Control signalling information within wireless communication systems facilitates efficient management of limited wireless resources, plays a key role in improving system performance of 5G systems. This chapter focuses detection of one particular form of control information, namely, selective control information (SCI). Maximum-likelihood (ML) is one of the conventional SCI detection techniques. Unfortunately, it requires channel estimation, which introduces some implementation constraints and practical challenges. This chapter uses generalized frequency division multiplexing (GFDM) to evaluate and demonstrate the detection performance of a new form of SCI detection that uses a time-domain correlation (TDC) technique. Unlike the ML scheme, the TDC technique is a form of blind detection that has the capability to improve detection performance with no need for channel estimation. In comparison with the ML based receiver, results show that the TDC technique achieves improved detection performance. In addition, the detection performance of the TDC technique is improved with GFDM receivers that use the minimum mean square error (MMSE) scheme compared with the zero-forcing (ZF) technique. It is also shown that the use of a raised cosine (RC) shaped GFDM transmit filter improves detection performance comparison with filters that employ root raised cosine (RRC) pulse shape.
Part of the book: Towards 5G Wireless Networks