As plants are fixed to their habitat they produce specialized metabolites as chemical defenses to fight off herbivores. As an example, many plants produce cyanogenic glucosides and release toxic cyanide upon tissue damage (“cyanide bomb”). As a prerequisite for exploring cyanogenic plants as hosts, herbivores have evolved mechanisms to overcome cyanogenic defenses. Mammals metabolize cyanide to thiocyanate by rhodaneses. In arthropods, both rhodaneses and β-cyanoalanine synthases which transfer cyanide to cysteine contribute to cyanide detoxification. However, based on enzyme activity tests some arthropod species possess only one of these activities, and some possess both. Recently, cloning and characterization of first arthropod β-cyanoalanine synthases provided evidence for their involvement in cyanide detoxification. Phylogenetic analyses suggest that they have been recruited from microbial symbionts. Investigations with Zygaena filipendulae revealed that the avoidance of cyanide release is the primary mode of overcoming cyanide in this specialist. Some herbivores are able to sequester, de novo synthesize, and store cyanogenic glucosides for their defense and as nitrogen source. Thus, herbivores have evolved various mechanisms to counteract host plant cyanide defenses. These mechanisms are likely to have played a key role in the evolution of plant-herbivore interactions as well as in speciation and diversification of arthropods.
Part of the book: Herbivores