The use of optical technology can provide unprecedented performance to the generation, distribution, and processing of microwave. Recently, on-chip microwave photonics (MWP) has gained significant interests for its numerous advantages, such as robustness, reconfigurability as well as reduction of size, weight, cost, and power consumption. In this chapter, we review our recent progress in ultracompact microwave photonic signal processing using silicon nanophotonic devices. Using the fabricated silicon waveguide, silicon microring resonators (MRRs) and silicon photonic crystal nanocavities, we demonstrate on-chip analog signal transmission, optically controlled tunable MWP filter, and ultra-high peak rejection notch MWP filter. The performance of analog links and the responses of MWP filters are evaluated in the experiment. In addition, microwave signal multiplication and modulation are also demonstrated based on a silicon Mach-Zehnder modulator in the experiment with favorable operation performance. The demonstrated on-chip analog links, MWP filters, microwave signal multiplication/modulation may help understand on-chip analog signaling and expand novel functionalities of MWP signal processing.
Part of the book: Microwave Systems and Applications
The era of cloud computing has fuelled the increasing demand on data centers for high-performance, high-speed data storage and computing. Digital signal processing may find applications in future cloud computing networks containing a large sum of data centers. Addition and subtraction are considered to be fundamental building blocks of digital signal processing which are ubiquitous in microprocessors for arithmetic operations. However, the processing speed is limited by the electronic bottleneck. It might be valuable to implement high-speed arithmetic operations of addition and subtraction in the optical domain. In this chapter, recent results of M-ary optical arithmetic operations for high base numbers are presented. By exploiting degenerate and nondegenerate four-wave mixing (FWM) in highly nonlinear fibers (HNLFs), graphene-assisted optical devices, and silicon waveguide devices, various types of two-/three-input high-speed quaternary/octal/decimal/hexadecimal optical computing operations have been demonstrated. Operation speed up to 50 Gbaud of this computing approach is experimentally examined. The demonstrated M-ary optical computing using high base numbers may facilitate advanced data management and superior network performance.
Part of the book: Cloud Computing