nutrients like nitrogen are conserved in the biomass. AD residue therefore is an efficient fertilizer. Especially with regard to nitrogen biogas residues have excellent nutritional properties as digestion encourages transformation into bioavailable ammonia. The extent of nutrient uptake by plants depends on the time of application and there is always the possibility that nutrients will be leached from the soil when plants are unable to take them up. While in the organic form nitrogen must be first mineralised, AD converts much of the organic N into ammonia, yielding a digestate with 60-80% of the total nitrogen content in the form of ammonia (Banks et al., 2007). This makes it highly predictable, minimises leaching losses and is in line with the development of good agricultural practices. Ammonia can be converted to nitrate for plant uptake, while some plants may use ammonia directly.
The improved fertilizer value of AD digestate is to be considered as economic advantage of the AD unit. Other fertilizers are displaced and higher biomass yields are possible, as has been reported for napa cabbage, cauliflower (Jian, 2009). Digestate which is not fit for landspreading (e.g. due to contamination with heavy metals) must be disposed of.
Many different AD plant types have been developed and are to be found in full-scale for various applications and in different regions. The following overview is restricted on types typically implemented for digestion of solid waste materials, agricultural substrates and household wastes. Table 1 provides an overview on different technology concepts.
Operation of mode: batch, fed-batch or continuous | In batch systems the whole substrate is filled at once into the reactor and is digested over a pre-defined period. When digestion is complete material is removed and the process is started with a fresh load. In batch systems digestion and methane production start anew with each filling of the reactor and biogas supply therefore is not continuous. For commercial operation it is in general necessary to have several reactors run off-set (alternative loading and unloading), at least three reactors should be operated. |
In fed-batch mode material is added to the digester by and by until the space is used up. Then all material is removed and the emptied digester provides new reactor volume. | |
In a continuous system (or more precise semi-continuous) substrate is regularly fed into the reactor, and at the same time effluent is unloaded. Biogas production is continuous. Such a system in most cases is judged to be better suited for large-scale operations (Suryawanshi et al., 2010), drastic changes of input composition should be avoided. | |
Transport of material, homogeni-sation in reactor | The most common types of AD plants are based on the concept continuously stirred tank reactor (CSTR). Plants are equipped with facilities for stirring the digester content (continuously, or in most cases semi-continuously), resulting in homogenization of reactor content but also in differing retention times for different particles, with part of the material leaving the reactor after very short digestion. |
Plug flow digesters are long narrow reactors (typically 5 times as long as the width) with inlet and outlet at opposite ends. Feeding is carried out semi-continuously and typically with a thick substrate (~15% TS). In general there is no internal stirring device, material advances whenever new substrate is added and in theory the reactor content does not mix longitudinally on its way towards the outlet (but actually material does not remain as a plug and portions advance faster than others – but minimum retention time is assured far better than in CSTR concepts, thus allowing for better hygienisation). | |
Total solids content (TS) | So-called wet digestion plants are most common in agriculture, they are operated at TS < 12%. When digesting higher amounts of solid materials, water content needs to be adjusted (addition of liquid substrates, water or recirculation of digester effluent). |
For digestion of organic materials available mainly in solid form, implementation of technical processes designed for higher TS contents was a logical step (e.g. municipal bio waste). So-called dry digestion plants are typically operated at TS "/> 20%, water content often is not adjusted to a specific value but is a result of the digesting substrates. | |
It needs to be mentioned that no final definition based on TS content exists; in literature other TS limits can be found. Occasionally a third type is introduced in order to characterise processes operated between 12 to 20% TS: semi-dry digestion. | |
Digestion temperature | Most AD plants are operated in the mesophilic range, optimally around 30-38 °C. Especially in tropical countries AD plants are operated without temperature control with digestion at ambient temperatures (~20-45 °C). Mesophilic processes are more stable than thermophilic, the greater number of mesophile microorganisms makes the process more tolerant to changes in environmental conditions. |
Besides mesophilic AD, thermophilic digestion is a conventional operational temperature, optimally around 48-57 °C. The increased temperature results not only in better hygienisation, but in faster reaction rates, and consequently faster biogas production (shorter retention times, higher degradation rates). However, the process is less stable and requires higher energy input for reactor heating. | |
AD plants operated at psychrophilic temperature (<20 °C) are less common, they are restricted to low-tech applications. Degradation of organic material and biogas production are very slow, resulting in long retention times. | |
One-, or two-stage (multi-stage) systems | In two-stage systems (or multi-stage systems, which however are very rare) process conditions can be optimized for the different groups of microorganisms in order to improve overall efficiency. While during the first phase conditions can be optimized in order to achieve a rapid liquefaction, the second phase converts soluble matter into biogas. Compared to single-stage systems the process is more rapid and more stable, but investment and maintenance costs are considerably higher. |
By far the most AD plants are one-stage processes, with one single reactor for the digestion process (in general followed by a storage tank). |
Types of digesters
In agriculture, continuously operated reactors processing materials with high water contents are most common. This is to be explained by the fact that slurry was the predominant substrate for agricultural biogas plants throughout many decades. However, the use of solid substrates such as yard manure and especially energy crops is becoming more attractive (Amon et al., 2007; Weiland, 2006). In full scale, digestion of solid biomass is limited in conventional slurry-plants, due to technical restrictions in particular related to mixing and feeding devices, and technologies appropriate for operation with elevated content of total solids (TS) are imperative.
In general, the term ‘dry fermentation’ describes digestion with higher TS content. Since lack of moisture limits bacteriological activity in all anaerobic systems, no digestion can actually be ‘dry’. Therefore, the terms ‘solid-state’ digestion (Martin, 1999; Martin et al., 2003) or ‘solid-phase’ digestion (Anand et al., 1991; Chanakya et al., 1997; Kusch et al., 2008) are used as equivalents to ‘dry digestion’. Similarly, the term ‘liquid-phase digestion’ is used as equivalent to ‘wet digestion’ for processes operated with low TS content.
Dry digestion is still uncommon in agriculture, but to treat municipal solid waste so-called dry digestion processes with > 20% TS are implemented to at least a similar extent than wet digestion processes (Bolzonella et al., 2003; Forster-Carneiro et al., 2008), in general one-stage processes are favoured (Forster-Carneiro et al., 2008). As MSW is a solid material, development of technological concepts adapted to high TS contents was a logical step. While MSW is mainly processed continuously, batch processing of solid material prevails in agricultural dry digestion systems.
Both, single-stage (Kusch et al., 2008; Svensson et al., 2006) and two-stage approaches (Andersson & Björnsson, 2002; Linke et al., 2006; Parawira et al., 2008) are the subject of research for both, batch and continuous processing. Section 3 of this Chapter describes in detail a full-scale application and experimental results of one-stage batch dry digestion, and Section 4 focuses on two-stage continuous processing.
Dry digestion reduces the risk that process problems will occur due to fibrous materials floating on top of the liquid, a phenomenon often observed in wet digestion of lignocellulosic substrates such as straw or straw-containing dung, e.g. from horses (Kalia & Singh, 1998). Some further advantages associated with dry digestion systems are as follows (Hoffmann, 2001; Köttner, 2002): lower reactor volume, less process energy, lower transport capacity, less water consumption.
Monitoring results of 61 full-scale AD plants revealed that in particular continuously operated dry digestion plants are comparable to wet digestion in terms of general efficiency, methane productivity (methane generation per net reactor volume and day) and methane yield (FNR, 2009). It was however pointed out that demands on technical equipment (stirring devices, pumps) are much higher, due to the elevated viscosity of the digester content. In addition, there is a higher risk for shortage of micronutrients, and as a result addition of micronutrients is common. Discontinuous dry digestion in box type digesters was found to have a higher risk for lower gas yields and for increased odour emissions due to handling of material outside the digestion boxes (see Chapter 3), but the monitoring project confirmed that plants are robust and failure rarely occurs.
Lignocelluloses comprise a large fraction of solid biomass such as MSW, crop residues, animal manures, woodlot arisings, forest residues or dedicated energy crops (Sims, 2003). Global crop residues alone were estimated at about 4 billion Mg for all crops and 3 billion Mg per annum for lignocellulosic residues of cereals (Lal, 2008). Biogas production from lignocellulosic biomass is a slow (without pre-treatment having been applied to the substrate prior to digestion) but steady process. Methane originates mostly from hemicellulose and cellulose, but not from lignin which cannot be degraded by anaerobic microorganisms. As in other biochemical conversion pathways, in the anaerobic digestion of this substrate type, enzymes must first break the lignin barrier in order to gain access to the degradable components. In order to make these biomasses better available to anaerobic degradation, various physical or chemical pre-treatment technologies are known, including thermochemical or ultrasonic pre-treatment, use of different additives or steam pressure disruption (Liu et al., 2002; Petersson et al., 2007; Yadvika et al., 2004). Though potentially applicable on larger scale, for lignocellulosic materials contained within solid manure sophisticated expensive pre-treatment procedures seem inappropriate for utilisation on single farms. Two-stage digestion with hydrolysis is feasible (see Chapter 4.2).
The actual methane yield depends on the total methane potential, the digestion time and degradation kinetics (influenced by substrate characteristics and process conditions). The total methane potential Gpot = G(t → ∞) can be determined by optimized batch testing, which should include extrapolation of the experimental findings (Kusch et al., 2008; 2011). The exploitation degree qt = Gt/Gpot indicates the proportion of Gpot released at a specific point in time (t). Table 2 lists selected experimental results.
q26 | q28 | q42 | q49 | q74 | ||
Oat husks | 0.61 | 0.65 | 0.84 | 0.90 | Kusch et al., 2011 | |
Horse dung with straw | 0.52 | 0.62 | 0.74 | Kusch et al., 2008 | ||
Wheat straw | 0.49 | 0.61 | based on Møller et al., 2004 |
Exploitation degree qt = Gt/Gpot for different digestion times
The organic fraction of MSW is most suitable for biogas production through AD, and as mentioned above dry digestion is particularly well suited and most common. Among the key factors towards more widespread implementation of AD for organic MSW fractions, is waste segregation at source. The existence of legal frameworks resulting in authorities being liable to promote source-segregation in order to avoid landfilling of biodegradable waste is one of the main drivers to dissemination of AD in a country. Since several decades, legislation in the area of treatment of MSW has placed increasing emphasis on recycling and recovery in Europe and in many other countries.
