Feedstock compositions for woody, herbaceous, and waste materials; average (standard deviation)number of samples.
\n\n
\n\nThe research leading to these results has received funding from the European Community\'s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 285417. The publishing of this book was funded by the EC FP7 Post-Grant Open Access Pilot programme. ',isbn:"978-953-51-3376-6",printIsbn:"978-953-51-3375-9",pdfIsbn:"978-953-51-4699-5",doi:"10.5772/intechopen.68449",price:119,priceEur:129,priceUsd:155,slug:"search-and-rescue-robotics-from-theory-to-practice",numberOfPages:262,isOpenForSubmission:!1,isInWos:1,hash:"e1ca88810595580ec90815aab3f1ec9a",bookSignature:"",publishedDate:"August 23rd 2017",coverURL:"https://cdn.intechopen.com/books/images_new/6181.jpg",numberOfDownloads:222792,numberOfWosCitations:10,numberOfCrossrefCitations:30,numberOfDimensionsCitations:40,hasAltmetrics:1,numberOfTotalCitations:80,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 10th 2017",dateEndSecondStepPublish:"March 31st 2017",dateEndThirdStepPublish:"June 27th 2017",dateEndFourthStepPublish:"September 25th 2017",dateEndFifthStepPublish:"November 24th 2017",currentStepOfPublishingProcess:1,indexedIn:"1,2,3,4,5,6,7",editedByType:"Authored by",kuFlag:!1,editors:null,equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1250",title:"Rescue Robot",slug:"rescue-robot"}],chapters:[{id:"56152",title:"Introduction to the Use of Robotic Tools for Search and Rescue",doi:"10.5772/intechopen.69489",slug:"introduction-to-the-use-of-robotic-tools-for-search-and-rescue",totalDownloads:23309,totalCrossrefCites:9,totalDimensionsCites:13,signatures:"Geert De Cubber, Daniela Doroftei, Konrad Rudin, Karsten Berns,\nAnibal Matos, Daniel Serrano, Jose Sanchez, Shashank Govindaraj,\nJanusz Bedkowski, Rui Roda, Eduardo Silva and Stephane Ourevitch",downloadPdfUrl:"/chapter/pdf-download/56152",previewPdfUrl:"/chapter/pdf-preview/56152",authors:[{id:"206420",title:"Dr.",name:"Geert",surname:"De Cubber",slug:"geert-de-cubber",fullName:"Geert De Cubber"}],corrections:null},{id:"56037",title:"User-Centered Design",doi:"10.5772/intechopen.69483",slug:"user-centered-design",totalDownloads:21998,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Daniela Doroftei, Geert De Cubber, Rene Wagemans, Anibal Matos,\nEduardo Silva, Victor Lobo, Guerreiro Cardoso, Keshav Chintamani,\nShashank Govindaraj, Jeremi Gancet and Daniel Serrano",downloadPdfUrl:"/chapter/pdf-download/56037",previewPdfUrl:"/chapter/pdf-preview/56037",authors:[{id:"82804",title:"Ms.",name:"Daniela",surname:"Doroftei",slug:"daniela-doroftei",fullName:"Daniela Doroftei"},{id:"153104",title:"Prof.",name:"Victor",surname:"Lobo",slug:"victor-lobo",fullName:"Victor Lobo"}],corrections:null},{id:"56050",title:"Unmanned Aerial Systems",doi:"10.5772/intechopen.69490",slug:"unmanned-aerial-systems",totalDownloads:22060,totalCrossrefCites:3,totalDimensionsCites:5,signatures:"Rudin Konrad, Daniel Serrano and Pascal Strupler",downloadPdfUrl:"/chapter/pdf-download/56050",previewPdfUrl:"/chapter/pdf-preview/56050",authors:[{id:"212085",title:"Mr.",name:"Konrad",surname:"Rudin",slug:"konrad-rudin",fullName:"Konrad Rudin"}],corrections:null},{id:"56080",title:"Unmanned Ground Robots for Rescue Tasks",doi:"10.5772/intechopen.69491",slug:"unmanned-ground-robots-for-rescue-tasks",totalDownloads:23204,totalCrossrefCites:3,totalDimensionsCites:3,signatures:"Karsten Berns, Atabak Nezhadfard, Massimo Tosa, Haris Balta and\nGeert De Cubber",downloadPdfUrl:"/chapter/pdf-download/56080",previewPdfUrl:"/chapter/pdf-preview/56080",authors:[{id:"212086",title:"Prof.",name:"Karsten",surname:"Berns",slug:"karsten-berns",fullName:"Karsten Berns"}],corrections:null},{id:"56139",title:"Unmanned Maritime Systems for Search and Rescue",doi:"10.5772/intechopen.69492",slug:"unmanned-maritime-systems-for-search-and-rescue",totalDownloads:22024,totalCrossrefCites:2,totalDimensionsCites:5,signatures:"Aníbal Matos, Eduardo Silva, José Almeida, Alfredo Martins, Hugo\nFerreira, Bruno Ferreira, José Alves, André Dias, Stefano Fioravanti,\nDaniele Bertin and Victor Lobo",downloadPdfUrl:"/chapter/pdf-download/56139",previewPdfUrl:"/chapter/pdf-preview/56139",authors:[{id:"153104",title:"Prof.",name:"Victor",surname:"Lobo",slug:"victor-lobo",fullName:"Victor Lobo"},{id:"12282",title:"Dr.",name:"Aníbal",surname:"Matos",slug:"anibal-matos",fullName:"Aníbal Matos"}],corrections:null},{id:"56126",title:"Interoperability in a Heterogeneous Team of Search and Rescue Robots",doi:"10.5772/intechopen.69493",slug:"interoperability-in-a-heterogeneous-team-of-search-and-rescue-robots",totalDownloads:22043,totalCrossrefCites:6,totalDimensionsCites:6,signatures:"Daniel Serrano López, German Moreno, Jose Cordero, Jose Sanchez,\nShashank Govindaraj, Mario Monteiro Marques, Victor Lobo,\nStefano Fioravanti, Alberto Grati, Konrad Rudin, Massimo Tosa,\nAnibal Matos, Andre Dias, Alfredo Martins, Janusz Bedkowski, Haris\nBalta and Geert De Cubber",downloadPdfUrl:"/chapter/pdf-download/56126",previewPdfUrl:"/chapter/pdf-preview/56126",authors:[{id:"153104",title:"Prof.",name:"Victor",surname:"Lobo",slug:"victor-lobo",fullName:"Victor Lobo"},{id:"212087",title:"Mr.",name:"Daniel",surname:"Serrano",slug:"daniel-serrano",fullName:"Daniel Serrano"}],corrections:null},{id:"56257",title:"Tactical Communications for Cooperative SAR Robot Missions",doi:"10.5772/intechopen.69494",slug:"tactical-communications-for-cooperative-sar-robot-missions",totalDownloads:21844,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"José Manuel Sanchez, José Cordero, Hafeez M. Chaudhary, Bart\nSheers and Yudani Riobó",downloadPdfUrl:"/chapter/pdf-download/56257",previewPdfUrl:"/chapter/pdf-preview/56257",authors:[{id:"212088",title:"Mr.",name:"Jose",surname:"Sanchez",slug:"jose-sanchez",fullName:"Jose Sanchez"}],corrections:null},{id:"56086",title:"Command and Control Systems for Search and Rescue Robots",doi:"10.5772/intechopen.69495",slug:"command-and-control-systems-for-search-and-rescue-robots",totalDownloads:22283,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Shashank Govindaraj, Pierre Letier, Keshav Chintamani, Jeremi\nGancet, Mario Nunez Jimenez, Miguel Ángel Esbrí, Pawel Musialik,\nJanusz Bedkowski, Irune Badiola, Ricardo Gonçalves, António\nCoelho, Daniel Serrano, Massimo Tosa, Thomas Pfister and Jose\nManuel Sanchez",downloadPdfUrl:"/chapter/pdf-download/56086",previewPdfUrl:"/chapter/pdf-preview/56086",authors:[{id:"212089",title:"Mr.",name:"Shashank",surname:"Govindaraj",slug:"shashank-govindaraj",fullName:"Shashank Govindaraj"}],corrections:null},{id:"56052",title:"ICARUS Training and Support System",doi:"10.5772/intechopen.69496",slug:"icarus-training-and-support-system",totalDownloads:22043,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Janusz Będkowski, Karol Majek, Michal Pełka, Andrzej Masłowski,\nAntonio Coelho, Ricardo Goncalves, Ricardo Baptista and Jose\nManuel Sanchez",downloadPdfUrl:"/chapter/pdf-download/56052",previewPdfUrl:"/chapter/pdf-preview/56052",authors:[{id:"63695",title:"Dr.",name:"Janusz",surname:"Bȩdkowski",slug:"janusz-bdkowski",fullName:"Janusz Bȩdkowski"}],corrections:null},{id:"56145",title:"Operational Validation of Search and Rescue Robots",doi:"10.5772/intechopen.69497",slug:"operational-validation-of-search-and-rescue-robots",totalDownloads:21995,totalCrossrefCites:3,totalDimensionsCites:3,signatures:"Geert De Cubber, Daniela Doroftei, Haris Balta, Anibal Matos,\nEduardo Silva, Daniel Serrano, Shashank Govindaraj, Rui Roda,\nVictor Lobo, Mário Marques and Rene Wagemans",downloadPdfUrl:"/chapter/pdf-download/56145",previewPdfUrl:"/chapter/pdf-preview/56145",authors:[{id:"206420",title:"Dr.",name:"Geert",surname:"De Cubber",slug:"geert-de-cubber",fullName:"Geert De Cubber"},{id:"153104",title:"Prof.",name:"Victor",surname:"Lobo",slug:"victor-lobo",fullName:"Victor