The effect of legislation can be shown on the example Germany. Today the country has one of the highest recycling rates in the European Union (EU) and worldwide, and a significant amount of energy is recuperated via combustion by waste to energy treatment facilities (WtE), with generation of electricity and heat. In 2009 ~67% of MSW was recycled, incineration was applied to ~32%, while only 0.4% of total MSW was landfilled (2 kg per capita, compared to 216 in 1997) (Fig. 2).
MSW treatment in Germany and the 27 EU member states (based on data from Eurostat, 2011)
Germany is subject to EU regulations and has aligned its legislation according to demands on EU level, and often more stringent targets were set. Within the key focus of the EU Landfill Directive (1999) is to reduce negative effects of landfilled waste on the environment. According to the set EU objectives waste disposal is to be reduced by 20% by 2010 and by 50% by 2050 compared to 2000, and it is in particular the amount of biodegradable MSW going to landfill which is gradually to be reduced (75% of biodegradable MSW going to landfill by 2006, 50% by 2009 and 35% by 2016 compared to a 1995 baseline).
Three legislation schemes have had highest impact on the high recycling rates in Germany (Mühle et al., 2010): (i) a refund system for cans and bottles (“Ordinance on the avoidance and recovery of packaging wastes”, 1998), (ii) introduction of kerbside collection in the early 1990s (following the “Act for promoting closed substance cycle waste management and ensuring environmentally compatible waste disposal”) and (iii) severe restriction of landfilling of non-pretreated MSW since 2005 by the commencement of the “Technical instructions on MSW” (replaced by the “Landfill Ordinance”, which came into force in 2009). Landfill of non-pretreated MSW is now practically impossible, and it is in particular reduction of the organic fraction which needs to be ensured by pre-treatment.
Batch-wise digestion of stacked biomass represents a particularly simple system. More and more box type fermenters with percolation (sprinkling of process water over the stacked biomass) are to be found in full scale. The box type reactors process mainly agricultural solid substrates. Some more facilities digest municipal biowaste and have proven reliability (e.g. systems Bekon, Biocel).
Substrate is filled at once into the reactor and is digested over a pre-defined period. The addition of an appropriate ratio of solid inoculum accelerates methanisation and prevents digester failure (Ten Brummeler & Koster, 1989). The sprinkled liquid assures favourable biomass moisture content.
In order to equalise gas production at least three batch-operated dry digestion reactors need to be run offset. In general all digesters are functionally coupled through the recirculated liquid: leachate of all reactors is collected in a common process water tank and reused for percolation. It is not possible to operate the system without a separate process water tank, since the total volume of liquid varies in time and depends on water content, water holding capacity and degradation kinetics of the solid materials. Due to the water movement through the stack of solids, organic material is partly washed out from the substrate stack and is metabolised either in the liquid tank or in other solid-phase digesters, while only part of the total methane production actually occurs in the substrate itself.
Experimental results demonstrate that in batch-operated dry digestion with percolation significant amounts of biogas can originate from methanogenic activity in the process water tank. This gas volume is not to be neglected and represents a valuable energy source. If not valorised, the negative effect lies not only in the fact that the energy content is not utilised but also in the fact that any methane released to the atmosphere will function as greenhouse gas. There is a general tendency to keep this plant type as simple as possible. Experimental results suggest that gas capture not only from the digesters but also from the process water tank should be considered as a standard. Dimensioning of the process water tank is not of decisive influence on methane generation in the liquid phase. Even when deciding in favour of a small process water tank, equipment for catching generated biogas from the tank needs to be foreseen. Especially when digesting easily hydrolysable biomass, special attention needs to be given to biogas generated in the liquid phase (Kusch et al., 2009).
Within a research project, full-scale experiments have been performed at a farm plant located in the southern area of Germany on a farm with organic farming (Bioland). The plant consists of four concrete digestion boxes of 130 m³ each (Fig. 3). Process water was sprinkled over the biomass bed and leachate of all four boxes was collected in one tank to be reused for percolation. Digestion temperature was in the mesophilic range. Percolation (not automated) was around twice daily in routine plant operation. The full-scale farm plant has been described in previous publications (Kusch, 2007).
Though other materials (solid dung, grass, energy crops) were added as well, the AD plant was built especially for the digestion of green cut collected by the local authority. This material is not suited for conventional wet digestion due to the presence of stones and a high proportion of woody biomass. Green cut was chopped to <10 cm before digestion.
Full-scale farm plant with four solid-phase digestion boxes
The fermenters were filled and emptied by using a wheel loader. Before the filling, substrate was mixed with solid inoculum (digested material from the previous cycle). For the mixing, a windrow was formed of fresh substrate and of solid inoculum and mixed with a compost windrow turner. A short period of pre-composting ensured that temperature of the substrate increased so that pre-heated material was brought into the reactor.
A combination of laboratory and farm scale experiments was conducted. The farm scale plant is described in Chapter 3.2. A dry digestion laboratory with 10 reactors (50 L each) was build (described in detail by Kusch (2007)).
Experiments showed that the necessary amount of inoculum strongly depends on specific substrate characteristics and may vary within a wide range (ensiled maize: around 70 % w/w based on TS; ensiled grass: around 70 % w/w TS; horse dung with straw: 10 to 20 % w/w TS; cattle dung: 0 %, but augmentation of gas yield in mixture with structure material).
It was found that both in laboratory and full-scale achieved biogas yields were comparable to the yield obtained in liquid-phase digestion, if process conditions were optimal. However, suboptimal conditions resulted in an inhomogeneous and incomplete degradation at farm-scale (Kusch, 2007). Optimal conditions are difficult to be determined and to be fulfilled at farm-scale, which increases the risk of incomplete degradation in this simple fermenter type with no substrate mixing.
It has been demonstrated that during process initiation discontinuous leachate recirculation is more favourable than continuous watering (Kusch et al., 2012; Martin, 1999; Vavilin et al., 2002, 2003; Veeken and Hamelers, 2000), which is assumed to be the result of encouraging methanogenic areas to expand throughout the whole digester, while continuous watering bears the risk to spread acidification. In addition, it was demonstrated that for the process type discussed here there is no beneficial effect of continuous water circulation compared to discontinuous watering throughout the whole digestion process (Kusch et al., 2012).
Experimental results (at laboratory scale) clearly indicate that methane formation within the recirculated liquid significantly adds to the total methane production of the process. In testing, up to 21% of the total methane generation originated from the recirculated liquid. This suggests that methane generation from the liquid phase is not to be neglected and needs to be recuperated. The process water tank should be equipped with gas collection facilities. Experimental results further indicate that higher ratios of easily hydrolysable substrates increase the proportion of methane from the liquid phase while slowly hydrolysable material encourages biogas generation in the decomposing biomass bed itself (Kusch et al., 2009).
The successful implementation of processes with percolation necessitates that liquid actually trickles through the whole substrate stack. Therefore, process water with low viscosity must be used as should substrate with sufficient structure. Liquid manure (slurry) is not suitable for percolation, as it will not ensure a leachate flow through the solid biomass bed. If no process water is available, fresh water (e.g. rain water) can be used to start the process.
Materials with poor structure should be mixed with structure material such as straw or green cut before digestion. In order to facilitate homogeneous digestion and avoid excessive tightening during the process, the fresh biomass stack should not exceed a height of 3 m.
Operation of the full-scale plant has proven to be robust and flexible, which are the main advantages associated with this process type. It needs to be taken into consideration that – in contrast to continuous process types – no process automation is possible, and as a result the necessary amount of effort and labour increases drastically for higher throughputs and higher numbers of reactors (the volume of one reactor is limited).
Choosing one process type among several alternative systems should depend on the specific characteristics of the available materials. If biogas generation is envisaged exclusively with energy crops, continuously operated process alternatives should be given special consideration. Discontinuous digestion with stacked biomass and sprinkling of process water is not the optimal choice for such substrates due to their poor structure and the high inoculum proportion required. Especially for materials such as energy crops with high costs for cultivation and conservation, incomplete degradation may have critical effects on the profitability of a biogas plant (a factor which is less relevant for digestion of organic residues). Therefore, compared to digestion of waste materials, special care should be taken so as to avoid inactive zones with inhibited degradation.
For discontinuous digestion with stacked biomass and percolation, structure-rich biomass, e.g. green cut or solid dung, is especially advantageous choice when considering process technology. Mixtures of structure-rich biomass and energy rich materials are well suited both in terms of material characteristics and energy production.
Successful implementation of discontinuous dry digestion is the result of two main factors:
Favourable process conditions during digestion
Appropriate choice of dry or wet digestion depending on the specific characteristics of the available substrates
Continuously operated reactors are commonly used in municipal waste digestion, they are state-of-the art. There are several manufacturers offering large scale plants.
Process | Waste | Capacity | TS in reactor | Retention | Biogas yield | CH4 content | ||
Mg/year | % | days | Nm³/Mg TS | Nm³/Mg VS | Nm³/Mg Input | % | ||
3A | BW | 45-50 | 410 | 285 | 100 | 55 | ||
BEKON | BW | ≤50 | 28-35 | 240-530 | 170-370 | 60-130 | 55-60 | |
KOMPOGAS | BW | 20,000 | 35 | 15-20 | 380 | 245 | 85 | 50-63 |
ATF | BW | 1,000 | 35-50 | 15-25 | 120-400 | 96-320 | 30-96 | 55-65 |
DRANCO | BW | 20,000 | 18-26 | 20-30 | 550-780 | 390-550 | 120-170 | 50-65 |
DRANCO | OR | 13,500 | 56 | 25 | 460-490 | 240-250 | 133-144 | 55 |
VALORGA | BW | 52,000 | 30-35 | 24 | 390-410 | 175-185 | 80-85 | 55-60 |
Technical parameters of large-scale organic waste disposal dry fermentation plants (as compiled by Kraft, 2004). BW: biowaste; OR: organic residues (municipal); TS: total solids; VS: volatile solids
Though wet digestion prevails in the agricultural area, farm scale continuously operated dry digestion plants operated on organic residues are known as prototype or single farm specific solutions. The following focuses on innovative solutions for continuous dry digestion of agricultural organic residues.
One of the first prototypes for continuous dry digestion of agricultural substrates was developed in Switzerland (Baserga et al., 1994). It was a pilot plant of 9.6 m3 capacity for continuous digestion of solid beef cattle manure on-farm. The solid manure was pressed via a pipe into the top of an upright standing cylinder. The pipe was heated to ensure that the material reaches the fermenter at suitable temperature. For discharging a scraper floor filled a discharge screw and the digesting residue was separated by a screw press. The liquid fraction was used as inoculum sprayed on the top of the reactor.
This principle was further developed by a prototype designed by Timo Heusala and implemented at Agrifood Research Finland (MTT) in Sotkamo, Finland (Virkkunen et al., 2010). Metener Ltd delivered the measuring equipment and modifications.The size of the screw stirred fermenter is 4.5 m3 and the liquid volume is about 3 m3, Fig. 4. A feeder screw charges solid manure from beef cattle. The manure is a mixture of excreta, peat, and straw or reed canary grass. The fermenter is discharged by a screw.
Also in Switzerland at FAT, a channel pilot reactor was developed. Baskets filled with solid manure pass through a slurry filled airtight fermentation channel. This solution did not find its way into praxis yet.
A continuously two stage two phase pilot plant was developed by Lars Evers in Järna, Sweden (Schäfer et al., 2006). This biogas plant is a suitable tool not only for renewable energy production but also for designing organic fertilisers by varying anaerobic process parameters like load rate of the reactor, retention time and mechanical treatment before, within and after the anaerobic process. This plant is described in the following chapter.
Prototype of a solid manure fermenter in Sotkamo, Finland; picture courtesy Heidi Kumpula
The local association of farms, horticulture enterprises, food processing units, food stores, and consumers in Järna aims to recycle organic waste. The goal is reduced use of non-renewable energy and use of the best-known ecological techniques in each part of the system, to reduce consumption of limited resources and minimize harmful emissions to the atmosphere, soil, and water. The biogas plant described here served as reference plant for nutrient recycling solutions within the BERAS-project of “The Baltic Sea Region INTERREG III B Neighbourhood Programme 2000-2006” of the European Union. Presently the biogas plant digests dairy cattle manure and organic residues originating from the farm and the surrounding food processing units.
The prototype plant is situated on farm close to the stall. Figure 5 shows the block diagram of the material flow of the two reactors. The blue boxes describe the processes, the white boxes the input and output, and the yellow boxes digestion residues within the process.
Both reactors are made of CORTEN-steel cylinders of 2.85 m inner diameter. They are coated by 20 cm pulp isolation and corrugated sheet. The steel cylinders were formerly used as smokestack.
Block diagram of the material flow of the prototype plant in Järna, Sweden
In a two-phase process, the hydrolysis reactor is continuously filled and discharged automatically. The output from the hydrolysis reactor is separated into a solid and liquid fraction. The solid fraction is composted. The liquid fraction is further digested in a methane reactor and the effluent is used as liquid fertiliser. The different process steps are described according to Figure 6.
Principle of operation of the prototype biogas plant at Yttereneby farm, Järna, Sweden. 1 feeder channel, 2 first or hydrolysis reactor, 3 drawer, 4 drawer discharge screw, 5 solid residue separation screw, 6 solid residue after hydrolysis, 7 drain pipe of liquid fraction, 8 liquid fraction buffer store, 9 pump and valve, 10 second or methane reactor, 11 effluent store, 12 gas store, 13 urine pipe, 14 urine store
A hydraulic powered scraper shifts manure of a dairy stanchion barn into the feeder channel (1) of the hydrolysis reactor (2). The manure is a mixture of faeces, straw and oat husks. The urine (13) is separated in the stall via a perforated scraper floor and stored separately (14). From the feeder channel the manure is pressed via a feeder pipe to the top of the 30° inclined hydrolysis reactor of 53 m3 capacity. The manure mixes with the substrate sinking down by gravity force. After 22 to 25 days retention at 38 °C, a bottomless drawer (3) from the lower part of the reactor discharges the substrate. Every drawer cycle removes about 0.1 m3 substrate from the hydrolysis reactor to be discharged into the transport screw (4) underneath. From the transport screw, the substrate partly drops into a down crossing extruder screw (5) where it is separated into solid (6) and liquid (7) fractions. The remaining material is conveyed back to the feeder channel and inoculated into the fresh manure.
The solid fraction from the extruder screw is stored at the dung yard for composting. The liquid fraction is collected into a buffer store (8) and from there pumped into the methane reactor (10) with 17 m3 capacity. The methane reactor is 4 m high and filled with about 10,000 filter elements offering a large surface area for methane bacteria settlement. Liquid from the buffer and from the methane reactor partly returns into the feeder pipe to improve the flow ability. After 15 to 16 days retention at 38 °C the effluent is pumped into slurry store (11) covered by a floating canvas. A screw pump (9) conveys all liquids, directed by four pressurized air-driven valves. The gas generated in both reactors is collected and stored in a sack (12).
A compressor generates 170 mbar pressure to supply the burners of the process and estate boiler with biogas for heating purposes. A programmable logic controller regulates the biogas plant automatically.
The plant produced in average 52 m3 biogas per day. Maximum yield was 91 m3 biogas per day or 0.17 m3 CH4/kg VS. From oat husks and straw, originate 53 to 70% of the organic dry matter of the input material. In the solid fraction remained 70 to 75% of the total solids, in the effluent 10 to 15% and within the biogas 14.8 to 14.9%. Because the solid fraction is removed after digestion of the manure in the first reactor, the loading rate and the yield rate cannot be calculated for the whole plant. This methodical problem makes it difficult to compare this plant with one-stage plants.
The volume efficiency of the plant is slightly better than the average of common slurry fermenters. An evaluation of on farm biogas plants (Bundesforschungsanstalt für Landwirtschaft (FAL), 2006) reported that 70% of the evaluated plants achieved a volume efficiency of 250 to 750 L biogas per m3 and day. Up to 305 kWh per day or 56% of the produced energy was available for heating the farm estate. Composted solid fraction and effluent together contained 70 to 81% of the total input nitrogen and 94 to 111% of input NH4.
The two-phase prototype biogas plant in Järna is suitable for digestion of organic residues of the farm and the surrounding food processing units. The plant works full-automatically. However, the two-phase process consumes much energy and the investment costs are high. There is still a lack of appropriate technical solutions in terms of handling organic material of high dry matter content, and process optimisation. The innovative continuously feeding and discharging technique is appropriate for the consistency and the dry matter content of the organic residues of the farm. It is probably not suitable for larger quantities of unchopped straw or green cut.
Reactor | R1 | R2 | R1 + R2 | R1 | R2 | R1 + R2 | |
Observation period | spring | autumn | |||||
Effective capacity | m3 | 53 | 18 | 71 | 53 | 18 | 71 |
Fresh mass input | kg/day | 2,000 | 1,045 | 2,000 | 2,430 | 1,184 | 2,430 |
Specific weight input | kg/m3 | 946 | 968 | 989 | 1,015 | ||
Organic dry matter VS | kg/day | 340 | 61 | 340 | 375 | 35 | 375 |
Organic dry matter | % | 17 | 5.8 | 17 | 15 | 3 | 15 |
Retention time | days | 25 | 16 | 22 | 15 | ||
Loading rate | kg/(m3 day) | 6 | 3 | 7 | 2 | ||
Biogas yield | L/kg VS | 85 | 313 | 141 | 125 | 147 | 139 |
Methane yield | L/kg VS | 48 | 204 | 85 | 71 | 96 | 80 |
Volume efficiency | L/(m3 day) | 544 | 1,093 | 681 | 887 | 297 | 740 |
Performance parameters of the biogas prototype plant in Järna
Further pros and cons of the presented AD plant in Järna are compiled in Table 5 (it needs to be taken into account, that optimization was not yet fully completed).
Pros | |
Operating | Full-automatically digestion of solid manure, no mixing required |
Heat energy | Up to 1.7 kWh / kg organic dry matter, up to 57% energy surplus |
Ntot losses | Up to 39% reduced compared to aerobic treatment |
NH4 losses | Up to 93% reduced compared to aerobic treatment |
CH4 generation | Up to 64% from oat husks (residues from the food processing unit) and straw |
Cons | |
Gas production | Average gas yield too far from the maximum yield |
Heat consumption | Organic material must be heated twice |
Investment costs | "/>2000 € per m3 reactor volume |
Pros and cons of the prototype biogas plant in Järna, Sweden
Up to now, the technique of the prototype does not offer competitive advantages in biogas production compared to slurry based technology as far as only energy production is concerned. The results show that the ideal technical solution is not invented yet. This fact may be a challenge for farmers and entrepreneurs interested in planning and developing future competitive biogas plants on-farm suitable for solid organic matter.
Dry digestion of organic residues is particularly well suited and state-of-the art for treating the organic fraction of MSW. Segregation at source is among the main factors towards wider dissemination of this technology, and therefore regulatory frameworks are most important.
Dry digestion is less common in the agricultural sector, but the technology has experienced increasing interest in the last years, and it is to be expected that more dry digestion plants will be build.
Development of new prototype biogas plants requires appropriate compensation for environmental benefits like closed nutrient cycle and production of renewable energy to improve the economy of biogas production. The prototype in Järna described in Section 4 of this book chapter meets the set objectives since - beside renewable heat energy - a new compost product from the solid fraction is generated. However, the two-phase process consumes much energy and the investment costs are high.