Lobo"}],corrections:null}],productType:{id:"3",title:"Monograph",chapterContentType:"chapter",authoredCaption:"Authored by"}},relatedBooks:[{type:"book",id:"5905",title:"Robots Operating in Hazardous Environments",subtitle:null,isOpenForSubmission:!1,hash:"a22b4e4b02af1dd0727231b0d974f121",slug:"robots-operating-in-hazardous-environments",bookSignature:"Hüseyin Canbolat",coverURL:"https://cdn.intechopen.com/books/images_new/5905.jpg",editedByType:"Edited by",editors:[{id:"5887",title:"Dr.",name:"Hüseyin",surname:"Canbolat",slug:"huseyin-canbolat",fullName:"Hüseyin Canbolat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"67322",slug:"corrigendum-to-sexual-dysfunction-in-patients-with-systemic-sclerosis",title:"Corrigendum to: Sexual Dysfunction in Patients with Systemic Sclerosis",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/67322.pdf",downloadPdfUrl:"/chapter/pdf-download/67322",previewPdfUrl:"/chapter/pdf-preview/67322",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/67322",risUrl:"/chapter/ris/67322",chapter:{id:"66966",slug:"sexual-dysfunction-in-patients-with-systemic-sclerosis",signatures:"Barbora Heřmánková",dateSubmitted:"July 16th 2018",dateReviewed:"April 5th 2019",datePrePublished:"May 3rd 2019",datePublished:null,book:{id:"8269",title:"New Insights into Systemic Sclerosis",subtitle:null,fullTitle:"New Insights into Systemic Sclerosis",slug:"new-insights-into-systemic-sclerosis",publishedDate:"September 18th 2019",bookSignature:"Michal Tomcik",coverURL:"https://cdn.intechopen.com/books/images_new/8269.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193284",title:"Dr.",name:"Michal",middleName:null,surname:"Tomcik",slug:"michal-tomcik",fullName:"Michal Tomcik"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null}},chapter:{id:"66966",slug:"sexual-dysfunction-in-patients-with-systemic-sclerosis",signatures:"Barbora Heřmánková",dateSubmitted:"July 16th 2018",dateReviewed:"April 5th 2019",datePrePublished:"May 3rd 2019",datePublished:null,book:{id:"8269",title:"New Insights into Systemic Sclerosis",subtitle:null,fullTitle:"New Insights into Systemic Sclerosis",slug:"new-insights-into-systemic-sclerosis",publishedDate:"September 18th 2019",bookSignature:"Michal Tomcik",coverURL:"https://cdn.intechopen.com/books/images_new/8269.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193284",title:"Dr.",name:"Michal",middleName:null,surname:"Tomcik",slug:"michal-tomcik",fullName:"Michal Tomcik"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null},book:{id:"8269",title:"New Insights into Systemic Sclerosis",subtitle:null,fullTitle:"New Insights into Systemic Sclerosis",slug:"new-insights-into-systemic-sclerosis",publishedDate:"September 18th 2019",bookSignature:"Michal Tomcik",coverURL:"https://cdn.intechopen.com/books/images_new/8269.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193284",title:"Dr.",name:"Michal",middleName:null,surname:"Tomcik",slug:"michal-tomcik",fullName:"Michal Tomcik"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10544",leadTitle:null,title:"Antioxidants",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tAntioxidants are commonly known as chemical substances that can prevent or slow damage caused by free radicals produced by the body as a reaction to environmental and other pressures. These compounds are used in the industry as food preservatives, stabilizers and lubricants, while they are presently touted as one of the most highly effective categories of organic compounds for combating global pandemics such as diabetes, cancer and neurological disorders. There are many books published to date on antioxidants, especially those of plant origin. However, the aim of this publication is to serve as an update to key overlooked areas concerning antioxidants. It covers biochemical aspects, antioxidant enzyme systems and functional food to name but a few.