Batch anaerobic dry digestion in box type fermenters promises further application in agriculture and for treatment of municipal solid waste, especially with smaller substrate throughputs. Methane yields can be achieved which are at the same level than the yields in wet digestion systems. A higher risk of inactive zones with inhibited biodegradation was, however, observed at full scale. This may be explained as result of lack of mixing during fermentation and due to inhomogeneous conditions over the substrate stack height.
For discontinuous digestion with sprinkling of process water, structure-rich biomass, e.g. green cut, landscape conservation residues or solid dung, is especially advantageous choice when considering process technology. In order to maximize gas production per reactor volume, mixtures of fractions with high energy content and structure-rich fractions are advisable.
Current research at the University of Stuttgart (Chair for Solid Waste Management and Emissions) on different options for sustainable biogas production is embedded in the EU Central project SEBE – Sustainable and Innovative European Biogas Environment (
Despite the renewed interest in safeguarding research output, the changing storage carriers due to the fragility of storage carriers, lifespan, and handling practices are a cause of concern for the university libraries [1]. University libraries cannot avoid working in the cloud as they have become adaptive to inevitable and unpredictable changes occurring within the digital environment [1]. The university community places much emphasis on research and publication not only because it is presumed that research enriches teaching and the learning process, contributing to the body of knowledge, but also because it is a major determinant of institutional prestige and that of the nation at large [2].
\nIrrespective of the technological changes, stored research output in universities must be secured for future availability and accessibility [3]. Cloud storage has become an alternative for the storage of research output. According to Yuvaraj [4], university libraries have continued not only as only new technology adopters but rather cutting-edge IT users. Clearly, cloud computing as a cutting-edge IT platform proves to be a lasting technological innovation that continues to rise in usage [5].
\nHowever, owing to the technological age, university libraries are faced with new opportunities for innovative educational practices, hence providing electronic library services. Almost all university libraries are primarily concerned with enhancing teaching, learning, and research through the provision of timely information resources. On that basis, researches by Gabridge [6], Gold [7] and Jones [8] revealed the need for libraries to provide research data services. In providing timely information resources, modern libraries’ digital collections must be stored for future use and as backups to ensure continuous accessibility by library users.
\nWitten and Bainbridge [9] explained that a digital library is a focused “collection of various forms of digital objects” such as text, audio, and video, as well as their methods for access, retrieval, selection, organization, and maintenance. Rosenberg [10] also reiterated that a digital library can refer to information resources which are accessed by and delivered to users electronically or via a network [11]. Primarily, in developing countries, microfilms, databases, CD-ROMS, hard disks, external drives have been the existing platforms for storing library digital information, though these come with major drawbacks. For instance, these storage devices are exposed to threats such as theft, inadequate storage space, virus attacks and unauthorized accessibility among others. These drawbacks have been a major concern for academic libraries’ thus an ongoing debate and discussion on the new technology “cloud storage” as an alternative storage media.
\nTo a large extent, studies confirm that modern university libraries have greatly shifted from traditional roles (paper-based services) to digital library services. This paradigm shift has paved the way for library services to be accessed and delivered via the web [12]. For university libraries, the issue of using cloud services to store digital collections is particularly important as technological changes have paved the way for library services to be accessed and delivered via the web [12]. As more data and information is generated and stored in the cloud, either by design or default, university libraries need to be confident of the security of the digital collections. There is a growing interest in the implementation of cloud storage services which exposes university libraries to a new set of threats and vulnerabilities. McLeod and Gormly [13] concluded that if cloud service providers are to be used, their security, viability, sustainability, and trustworthiness must be paramount.
\nStudies have demonstrated that that cloud computing in libraries has widely examined the rise of data-intensive services in academic libraries with less emphasis on cloud storage security [14, 15]. Most of these studies were based on individual or small-scale survey data concentrated in one country. Owing to the extant gap in wide-scale exploratory studies, the present paper explored the risks associated with cloud storage services and how university libraries can ensure safe research output. In this light, the paper contributes significantly to the body of literature by unraveling new evidence from universities located in Ghana and Uganda on how academic libraries can secure research output with cloud services.
\nThe following sections include research questions, related literature, theoretical framework, research methodology, results, a summary of key findings, conclusion and recommendation.
\n\n
What are the existing storage carriers/media for storing research output in university libraries?
What are the reasons for university libraries moving research output into a cloud infrastructure?
What risks are associated with cloud storage services for university libraries?
In university libraries, how can research output store on the cloud service be secured?
Libraries use several types of media in storing digitized content or information (audio, video, text, images etc.). Each of the media suffers disadvantages with regard to reliability, high lifespan, ease of access and validation plus various costs. Enakrire and Baro [16] argued that these media include;
Magnetic disk drives are disk drives which are mostly mounted on computers. They are inexpensive, of very high-density, fast to use, and multiple user connectivities to the server are possible.
Magnetic tape, which comes in various formats and can only be effective for duplicate or backup copies. However, they are not recommended for primary storage.
Optical disks, for example, CD-R and DVD-R cost less, use low energy but exert high labor costs, poor accessibility, a periodic verification is not cost-effective and low density by today’s standards. Others are CD-RW and DVD-RW these are recommended for individual and day-to-day use but are not recommended for data preservation [17].
Until recently, evidence from the pool of literature shows that the concept of cloud is of the growing research area. Indeed, a lot more storage capabilities exist in the cloud. According to Mavodza [18], cloud computing is the delivering of hosted electronic services over the internet. Scale [19], opines that it is: “the sharing and use of applications and resources of a network environment to get work done without concerns about ownership and management of the network’s resources and applications, data are no longer stored on one’s personal computer, but are hosted elsewhere to be made accessible in any location and at any time”. Gosavi et al. [20] iterated that cloud computing harnesses the capabilities of resources like storage, scalability, and availability, which are accessible to university libraries as clients. Hence, depending on the needs of the clients, the infrastructure can be scaled up or down.
\nIn developed or developing countries, cloud storage provides promising advantages to university libraries. According to Li [21], cloud storage reduces the cost of hardware and software, and it makes the storage and management of data on the internet possible. It also reduces the work of Information Technology (IT) professionals as most of the system’s work is performed by the hosting company. Payment for the cloud storage service is by pay-as-you-go, which is convenient for organizations such as academic libraries which have budget restraints. Han [22] enumerates cost-effectiveness, flexibility, and data safety as a rationale for cloud storage in academic libraries. Han [23] alludes the advantages that cloud storage has over traditional storage to “availability, scalability, off-site storage, on-demand, and multi-tenancy” which allows different applications or different users to access the same resources to fit their needs. Han further states that data stored in the cloud can be easily transferred and duplicated globally to minimize data loss due to natural disasters.
\nHaris [24] also gives an analysis of the benefits of cloud storage especially for libraries and these include high performance, an avenue for collaboration, less “need for in-house technical expertise, cost savings, and more timely access” to the latest IT functionality. Haris further states that the cloud also provides a better workflow, “automated software updates, redundancy”, and backups. Cloud storage provides collaboration, particularly for academic and research libraries. Through the use of cloud technology, a collaboration between libraries, researchers, and students is promoted. The cloud also enables remote access to a wide range of research materials.
\nIn this section, the role of cloud computing in university libraries, specific cloud storage platforms and the risks associated with cloud storage are reviewed.
\nKaushik and Kumar [25] contend that cloud computing can offer many interesting possibilities for institutions such as libraries. Cloud computing is quite significant as it reduces technology cost, increases capacity reliability, and storage performance for some type of automation activities like library services. In recent times, cloud computing has made strong inroads into other commercial sectors and is now beginning to find more of its applications in the library and information environment.
\nAfter the personal computer and the internet, cloud computing also known as the third revolution is completely new in terms of technology. Potentially, cloud computing is an unraveled technology in university libraries as digital content can be stored in the cloud. Mobile devices are enabled using cloud computing by taking out an item or scanning a barcode [26]. Gosavi et al. [20] argued that when using cloud computing, users can be able to browse a physical shelf of books located in the library, choose an item or scan a barcode into his mobile device. More so, heritage materials or documents can be digitized, searched and accessed by library patrons. The new concept of cloud libraries includes OCLC, Library of Congress (LC), Exlibris, Polaris, Scribd, Discovery Service, Google Docs/Google Scholar, WorldCat and Encore [27].
\nNowadays, studies appear to be emerging in cloud computing. For instance, a paper presented by Saleem et al. [27] indicated that university libraries have adopted cloud computing technology to enhance library services by adding more values, attracting users and cost-effectiveness. In the cloud computing environment, clouds have vast resource pools with on-demand resource allocation and a collection of networked features. The new concept of cloud and libraries has generated a new model called cloud libraries.
\nIn the work of Zainab et al. [28], it was reported that the first reason of shifting research report into cloud computing is to reduce the total cost of ownership and maintenance of the cloud infrastructure. Secondly, scalability of the cloud service system is another objective, so that it is able to handle increased traffic. Due to the rapid expansion of the user group, we need to redesign the back-end web server with scalability in mind, such that it is able to accommodate an increasing number of concurrent users.
\nBased on the web traffic statistic, the average visit per month for the year 2012 is approximately 87,000 users and we expect the numbers will grow in the coming years as resources in the repository also grew. The high volume of transaction is causing The server to behave extremely sluggish and crashes frequently [28]. On the hand, migration is necessary in order to meet the increasing demand for storage space for full-text digital resources. File sizes of some digital resources are extremely large especially audio, video and images. Besides, as more users’ access and upload articles to the magnetic hard drives, university libraries face problems in fulfilling the storage space demand. The cloud storage service which promises and contributes to about 13 terabytes of storage space, can store over 12 million digital files of research output. Thus, it is very obvious that without a long-term plan, university libraries would not able to sustain the present storage demand from users in the future until alternative storage is assessed.
\nIt is expected that migration of digital files would reduce downtime when scheduled backup and indexing, as well as site traffic, occur simultaneously. The previous system backup was very laborious and time-consuming. Often scheduled jobs would cause unnecessary downtime of the magnetic and optical systems. System downtime is unavoidable because the system was hosted without a redundant server.