\r\n\r\n\tThe book would look into providing an overview of the recently published research as well and set directions to future scientific research, by highlighting the gaps and voids. It is hoped that both scientific and non-scientific audiences will benefit from the contents of this publication.
",isbn:"978-1-83968-865-2",printIsbn:"978-1-83968-864-5",pdfIsbn:"978-1-83968-866-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"fe6b71d10cd19383975798a81e63e57b",bookSignature:"Dr. Viduranga Yashasvi Waisundara",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10544.jpg",keywords:"Free Radicals, Redox Biology, Antioxidant Enzyme Systems, Vitamin C, Vitamin E, Carotenoids, Anthocyanins, Health Benefits, Industrial Applications, Food Preservatives, Stabilizers, Functional Food",numberOfDownloads:74,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 17th 2020",dateEndSecondStepPublish:"October 15th 2020",dateEndThirdStepPublish:"December 14th 2020",dateEndFourthStepPublish:"March 4th 2021",dateEndFifthStepPublish:"May 3rd 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"A Deputy Principal of the Australian College of Business & Technology who serves as the Global Harmonization Initiative Ambassador to Sri Lanka. A prolific author, editor, scientist, and administrator who works tirelessly promoting healthy food habits, food, and nutrient security.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"194281",title:"Dr.",name:"Viduranga Yashasvi",middleName:null,surname:"Waisundara",slug:"viduranga-yashasvi-waisundara",fullName:"Viduranga Yashasvi Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D from the Department of Chemistry, National University of Singapore in Food Science & Technology in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a Senior Lecturer on a temporary basis, at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently the Deputy Principal of the Australian College of Business & Technology – Kandy Campus, in Kandy, Sri Lanka. She is also the present Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"10",totalChapterViews:"0",totalEditedBooks:"7",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"6",title:"Biochemistry, Genetics and Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology"}],chapters:[{id:"74753",title:"Evolutionary Strategies of Highly Functional Catalases for Adaptation to High H2O2 Environments",slug:"evolutionary-strategies-of-highly-functional-catalases-for-adaptation-to-high-h2o2-environments",totalDownloads:8,totalCrossrefCites:0,authors:[null]},{id:"74380",title:"Thiol Reduction and Cardiolipin Improve Complex I Activity and Free Radical Production in Liver Mitochondria of Streptozotocin-Induced Diabetic Rats",slug:"thiol-reduction-and-cardiolipin-improve-complex-i-activity-and-free-radical-production-in-liver-mito",totalDownloads:36,totalCrossrefCites:0,authors:[null]},{id:"74807",title:"Vitamin C and Sepsis",slug:"vitamin-c-and-sepsis",totalDownloads:3,totalCrossrefCites:0,authors:[null]},{id:"74793",title:"Phytochemical Antioxidants: Past, Present and Future",slug:"phytochemical-antioxidants-past-present-and-future",totalDownloads:4,totalCrossrefCites:0,authors:[null]},{id:"74790",title:"Antioxidant Activity: The Presence and Impact of Hydroxyl Groups in Small Molecules of Natural and Synthetic Origin",slug:"antioxidant-activity-the-presence-and-impact-of-hydroxyl-groups-in-small-molecules-of-natural-and-sy",totalDownloads:6,totalCrossrefCites:0,authors:[null]},{id:"74332",title:"The Two Sides of Dietary Antioxidants in Cancer Therapy",slug:"the-two-sides-of-dietary-antioxidants-in-cancer-therapy",totalDownloads:29,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"280415",firstName:"Josip",lastName:"Knapic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/280415/images/8050_n.jpg",email:"josip@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5505",title:"Superfood and Functional Food",subtitle:"An Overview of Their Processing and Utilization",isOpenForSubmission:!1,hash:"1c054794ab111a6e0a6bfebeb77baa8e",slug:"superfood-and-functional-food-an-overview-of-their-processing-and-utilization",bookSignature:"Viduranga Waisundara and Naofumi Shiomi",coverURL:"https://cdn.intechopen.com/books/images_new/5505.jpg",editedByType:"Edited by",editors:[{id:"194281",title:"Dr.",name:"Viduranga