\n\n
Amazon S3: Amazon Simple Storage Services (Amazon S3) provides a secure, durable, highly-scalable object storage (Amazon, 2015). It uses a web service interface to store and retrieve any amount of data. It is a pay as you use service. There are different storage classes designed for different uses; Amazon S3 standard, Glacier for long-term archive. The services include backup and archiving, disaster recovery, and big data analytics [29].
Google cloud storage: Allows storage and retrieval of any amount of data at any time. It facilitates the storage of data on Google’s infrastructure with high-reliability performance and availability (Google, 2015) [29]. The services include data storage, large unstructured data objects, uploading data, and managing data. The lowest storage class is $0.01 GB/month.
Microsoft Azure: Azure supports the selection of wide services including operating systems, frameworks, tools, and databases. It’s typically a platform-as-a-service and software-as-a-service. It provides secure private connections, storage solutions, and data residency and encryption features (Microsoft, 2015). It provides scale-as-you-need, pay-as-you-go service plan, and strong data protection security.
Other cloud storage platforms include Dropbox, SkyDrive, Box, Google Drive, Flickr, Google music, Apple iCloud, and Amazon cloud player.
Lili and Buer [30], highlighted that advancement in technology may not necessarily transform the cloud services into mainstream technology in academic libraries. A scan of literature [31, 32, 33], revealed that cloud security, interoperability, and regulatory perspectives are worrying. In addition, academic libraries may or may not completely lose control over IT and data. Sometimes, trust in the service provider, data portability, migration, copyright issues, and privacy is a big risk when it comes to adopting cloud computing technology.
\nPolicies guide institutions and operations on what to do and not to do. Cloud storage and applications are valuable resources that allow academic libraries to store large amounts of information and perform collaborative tasks more effectively. However, there are risks associated and that must be mitigated in order to properly secure the research assets placed into the cloud [32]. In this light, it is purposeful for the policy to provide the framework within which the libraries will be expected to operate for storage and process information in cloud environments. Basically, the policy should encompass the scope of work, software, research information, human resource, users, copyright and many more.
\nOnce a digital collection (scholarly works, publications/collections, and historical documents) is put on the cloud, it becomes available for all groups of users and this can be exposed to unauthorized access to data centers. “Cloud operators can dictate the manner in which users can access, use and reuse content or information via specific online services or applications. That is, the user interface ultimately dictates what can or cannot be done by end-users, regardless of what they are theoretically entitled to under the law” [34]. So, the question is whether academic libraries can allow such law to be overridden on as it has already fallen in the public domain. This indeed is likely to impact on copyright law in the context of online applications.
\nCloud storage service providers are not guided by standard regulations. As a result, some service providers are tempted to offer low-quality services to developing countries in Africa thus creating loopholes for cybercriminals to take advantage. As an emerging trend, this issue of no interoperability is of concern, if research assets can be secured on the cloud. Interoperability refers to the ability of a collection of communicating entities to share specific information and operate on it according to agreed-on operational semantics [35]. Even though the clients (academic libraries) desire standards for cloud interoperability, the reality currently is that standard efforts only focus on portability, which is the ability to migrate workloads and data from one provider to another.
\nLibrarians cannot sit unconcerned in this matter since the open access (OA) repositories are also part of collections of the library [36]. Though the OA repositories facilitate sharing of resources in educational research through portals that are modeled as gates to several repositories, it is a challenge because data synchronization is an issue when components in different clouds or internal resources work together, whether or not they are identical. Communication between clouds typically has a high latency, which makes synchronization difficult. Also, the two clouds may have different access control regimes, complicating the task of moving data between them [37].
\nThus, interoperability is required, not just between different components, but between identical components running in different clouds [38]. Such components often keep copies of the same data, and these copies must be maintained in a consistent state. The design approach must address management of “system of record” sources, management of data at rest and data in transit across domains that may be under control of a cloud service consumer or provider and data visibility and transparency.
\nNurnberg et al. [39] argued that full interoperability includes dynamic discovery and composition: the ability to discover instances of application components and combine them with other application component instances, at runtime. Application interoperability requires more than communications protocols. It requires that interoperating applications share common processes and data models. These are not appropriate subjects for generic standards, although there are specific standards for some particular applications and business areas.
\nObviously, the cost is a challenge for academic libraries. More especially, enterprise cloud storage platforms such as Amazon S3 and Microsoft Azure are paid for as you use the cloud services. Unfortunately, libraries that find it difficult to fund basic services will see that as an extra cost inhibiting them to withdraw from the cloud service. The cost comes with human resource and sometimes maintenance of servers.
\nThe paper adopts the development of a Cloud Storage Security Framework (CSSF) to support an integrative approach to understanding and evaluating security in cloud storage in university libraries. The framework enables understanding of the makeup of cloud storage security and its associated measures. Drawing upon CSSF, it indicates that security in cloud storage can be determined by seven factors: (1) security policies implementation in cloud storage, security measure that relates to (2) protecting the data accessed in cloud storage; (3) modifications of data stored; (4) accessibility of data stored in cloud storage; (5) non-repudiation to the data stored; (6) authenticity of the original data; (7) reliability of the cloud storage services.
\nThe framework is summarized in Figure 1.
\nCSSF. Source: Yahya [40].
In applying the framework to the current research, security of research output in the cloud infrastructure can be determined by ensuring that all the seven factors are met by the university library.
\nThis study aimed to explore security issues considered in migrating research output to the cloud service as input into the development of preservation or storage systems within the library environment. This section described an approach followed in the study. This included the research approach, purpose, instrumentation, and sources of data. Our paper adopted the qualitative approach to explore cloud computing in university libraries in the sub-Saharan Africa. Using a wide range of evidence and discovering new issues, the purpose of the paper was to explore the risks associated with cloud storage and security implications. The exploratory design was significant as the authors became more familiar with basic facts, settings, concerns, and generating new ideas. In this study, interviews were conducted with respective librarians in charge of research output within the (4) universities. Hence, the research sites were purposefully selected to ensure that they provided sufficient opportunities to test available infrastructure for storing research output. Again, since the paper was interested in only libraries with repositories, the institutions without OA repositories were excluded.
\nAn interview schedule on the research questions was presented to 4 librarians from the universities. Thus, participants for the investigation were made up of librarians in charge of institutional repositories. These four university libraries selected were; Balme Library, (University of Ghana—Legon), Kwame Nkrumah University of Science and Technology—KNUST library (Ghana), HamuMukasa Library, (Uganda Christian University), and The Iddi Basajjabalaba Memorial Library, (Kampala International University—Uganda). The thematic content analysis was used to analyze the qualitative data. The authors further reviewed scholarly research articles, explored in the context of research data storage in and outside Africa.
\nThis section draws reference from respective university libraries in the context of cloud storage security for research data.
\nThe University of Ghana (UG), the premier university and the largest university in Ghana was founded as the University College of the Gold Coast by Ordinance on August 11, 1948, for the purpose of providing and promoting university education, learning and research. The vision of the university is “to become a world-class research-intensive University over the next decade”. To achieve the vision, it “will create an enabling environment that makes the University of Ghana increasingly relevant to national and global development through cutting-edge research as well as high quality teaching and learning” (
Established in 1948, the Balme Library is the main library of the University of Ghana. In addition to the Balme Library, there are other libraries in the various Schools, Institutes, Departments, Halls of Residence and the Accra City Campus which form the University of Ghana Library System (
In UG, research assets (theses, journals, newspapers) in the form of PDFs, word files, conference papers, videos, and audio have been generated. In the context of this study, the existing storage media for storing research data include CDs, DVDs, external drives, servers, hard drives, microfiche, and microfilms. Others include networked drives, Google drive and Dropbox used by researchers and the library in storing research assets.
\nThe interviewee indicated that digital storage and backup is important because;
\n“Data may need to be accessed in the future to explain or augment subsequent research. Other researchers might wish to evaluate or use the results of previous research outputs as precedence to conduct other similar or extended studies”.
\nAgrawal and Nyamful [41] corroborated the findings in the present study. Accordingly, they reported that storage devices which stores and maintains large sets of data over time play an important role in mitigating big data challenges. Factors such as capacity, reliability, performance, throughput, cost, and scalability are involved in any ideal storage solution system. They argued that reliability is basically the retrieval of data in its original form without any loss. The issue of reliability takes into account both internal and external system failures and vulnerabilities. With the scale of data, the probability of losing some data during retrieval can be very high. In order to ensure continuous accessibility of data, storage is very necessary.
\nIt was revealed by the interviewee that
\n“there is no robust or enough backup plan when the primary server goes down. With an average of 3000 visits per day on the Institutional Repository (IR), we wish to keep The website availability as high as possible. To solve the problem, the IR team decided to move digital files to a cloud environment using virtualization technology”.
\nA study by Ji et al. [42], revealed a compelling need for storage and management of research output. Given the current development of data (text, audio, video, images, etc.), university libraries are employing techniques such as data compression, deduplication, object storage, and cloud storage.
\nThe Librarian in charge of research data opined that
\n“Unauthorized accessibility, physical damage, theft, and hacking are particular concerns with electronic data. Many research projects involve the collection and maintenance of human subject’s data and other confidential records that could become the target of hackers and thus integrity must be maintained. The costs of reproducing, restoring, or replacing stolen data and the length of recovery time in the event of a theft highlight the need for protecting the computer system and the integrity of the data”.
\nThe Librarian iterated that several issues are associated with storing research data on the cloud.
\nOne interviewee pointed out that;
\n“Risks associated with cloud storage are crucial for the Balme Library. Storing research assets online via the Dropbox, mozy.com, Box.net, Adrive.com, Carbonite.com have proven the best alternative. However, a few associated risks include issues regarding property rights, copyright, data protection licenses or privacy. Other issues to consider is the fact that in the event of restoring data, it may be a bit slow and the service provider (Google Reader) could go out of service”.
\nKNUST Library has realized the need to digitize and store documents and research data generated by staff and students of the University, hence the decision to create the online Institutional Repository. The online repository showcases the intellectual output from the KNUST. In the earlier 2010, a server and scanners were acquired to support digitization processes. Since then, postgraduate thesis, reports, and few research articles have been uploaded unto the repository. Increasingly, the project has continued to receive acclamation internationally due to robust IT infrastructure in the library.
\nThe librarian for KNUST responded in this manner,
\n“Currently, the KNUST uses non-web based storage media to store data. There are two servers; one for the Library’s catalogue and another for the Institutional Repository. The library also uses an external hard drive as a backup, but both media are located in-house”.
\nReed et al. [43] asserted that “data backup plays an indispensable role in the computing system. Backup is one way to ensure data protection. By keeping copies of production data, backup protects data from a potential loss such as hardware and software loss, human errors, and natural disasters. The huge amount of data needing backup and archiving has reached several petabytes and may soon reach tens, or even hundreds of petabytes. The massive amount of data in today’s library environment may consume much storage.”
\nFurthermore, it was reported by the interviewee that
\n“The challenge faced with this kind of storage media is frequent memory crash, lack of expertise to manage the storage media, lack of space – the servers have low memory space, an interrupted power supply which uninterruptible power supply (UPS) is not even able to solve. Then finally, remote access to the information is denied because data is not online”. Thus, the need to seek cloud storage.
\nIt was evident from the interviewees that cloud computing environments are easily scalable and backup recovery is very easy in Infrastructure as a Service (IaaS) Providers, hence there is efficient incident response whenever data needs to be recovered.
\nThe authors sought to find what risks were associated with cloud storage. Cost and data security were concerns raised by the managers of the repositories. Agrawal and Nyamful [41] argued that the state of preventing a system from vulnerable attacks is considered as the system’s security. Security risks involved with the use of cloud computing have various risk factors for the library environment. Seven important identity factors for risk in a cloud computing model are access, availability, network load, integrity, data security, data location, and data segregation.
\nUganda Christian University has been in existence for 11 years having only one library which uses traditional devices. In the year 2015, the library launched its institutional repository. The storage media for storing research data in Uganda Christian University library is examined as follows:
\nUganda Christian University has both traditional and modern storage devices. Traditional storage includes CDs, flash disks, card catalog and later introduced modern storage like creating an institutional repository where dissertations and research papers are kept safely for future use.
\nThe Librarian in charge of the research data output of the Uganda Christian University observed that;
\n“For modern storage devices, Google drive is currently used to store documents such as student Theses works, proposals, and the day to day statistics. This started early last year when the learning commons was opened. This is used because it is cheap and can be accessed easily by staff and students while doing their work”.
\nIn this twenty-first century, information is not just in print but digitally created and reused by researchers and patrons within academic institutions. There is a need for digital information storage at Uganda Christian University because of the advantages. Prior to cloud storage, institutions invested heavily in data centers and servers even though they may not have used its storage space. The cloud storage allows institutions’ (academic libraries) only pay for computing resources they use. By using cloud storage one can achieve a lower variable cost than can be gotten on the traditional storage devices.
\nHowever, using cloud storage by Uganda Christian University academic library has some risks. Lack of internet access or less bandwidth is a major issue. Specifically, when the internet is down its difficult for data to be retrieved thus inconveniencing the patrons. Secondly, sensitive information for the institution can be disclosed accidentally or deliberately in cloud services if not handled well especially when demand grows. Thus, the inappropriate accessibility of the institution data can be compromised.
\nFor an institution like Uganda Christian University Library to ensure the safety of its research information in the cloud, the following must be considered.
avoid unauthorized accessibility of research data using strong passwords.
Privacy policy services settings must always be checked by appropriate management.
The Iddi Basajjabalaba Memorial Library (The IBML) is an integral part of Kampala International University (KIU). It is the intellectual hub of the university that supports the study, teaching, research and social information needs of the university. The IBML has grown over the years from one small room in 2001 manned by one member of staff and serving 700 users to an eight ultra-modern building serving over 20,000 users. The IBML system has evolved over time from the manual system providing print information resources to automated circulation services and digital information resources. In 2014, The IBML set up a digital repository to capture, store, and disseminate the intellectual content of the university. The digital content includes research articles, papers written by university staff, PhD theses, and other university publications. DSpace software was used for this project and it is hosted locally on a networked server. The repository data is backed up on an external hard drive with several terabytes of storage capacity.
\nThe IBML has not ventured much into cloud storage because data is still stored locally. Researchers, academic staff, and students typically use external hard drives, flash disks, CDs, DVDs, emails and Google Drive to store their data. Not many use Dropbox, OneDrive, and other Cloud storage media. However, this trend is risky because the library faces several challenges especially power outages that lead to a computer crash, theft of computer hard drives, and other storage media. There is also a danger of data breaches by unauthorized persons since the repository server is not within the confines of the library. Therefore, cloud storage is an important choice for the library to use in order to mitigate the danger of data loss.
\nFigure 2 depicts how university libraries provide library services via cloud services. Due to the unreliability of non-web based storage media, university libraries have refocused attention to an alternative; cloud service which is web-based. In providing library services to university faculty, students and researchers; research assets in the form of electronic theses/dissertation, articles, research datasets, research reports are stored in the cloud. It is important to note that cloud services provide advantages like large storage space, data back-up among others which non-web based media does not have. However, alternative storage media (cloud computing) appears to accommodate the concerns of university libraries. Putting in place, security of content, defining accessibility levels, adherence to copyright and legal issues, cloud storage policy, among others, safety of research assets on the cloud service is safer.
\nCloud computing in university libraries.
The paper discovered pertinent and important findings which were very vital for drawing a conclusion and informing policy makers.
\nFrom the study, it can be concluded that all the sampled academic libraries used magnetic disk drives (hard disk drives) for storing research outputs and assets and optical disks (CD-R and DVD-R).
\nFrom the empirical evidence, it is concluded that information enhances knowledge, which affects behavior, and leads to development warranting its preservation. University libraries have the digital format as text, audio, video, and image which facilitates easy sharing of information. Storage is needed for current and future generation of researchers and academia as a whole. In addition, digital storage makes information easily accessible to users as compared to “analog items”. This is due to the ability to easily copy the information on storage devices and carry around. Furthermore, digital storage facilitates the easy sharing of information.
\nSpecifically, copyright law infringement, unauthorized data accessibility, policy issues, the security of content, no interoperable cloud standards were identified as the risks associated with cloud storage in academic libraries.
\nCloud computing offers university libraries improved storage solutions. In the era of IT, the library and information environment face numerous challenges including constant change of storage platforms. Notably, the storage of research output is primary to the functions of university libraries. Thus, there is a need for storage security; as it is a reality in the current technological environment.
\nIn the developed world, some university libraries have already built and managed their own research data centers comparable to the developing world. Indeed, to avoid loss of data integrity, large digital storage in the cloud must be backed up, maintained and re-produced to avoid stress on the local server infrastructure. In conclusion, the opportunities offered by cloud computing via its storage services could ensure that university libraries gain more control over research output.
\nUniversity libraries must consider investing in cloud infrastructure as it assures large savings or cost effectiveness in operational cost and tech-start-ups [44], paying for what you use and risk transfer and availability [45], scalability, accessibility [4], on-demand service, access to a large network, rapid elasticity and resource sharing [46]. Above all, Gosavi et al. [20] pointed out that libraries are likely to benefit from cloud storage in the area of self-healing, multi-tenancy, linearly scalable, service-oriented, SLA driven, virtualized and flexibility of services.
\nThe paper contributes to knowledge by protecting research data in cloud storage systems. Furthermore, the implication of the findings gives significant input to policymakers, information professionals and future researchers. Finally, with qualitative data, the adopted framework indicates how the security of cloud storage can be implemented successfully.
\nThe authors recommends the following; security/confidentiality of content, the resilience of librarians, determining access levels and enterprise cloud storage platforms if research output can be secured on the cloud;
\nContent concerns raised by Cave et al. [47] and Genoni [48] require consultation with legislation or the legal office of the academic institution. This is to say that the type of records and length of time for keeping research output must be determined, and policy put in place. In a fast-changing library environment, the technology for storage of research output suffers from obsolescence hence the need for regular back-ups to avoid data loss. Whichever way one considers the issue, storage and access concerns are central, leading to the consideration to make the cloud a viable option.
\nThere is a need for university librarians to maintain the character of resilience and also be adaptive to inevitable and unpredictable changes that occur at an accelerated pace. It is therefore required of librarians to provide a wide variety of information from an equally varied selection of sources and formats through teams (working together) and particularly with the prevalence of cloud use. Since cloud computing enables almost a new streamlined workflow, cooperation through team building or network can be very laudable.
\nTo overcome the enumerated challenge of unauthorized access to data centers, academic libraries must be concerned with the levels of accessibility; ranging from completely open access to highly private. In securing the content of the research assets on the cloud, different levels of accessibility or privileges must be assigned to the different users within the network. For instance, students, researchers, librarians, users outside the university community must be assigned roles as such.
\nThe authors highly recommends the enterprise cloud storage platforms such as Amazon Simple Storage Services (Amazon S3), Google cloud storage and Microsoft Azure. This is because they provide secure, durable, highly-scalable object storage, allows retrieval of any amount of data at any time and high-reliability performance and wide services including operating systems, frameworks, tools, and databases.
\nLicense
\n\nBook Chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen maintains a very flexible Copyright Policy that ensures that there is no copyright transfer to the publisher. Therefore, Authors retain exclusive copyright to their work. All Monographs are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
\n\n',metaTitle:"Open Access Statement",metaDescription:"Book chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0)",metaKeywords:null,canonicalURL:"/page/open-access-statement/",contentRaw:'[{"type":"htmlEditorComponent","content":"Formats
\\n\\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\\n\\nPeer Review Policies
\\n\\nAll scientific Works are subject to Peer Review prior to publishing.