Yashasvi",surname:"Waisundara",slug:"viduranga-yashasvi-waisundara",fullName:"Viduranga Yashasvi Waisundara"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6308",title:"Cassava",subtitle:null,isOpenForSubmission:!1,hash:"da8363274dca1c87f27e55966728f14a",slug:"cassava",bookSignature:"Viduranga Waisundara",coverURL:"https://cdn.intechopen.com/books/images_new/6308.jpg",editedByType:"Edited by",editors:[{id:"194281",title:"Dr.",name:"Viduranga Yashasvi",surname:"Waisundara",slug:"viduranga-yashasvi-waisundara",fullName:"Viduranga Yashasvi Waisundara"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,isOpenForSubmission:!1,hash:"c93a00abd68b5eba67e5e719f67fd20b",slug:"biochemistry-and-health-benefits-of-fatty-acids",bookSignature:"Viduranga Waisundara",coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",editedByType:"Edited by",editors:[{id:"194281",title:"Dr.",name:"Viduranga Yashasvi",surname:"Waisundara",slug:"viduranga-yashasvi-waisundara",fullName:"Viduranga Yashasvi Waisundara"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6155",title:"Diabetes Food Plan",subtitle:null,isOpenForSubmission:!1,hash:"b826ff12304ae270954a41210f4e1582",slug:"diabetes-food-plan",bookSignature:"Viduranga Waisundara",coverURL:"https://cdn.intechopen.com/books/images_new/6155.jpg",editedByType:"Edited by",editors:[{id:"194281",title:"Dr.",name:"Viduranga Yashasvi",surname:"Waisundara",slug:"viduranga-yashasvi-waisundara",fullName:"Viduranga Yashasvi Waisundara"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10111",title:"Apolipoproteins, Triglycerides and Cholesterol",subtitle:null,isOpenForSubmission:!1,hash:"29ed0d776c8e3b2af0e50b3c4cf5e415",slug:"apolipoproteins-triglycerides-and-cholesterol",bookSignature:"Viduranga Y. Waisundara and Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/10111.jpg",editedByType:"Edited by",editors:[{id:"194281",title:"Dr.",name:"Viduranga Yashasvi",surname:"Waisundara",slug:"viduranga-yashasvi-waisundara",fullName:"Viduranga Yashasvi Waisundara"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8949",title:"Nutritional Value of Amaranth",subtitle:null,isOpenForSubmission:!1,hash:"2af686a663e37e1f663013cd1e3acbe0",slug:"nutritional-value-of-amaranth",bookSignature:"Viduranga Y. Waisundara",coverURL:"https://cdn.intechopen.com/books/images_new/8949.jpg",editedByType:"Edited by",editors:[{id:"194281",title:"Dr.",name:"Viduranga Yashasvi",surname:"Waisundara",slug:"viduranga-yashasvi-waisundara",fullName:"Viduranga Yashasvi Waisundara"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6730",title:"Palm Oil",subtitle:null,isOpenForSubmission:!1,hash:"96d058f3abbc8d0660dcd56042a8ece8",slug:"palm-oil",bookSignature:"Viduranga Waisundara",coverURL:"https://cdn.intechopen.com/books/images_new/6730.jpg",editedByType:"Edited by",editors:[{id:"194281",title:"Dr.",name:"Viduranga Yashasvi",surname:"Waisundara",slug:"viduranga-yashasvi-waisundara",fullName:"Viduranga Yashasvi Waisundara"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6694",title:"New Trends in Ion Exchange Studies",subtitle:null,isOpenForSubmission:!1,hash:"3de8c8b090fd8faa7c11ec5b387c486a",slug:"new-trends-in-ion-exchange-studies",bookSignature:"Selcan Karakuş",coverURL:"https://cdn.intechopen.com/books/images_new/6694.jpg",editedByType:"Edited by",editors:[{id:"206110",title:"Dr.",name:"Selcan",surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"52751",title:"Biomass Compositional Analysis for Conversion to Renewable Fuels and Chemicals",doi:"10.5772/65777",slug:"biomass-compositional-analysis-for-conversion-to-renewable-fuels-and-chemicals",body:'\nCO2 and other greenhouse \x3c!-- Please check the hierarchy of section headings.
Besides just the production of fuel petroleum also produces a significant portion (basically all) of our plastics and other materials. The use of petroleum to produce chemical building blocks and materials has resulted in a global interest in using renewable bio-based polymers and composites derived from biomass to reduce our environmental impact [10, 11]. Additionally, from a broad energy standpoint, biomass has a significant advantage over renewable energy sources such as hydropower, wind, geothermal, and solar in that biomass is the only renewable energy source that can be turned directly into fuels and chemicals, as opposed to just generate electricity.