\\n\\n\\n\\nCosts
\\n\\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\\n\\n\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Formats
\n\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\n\nPeer Review Policies
\n\nAll scientific Works are subject to Peer Review prior to publishing.
\n\n\n\nCosts
\n\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\n\n\n\nDigital Archiving Policy
\n\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5228},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10370},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15791}],offset:12,limit:12,total:118192},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:6},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:6},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:1},{group:"topic",caption:"Computer and Information Science",value:9,count:5},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:3},{group:"topic",caption:"Engineering",value:11,count:4},{group:"topic",caption:"Environmental Sciences",value:12,count:4},{group:"topic",caption:"Immunology and Microbiology",value:13,count:2},{group:"topic",caption:"Mathematics",value:15,count:2},{group:"topic",caption:"Medicine",value:16,count:26},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5240},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"119",title:"Industrial Engineering and Management",slug:"industrial-engineering-and-management",parent:{title:"Engineering",slug:"engineering"},numberOfBooks:48,numberOfAuthorsAndEditors:1096,numberOfWosCitations:1145,numberOfCrossrefCitations:783,numberOfDimensionsCitations:1680,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"industrial-engineering-and-management",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9423",title:"AI and Learning Systems",subtitle:"Industrial Applications and Future Directions",isOpenForSubmission:!1,hash:"10ac8fb0bdbf61044395963028653d21",slug:"ai-and-learning-systems-industrial-applications-and-future-directions",bookSignature:"Konstantinos Kyprianidis and Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:"Edited by",editors:[{id:"35868",title:"Prof.",name:"Konstantinos",middleName:"G.",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editedByType:"Edited by",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9174",title:"Product Design",subtitle:null,isOpenForSubmission:!1,hash:"3510bacbbf4d365e97510bf962652de1",slug:"product-design",bookSignature:"Cătălin Alexandru, Codruta Jaliu and Mihai Comşit",coverURL:"https://cdn.intechopen.com/books/images_new/9174.jpg",editedByType:"Edited by",editors:[{id:"2767",title:"Prof.",name:"Catalin",middleName:null,surname:"Alexandru",slug:"catalin-alexandru",fullName:"Catalin Alexandru"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8623",title:"Maintenance Management",subtitle:null,isOpenForSubmission:!1,hash:"91cc93ad76fdd6709b8c50c6ba7e4e0c",slug:"maintenance-management",bookSignature:"Fausto Pedro García Márquez and Mayorkinos Papaelias",coverURL:"https://cdn.intechopen.com/books/images_new/8623.jpg",editedByType:"Edited by",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7441",title:"Micromachining",subtitle:null,isOpenForSubmission:!1,hash:"2084b93f70df82e634ec776962e871fd",slug:"micromachining",bookSignature:"Zdravko Stanimirović and Ivanka Stanimirović",coverURL:"https://cdn.intechopen.com/books/images_new/7441.jpg",editedByType:"Edited by",editors:[{id:"3421",title:"Dr.",name:"Zdravko",middleName:null,surname:"Stanimirović",slug:"zdravko-stanimirovic",fullName:"Zdravko Stanimirović"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7454",title:"Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7008bbdc804192f8969a34deda417b05",slug:"industrial-engineering",bookSignature:"Ainul Akmar Mokhtar and Masdi Muhammad",coverURL:"https://cdn.intechopen.com/books/images_new/7454.jpg",editedByType:"Edited by",editors:[{id:"219461",title:"Associate Prof.",name:"Ainul Akmar",middleName:null,surname:"Mokhtar",slug:"ainul-akmar-mokhtar",fullName:"Ainul Akmar Mokhtar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7436",title:"New Trends in Industrial Automation",subtitle:null,isOpenForSubmission:!1,hash:"a6abb5722b5e27eb4b886a74f5aa4333",slug:"new-trends-in-industrial-automation",bookSignature:"Pengzhong Li",coverURL:"https://cdn.intechopen.com/books/images_new/7436.jpg",editedByType:"Edited by",editors:[{id:"19636",title:"Prof.",name:"Pengzhong",middleName:null,surname:"Li",slug:"pengzhong-li",fullName:"Pengzhong Li"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6838",title:"Power Plants in the Industry",subtitle:null,isOpenForSubmission:!1,hash:"5e647d27dab23e014dd8881ac3d5931c",slug:"power-plants-in-the-industry",bookSignature:"Tolga Taner",coverURL:"https://cdn.intechopen.com/books/images_new/6838.jpg",editedByType:"Edited by",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6332",title:"Thermal Power Plants",subtitle:"New Trends and Recent Developments",isOpenForSubmission:!1,hash:"616ffd286d75ca988abf59b408880a98",slug:"thermal-power-plants-new-trends-and-recent-developments",bookSignature:"Pawe? Madejski",coverURL:"https://cdn.intechopen.com/books/images_new/6332.jpg",editedByType:"Edited by",editors:[{id:"179645",title:"Dr.",name:"Paweł",middleName:null,surname:"Madejski",slug:"pawel-madejski",fullName:"Paweł Madejski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5830",title:"Extrusion of Metals, Polymers, and Food Products",subtitle:null,isOpenForSubmission:!1,hash:"a69184f72a3f46dd5e4db6313f248509",slug:"extrusion-of-metals-polymers-and-food-products",bookSignature:"Sayyad Zahid Qamar",coverURL:"https://cdn.intechopen.com/books/images_new/5830.jpg",editedByType:"Edited by",editors:[{id:"21687",title:"Dr.",name:"Sayyad Zahid",middleName:null,surname:"Qamar",slug:"sayyad-zahid-qamar",fullName:"Sayyad Zahid Qamar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5967",title:"Brewing Technology",subtitle:null,isOpenForSubmission:!1,hash:"033658c083403dadc895cf64dee8017a",slug:"brewing-technology",bookSignature:"Makoto Kanauchi",coverURL:"https://cdn.intechopen.com/books/images_new/5967.jpg",editedByType:"Edited by",editors:[{id:"85984",title:"Ph.D.",name:"Makoto",middleName:null,surname:"Kanauchi",slug:"makoto-kanauchi",fullName:"Makoto Kanauchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:48,mostCitedChapters:[{id:"15530",doi:"10.5772/14592",title:"Integrating Lean, Agile, Resilience and Green Paradigms in Supply Chain Management (LARG_SCM)",slug:"integrating-lean-agile-resilience-and-green-paradigms-in-supply-chain-management-larg-scm-",totalDownloads:5062,totalCrossrefCites:20,totalDimensionsCites:40,book:{slug:"supply-chain-management",title:"Supply Chain Management",fullTitle:"Supply Chain Management"},signatures:"Helena Carvalho and V. Cruz-Machado",authors:[{id:"18263",title:"Prof.",name:"Helena",middleName:null,surname:"Carvalho",slug:"helena-carvalho",fullName:"Helena Carvalho"},{id:"22440",title:"Prof.",name:"Virgílio",middleName:null,surname:"Cruz Machado",slug:"virgilio-cruz-machado",fullName:"Virgílio Cruz Machado"}]},{id:"17872",doi:"10.5772/19997",title:"Building Blocks of the Internet of Things: State of the Art and Beyond",slug:"building-blocks-of-the-internet-of-things-state-of-the-art-and-beyond",totalDownloads:4854,totalCrossrefCites:26,totalDimensionsCites:37,book:{slug:"deploying-rfid-challenges-solutions-and-open-issues",title:"Deploying RFID",fullTitle:"Deploying RFID - Challenges, Solutions, and Open Issues"},signatures:"Alexandru Serbanati, Carlo Maria Medaglia and Ugo Biader Ceipidor",authors:[{id:"37101",title:"Prof.",name:"Carlo Maria",middleName:null,surname:"Medaglia",slug:"carlo-maria-medaglia",fullName:"Carlo Maria Medaglia"},{id:"38529",title:"Prof.",name:"Ugo",middleName:null,surname:"Biader Ceipidor",slug:"ugo-biader-ceipidor",fullName:"Ugo Biader Ceipidor"},{id:"38530",title:"Mr.",name:"Alexandru",middleName:null,surname:"Serbanati",slug:"alexandru-serbanati",fullName:"Alexandru Serbanati"}]},{id:"34441",doi:"10.5772/35205",title:"Condition Monitoring of Railway Track Using In-Service Vehicle",slug:"condition-monitoring-of-railway-track-using-in-service-vehicle",totalDownloads:4634,totalCrossrefCites:17,totalDimensionsCites:33,book:{slug:"reliability-and-safety-in-railway",title:"Reliability and Safety in Railway",fullTitle:"Reliability and Safety in Railway"},signatures:"Hitoshi Tsunashima, Yasukuni Naganuma, Akira Matsumoto, Takeshi Mizuma and Hirotaka Mori",authors:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",slug:"hitoshi-tsunashima",fullName:"Hitoshi Tsunashima"},{id:"113419",title:"Prof.",name:"Akira",middleName:null,surname:"Matsumoto",slug:"akira-matsumoto",fullName:"Akira Matsumoto"},{id:"113420",title:"Dr.",name:"Takeshi",middleName:null,surname:"Mizuma",slug:"takeshi-mizuma",fullName:"Takeshi Mizuma"},{id:"113422",title:"Mr.",name:"Hirotaka",middleName:null,surname:"Mori",slug:"hirotaka-mori",fullName:"Hirotaka Mori"},{id:"113423",title:"MSc.",name:"Yasukuni",middleName:null,surname:"Naganuma",slug:"yasukuni-naganuma",fullName:"Yasukuni Naganuma"}]}],mostDownloadedChaptersLast30Days:[{id:"51805",title:"Current Issues and Problems in the Joining of Ceramic to Metal",slug:"current-issues-and-problems-in-the-joining-of-ceramic-to-metal",totalDownloads:4086,totalCrossrefCites:6,totalDimensionsCites:14,book:{slug:"joining-technologies",title:"Joining Technologies",fullTitle:"Joining Technologies"},signatures:"Uday M.B., Ahmad-Fauzi M.N., Alias Mohd Noor and Srithar Rajoo",authors:[{id:"182041",title:null,name:"Uday",middleName:"M.",surname:"Basheer Al-Naib",slug:"uday-basheer-al-naib",fullName:"Uday Basheer Al-Naib"},{id:"182065",title:"Prof.",name:"Alias",middleName:null,surname:"Mohd Noor",slug:"alias-mohd-noor",fullName:"Alias Mohd Noor"},{id:"182066",title:"Dr.",name:"Srithar",middleName:null,surname:"Rajoo",slug:"srithar-rajoo",fullName:"Srithar Rajoo"},{id:"190437",title:"Prof.",name:"Ahmad-Fauzi",middleName:null,surname:"M. N.",slug:"ahmad-fauzi-m.-n.",fullName:"Ahmad-Fauzi M. N."}]},{id:"43383",title:"Improving Operations Performance with World Class Manufacturing Technique: A Case in Automotive Industry",slug:"improving-operations-performance-with-world-class-manufacturing-technique-a-case-in-automotive-indus",totalDownloads:25259,totalCrossrefCites:7,totalDimensionsCites:16,book:{slug:"operations-management",title:"Operations Management",fullTitle:"Operations Management"},signatures:"Fabio De Felice, Antonella Petrillo and Stanislao Monfreda",authors:[{id:"161682",title:"Prof.",name:"Fabio",middleName:null,surname:"De Felice",slug:"fabio-de-felice",fullName:"Fabio De Felice"},{id:"167280",title:"Dr.",name:"Stanislao",middleName:null,surname:"Monfreda",slug:"stanislao-monfreda",fullName:"Stanislao Monfreda"},{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}]},{id:"55749",title:"Exploitation of Brewing Industry Wastes to Produce Functional Ingredients",slug:"exploitation-of-brewing-industry-wastes-to-produce-functional-ingredients",totalDownloads:3099,totalCrossrefCites:7,totalDimensionsCites:16,book:{slug:"brewing-technology",title:"Brewing Technology",fullTitle:"Brewing Technology"},signatures:"Anca Corina Fărcaş, Sonia Ancuța Socaci, Elena Mudura, Francisc\nVasile Dulf, Dan C. Vodnar, Maria Tofană and Liana Claudia Salanță",authors:[{id:"191241",title:"Ph.D.",name:"Sonia A.",middleName:null,surname:"Socaci",slug:"sonia-a.-socaci",fullName:"Sonia A. Socaci"},{id:"191607",title:"Ph.D.",name:"Anca C.",middleName:null,surname:"Fărcaş",slug:"anca-c.-farcas",fullName:"Anca C. Fărcaş"},{id:"192098",title:"Prof.",name:"Maria",middleName:null,surname:"Tofana",slug:"maria-tofana",fullName:"Maria Tofana"},{id:"192177",title:"Dr.",name:"Dan Cristian",middleName:null,surname:"Vodnar",slug:"dan-cristian-vodnar",fullName:"Dan Cristian Vodnar"},{id:"194168",title:"Dr.",name:"Francisc Vasile",middleName:null,surname:"Dulf",slug:"francisc-vasile-dulf",fullName:"Francisc Vasile Dulf"},{id:"203096",title:"Dr.",name:"Elena",middleName:null,surname:"Mudura",slug:"elena-mudura",fullName:"Elena Mudura"},{id:"203097",title:"Dr.",name:"Liana Claudia",middleName:null,surname:"Salanta",slug:"liana-claudia-salanta",fullName:"Liana Claudia Salanta"}]},{id:"53519",title:"Understanding the Stakeholders as a Success Factor for Effective Occupational Health Care",slug:"understanding-the-stakeholders-as-a-success-factor-for-effective-occupational-health-care",totalDownloads:1781,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"occupational-health",title:"Occupational Health",fullTitle:"Occupational Health"},signatures:"Ari-Matti Auvinen",authors:[{id:"193252",title:"M.A.",name:"Ari-Matti",middleName:null,surname:"Auvinen",slug:"ari-matti-auvinen",fullName:"Ari-Matti Auvinen"}]},{id:"43001",title:"Production Scheduling Approaches for Operations Management",slug:"production-scheduling-approaches-for-operations-management",totalDownloads:5934,totalCrossrefCites:1,totalDimensionsCites:5,book:{slug:"operations-management",title:"Operations Management",fullTitle:"Operations Management"},signatures:"Marcello Fera, Fabio Fruggiero, Alfredo Lambiase, Giada Martino and Maria Elena Nenni",authors:[{id:"163046",title:"Dr.",name:"Fabio",middleName:null,surname:"Fruggiero",slug:"fabio-fruggiero",fullName:"Fabio Fruggiero"}]},{id:"43436",title:"The Important Role of Packaging in Operations Management",slug:"the-important-role-of-packaging-in-operations-management",totalDownloads:6781,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"operations-management",title:"Operations Management",fullTitle:"Operations Management"},signatures:"Alberto Regattieri and Giulia Santarelli",authors:[{id:"72034",title:"Prof.",name:"Alberto",middleName:null,surname:"Regattieri",slug:"alberto-regattieri",fullName:"Alberto Regattieri"}]},{id:"65164",title:"Maintenance Management of Aging Oil and Gas Facilities",slug:"maintenance-management-of-aging-oil-and-gas-facilities",totalDownloads:1343,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"maintenance-management",title:"Maintenance Management",fullTitle:"Maintenance Management"},signatures:"Riaz Khan, Ammeran B. Mad, Khairil Osman and Mohd Asyraf Abd Aziz",authors:[{id:"215673",title:"Dr.",name:"Riaz",middleName:null,surname:"Khan",slug:"riaz-khan",fullName:"Riaz Khan"},{id:"277895",title:"Dr.",name:"Ammeran B.",middleName:null,surname:"Mad",slug:"ammeran-b.-mad",fullName:"Ammeran B. Mad"},{id:"277897",title:"Dr.",name:"Khairil",middleName:null,surname:"Osman",slug:"khairil-osman",fullName:"Khairil Osman"},{id:"277898",title:"Dr.",name:"Mohd Asyraf",middleName:null,surname:"Abdul Aziz",slug:"mohd-asyraf-abdul-aziz",fullName:"Mohd Asyraf Abdul Aziz"}]},{id:"43375",title:"Product Sound Design: Intentional and Consequential Sounds",slug:"product-sound-design-intentional-and-consequential-sounds",totalDownloads:2866,totalCrossrefCites:15,totalDimensionsCites:25,book:{slug:"advances-in-industrial-design-engineering",title:"Advances in Industrial Design Engineering",fullTitle:"Advances in Industrial Design Engineering"},signatures:"Lau Langeveld, René van Egmond, Reinier Jansen and Elif Özcan",authors:[{id:"39586",title:"MSc.",name:"Lau",middleName:null,surname:"Langeveld",slug:"lau-langeveld",fullName:"Lau Langeveld"},{id:"156849",title:"MSc.",name:"Reinier",middleName:null,surname:"Jansen",slug:"reinier-jansen",fullName:"Reinier Jansen"},{id:"156854",title:"Dr.",name:"Rene",middleName:null,surname:"Van Egmond",slug:"rene-van-egmond",fullName:"Rene Van Egmond"},{id:"156855",title:"Dr.",name:"Elif",middleName:null,surname:"Ozcan",slug:"elif-ozcan",fullName:"Elif Ozcan"}]},{id:"54655",title:"Key Technical Performance Indicators for Power Plants",slug:"key-technical-performance-indicators-for-power-plants",totalDownloads:2424,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"recent-improvements-of-power-plants-management-and-technology",title:"Recent Improvements of Power Plants Management and Technology",fullTitle:"Recent Improvements of Power Plants Management and Technology"},signatures:"Simona Vasilica Oprea and Adela Bâra",authors:[{id:"139804",title:"Prof.",name:"Adela",middleName:null,surname:"Bara",slug:"adela-bara",fullName:"Adela Bara"},{id:"188586",title:"Dr.",name:"Simona Vasilica",middleName:null,surname:"Oprea",slug:"simona-vasilica-oprea",fullName:"Simona Vasilica Oprea"}]},{id:"55197",title:"Changes in Nutritional Properties and Bioactive Compounds in Cereals During Extrusion Cooking",slug:"changes-in-nutritional-properties-and-bioactive-compounds-in-cereals-during-extrusion-cooking",totalDownloads:1052,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"extrusion-of-metals-polymers-and-food-products",title:"Extrusion of Metals, Polymers, and Food Products",fullTitle:"Extrusion of Metals, Polymers and Food Products"},signatures:"Cuauhtémoc Reyes Moreno, Perla C. Reyes Fernández, Edith O.\nCuevas Rodríguez, Jorge Milán Carrillo and Saraid Mora Rochín",authors:[{id:"198302",title:"Dr.",name:"Saraid",middleName:null,surname:"Mora-Rochín",slug:"saraid-mora-rochin",fullName:"Saraid Mora-Rochín"},{id:"199537",title:"Dr.",name:"Perla C.",middleName:null,surname:"Reyes Fernández",slug:"perla-c.-reyes-fernandez",fullName:"Perla C. Reyes Fernández"},{id:"199538",title:"Dr.",name:"Edith O.",middleName:null,surname:"Cuevas Rodríguez",slug:"edith-o.-cuevas-rodriguez",fullName:"Edith O. Cuevas Rodríguez"},{id:"199539",title:"Dr.",name:"Cuauhtémoc",middleName:null,surname:"Reyes Moreno",slug:"cuauhtemoc-reyes-moreno",fullName:"Cuauhtémoc Reyes Moreno"},{id:"199540",title:"Dr.",name:"Jorge",middleName:null,surname:"Milán Carrillo",slug:"jorge-milan-carrillo",fullName:"Jorge Milán Carrillo"}]}],onlineFirstChaptersFilter:{topicSlug:"industrial-engineering-and-management",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/190476/moawia-elhassan",hash:"",query:{},params:{id:"190476",slug:"moawia-elhassan"},fullPath:"/profiles/190476/moawia-elhassan",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()