\nThe output of these conversion systems, whether it is fuels or chemicals, is highly dependent on the quality of biomass input to the system. The quality of the biomass is dependent on inherent species variability, production conditions, and differing harvest, collection, and storage practices. Some of the most important parameters related to the biomass composition, in regard to the impact on biofuels production, are moisture content, ash content and speciation, carbohydrate distribution, and higher heating value. For example, moisture content impacts the storage, supply, and transportation of feedstock to biorefineries, and ash content often reduces oil yields in thermochemical conversion processes and, to a lesser extent, reduces the effectiveness of dilute alkali pretreatment in biochemical processes. Commercialization of biorefineries in the United States has resulted in an understanding of the importance of biomass quality (moisture, ash, and sugar content) and physical properties (particle size and shape), especially in regard to feed and handling issues. The overall objective of the present research is to understand the impact of the chemical and physical composition of various biomass feedstocks on the production of fuels and chemicals through a variety of conversion pathways. This work will focus on everything from the feeding and handling of biomass all the way through the effect of feedstock variability on the final oil product. Specific objectives seek to understand chemical composition of woody and herbaceous crops, agricultural residues, and municipal solid wastes and suggest their suitability for different biofuel production conversion pathways. This research will also briefly touch on platform chemical production from biomass and consider methods for mitigating the problems associated with feedstock variability while converting biomass to fuels and chemicals.
To effectively produce fuels and chemicals from biomass, it is critical to understand the composition of the feedstock material. The chemical composition of biomass, whether it is lignocellulosic or herbaceous, can be characterized by five primary components: cellulose, hemicellulose, lignin, extractives/volatiles, and ash. The most abundant biopolymer on earth, cellulose, is a polysaccharide of glucose monomers held together by β(1→4) linkages. These β(1→4) linkages are what make cellulose resistant to hydrolysis. The second major component of biomass, hemicellulose, is an amorphous heteropolymer comprised of several different carbohydrates including xylose, mannose, and glucose, among others. Due to its amorphous structure, hemicellulose is significantly more susceptible to hydrolysis than crystalline cellulose. Cellulose and hemicellulose, combined with the third major component of biomass, lignin, make up over 90% of lignocellulosic biomass and 80% of herbaceous biomass. Lignin is an intricate array of aromatic alcohols and is intertwined with the cellulose and hemicellulose fraction of the biomass structure. This interwoven nature of the lignin helps provide rigidity to lignocellulosic materials, such as trees.
\nThe other minor components of biomass are extractives/volatiles and ash. While these components make up a smaller portion of the biomass composition, they can still have a major influence on what ends up being the optimal conversion process. The components comprising the extractives/volatiles include both water and ethanol solubles. Water-soluble compounds include nonstructural sugars and proteins, and ethanol-soluble components are typically represented by chlorophyll and waxes. Ash, which comprises the inorganic content in biomass, can be intrinsic to the biomass or added anthropogenically. Intrinsic ash includes material-like calcium and potassium ions, while anthropogenic ash is mostly silica (dirt) collected during harvest.
\nThere is obviously significant compositional variation between different biomass types, but there is also a lot of variation within a single feedstock. This variation, while substantial across terrestrial feedstocks, varies even more widely when municipal solid wastes are included as renewable energy feedstocks. Table 1 illustrates the large difference in composition across three broad categories of renewable feedstocks including lignocellulosic, herbaceous biomass, as well as municipal solid wastes. Algal biomass was not included in this study due to a lack of available data and the difficulty in obtaining consistent analysis methods across institutions [12].
Feedstock composition | \nWoody | \nHerbaceous | \nWastes | \n
---|---|---|---|
\nProximate\n | \n|||
Volatiles (%) | \n84.0 (2.1)193 | \n79.1 (5.8)284 | \n76.7 (5.5)21 | \n
Ash (%) | \n1.3 (0.9)193 | \n5.5 (3.2)284 | \n6.6 (6.7)21 | \n
Fixed carbon (%) | \n14.7 (1.6)193 | \n15.4 (4.0)284 | \n14.8 (5.0)21 | \n
\nUltimate\n | \n|||
Hydrogen (%) | \n6.0 (0.1)192 | \n5.8 (0.3)276 | \n5.9 (0.4)21 | \n
Carbon (%) | \n50.7 (4.71)192 | \n47.4 (1.9)276 | \n46.0 (4.0)21 | \n
Nitrogen (%) | \n0.32 (0.01)192 | \n0.75 (0.49)276 | \n1.3 (1.6)21 | \n
Oxygen (%) | \n41.9 (1.4)134 | \n41.0 (2.4)107 | \n38.3 (4.2)7 | \n
Sulfur (%) | \n0.03 (0.01)135 | \n0.10 (0.32)107 | \n0.15 (0.16)7 | \n
\nStructural\n | \n|||
Cellulose (%) | \n51.2 (8.7)241 | \n32.1 (4.5)2425 | \n28.4 (13.2)27 | \n
Hemicellulose (%) | \n21.0 (8.7)241 | \n18.6 (3.4)2425 | \n16.4 (5.5)27 | \n
Lignin (%) | \n26.1 (5.3)241 | \n16.3 (3.3)2425 | \n12.5 (2.7)15 | \n
Feedstock compositions for woody, herbaceous, and waste materials; average (standard deviation)number of samples.
As seen in Table 1, there exists a significant amount of variability in overall composition (i.e., cellulose, hemicellulose, and lignin) between different types of feedstocks. These differences are large enough that conversion reactors have to be operated under different conditions based on the type of material supplied to the conversion facility (such as lower pyrolysis temperatures for herbaceous feedstocks). Also, herbaceous feedstocks, in addition to having higher ash content, exhibit more variability in their composition of volatiles (and ash) than woody biomass.
\nWhile a high degree of variability is expected across broad categories such as lignocellulosic material and municipal solid waste (MSW), there also exists significant variability within individual feedstock categories. Tables 2–4 highlight the differences within an individual feedstock category for lignocellulosic material, herbaceous material, and municipal solid waste, respectively.
Feedstock composition | \nShrub willow | \nHybrid poplar | \nPine | \nOther softwoods | \nOther hardwoods | \n
---|---|---|---|---|---|
\nProximate\n | \n|||||
Volatiles (%) | \n84.7 (0.8)76 | \n84.0 (1.3)41 | \n83.5 (2.5)46 | \n81.3 (2.9)18 | \n85.1 (3.0)11 | \n
Ash (%) | \n1.5 (0.4)76 | \n1.3 (0.5)41 | \n0.7 (0.6)46 | \n2.1 (2.0)18 | \n1.8 (1.2)11 | \n
Fixed carbon (%) | \n13.8 (0.7)76 | \n14.6 (0.1)41 | \n15.7 (1.9)46 | \n16.5 (1.6)18 | \n13.1 (1.8)11 | \n
\nUltimate\n | \n|||||
Hydrogen (%) | \n6.0 (0.2)76 | \n6.0 (0.1)41 | \n6.1 (0.1)45 | \n6.1 (0.1)18 | \n6.1 (0.1)11 | \n
Carbon (%) | \n50.3 (0.9)76 | \n50.0 (1.1)41 | \n51.5 (1.0)45 | \n51.8 (0.9)18 | \n50.2 (0.5)11 | \n
Nitrogen (%) | \n0.36 (0.10)76 | \n0.35 (0.17)41 | \n0.17 (0.12)45 | \n0.27 (0.21)18 | \n0.55 (0.49)11 | \n
Oxygen (%) | \n42.6 (0.4)44 | \n42.8 (1.2)28 | \n41.4 (1.0)38 | \n39.7 (1.8)14 | \n41.1 (1.6)10 | \n
Sulfur (%) | \n0.04(0.01)44 | \n0.03 (0.01)28 | \n0.02 (0.01)39 | \n0.03 (0.01)14 | \n0.05 (0.05)10 | \n
\nStructural\n | \n|||||
Cellulose (%) | \n– | \n43.8 (1.2)43 | \n47.4 (2.2)55 | \n42.1 (7.1)26 | \n50.8 (6.9)24 | \n
Hemicellulose (%) | \n– | \n14.7 (0.1)43 | \n21.9 (4.9)55 | \n25.1 (5.2)26 | \n29.7 (4.3)24 | \n
Lignin (%) | \n– | \n25.7 (0.3)43 | \n28.6 (0.7)55 | \n29.1 (1.7)26 | \n19.5 (4.1)24 | \n
Feedstock compositions for specific woody feedstocks; average (standard deviation)number of samples.
Feedstock composition | \nCorn stover | \nSwitchgrass | \n\nSorghum\n | \nEnergy cane (bagasse) | \nMixed grasses | \n\nMiscanthus\n | \n
---|---|---|---|---|---|---|
\nProximate\n | \n||||||
Volatiles (%) | \n78.1 (5.0)50 | \n82.4 (4.1)43 | \n77.0 (3.7)44 | \n82.2 (1.9)48 | \n78.6 (2.8)47 | \n82.5 (3.5)35 | \n
Ash (%) | \n6.3 (3.5)50 | \n4.0 (2.0)43 | \n7.2 (2.6)44 | \n3.4 (1.6)48 | \n6.6 (1.7)47 | \n2.6 (1.3)35 | \n
Fixed carbon (%) | \n15.6 (4.4)50 | \n13.6 (3.0)43 | \n15.7 (2.3)44 | \n14.4 (1.0)48 | \n14.8 (2.4)47 | \n14.8 (2.9)35 | \n
\nUltimate\n | \n||||||
Hydrogen (%) | \n5.7 (0.3)40 | \n5.9 (0.2)43 | \n5.7 (0.2)44 | \n6.1 (0.1)48 | \n5.8 (0.3)47 | \n5.8 (0.1)35 | \n
Carbon (%) | \n47.1 (2.3)40 | \n47.1 (1.1)43 | \n46.4 (1.3)44 | \n48.8 (0.9)48 | \n47.6 (1.1)47 | \n48.9 (1.5)35 | \n
Nitrogen (%) | \n0.63 (0.32)40 | \n0.60 (0.26)43 | \n1.04 (0.38)44 | \n0.43 (0.20)48 | \n1.38 (0.54)47 | \n0.35 (0.17)35 | \n
Oxygen (%) | \n40.3 (2.2)39 | \n42.4 (2.3)42 | \n40.3 (0.6)3 | \n- | \n39.5 (0.7)2 | \n42.3 (1.1)4 | \n
Sulfur (%) | \n0.14 (0.53)39 | \n0.06 (0.03)42 | \n0.11 (0.01)3 | \n- | \n0.12 (0.02)2 | \n0.04 (0.02)4 | \n
\nStructural\n | \n\n | \n | \n | \n | \n | 20.1 (1.4)274 | \n
Cellulose (%) | \n34.3 (2.5)251 | \n34.2 (2.7)348 | \n28.6 (2.6)488 | \n32.1 (3.2)479 | \n28.9 (2.9)465 | \n38.9 (3.2)274 | \n
Hemicellulose (%) | \n20.7 (2.0)251 | \n21.9 (2.6)348 | \n15.4 (1.6)488 | \n19.5 (1.9)479 | \n16.7 (3.9)465 | \n20.1 (1.4)274 | \n
Lignin (%) | \n15.2 (1.6)251 | \n19.2 (1.4)348 | \n12.2 (1.9)488 | \n16.3 (1.8)479 | \n15.7 (1.7)465 | \n21.1 (1.6)274 | \n
Feedstock compositions for specific herbaceous feedstocks; average (standard deviation)number of samples.
Feedstock composition | \nMSW | \nC&D waste | \nWoody residues | \n
---|---|---|---|
\nProximate\n | \n|||
Volatiles (%) | \n76.5 (1.1)11 | \n76.5 (3.7)9 | \n81.1 (2.4)2 | \n
Ash (%) | \n11.8 (5.2)11 | \n0.8 (0.4)9 | \n1.2 (0.3)2 | \n
Fixed carbon (%) | \n11.2 (5.2)11 | \n18.9 (2.1)9 | \n17.8 (2.0)2 | \n
\nUltimate\n | \n|||
Hydrogen (%) | \n5.6 (0.4)11 | \n6.2 (0.2)9 | \n6.0 (0.0)2 | \n
Carbon (%) | \n43.3 (3.3)11 | \n48.3 (1.2)9 | \n52.5 (0.2)2 | \n
Nitrogen (%) | \n1.52 (1.72)11 | \n1.09 (1.47)9 | \n0.22 (0.06)2 | \n
Oxygen (%) | \n36.3 (4.8)4 | \n42.4 (0.1)2 | \n40.1 (0.6)2 | \n
Sulfur (%) | \n0.25 (0.14)4 | \n0.02 (0.01)2 | \n0.01 (0.01)2 | \n
\nStructural\n | \n|||
Cellulose (%) | \n28.4 (13.2)15 | \n– | \n– | \n
Hemicellulose (%) | \n16.4 (5.5)15 | \n– | \n– | \n
Lignin (%) | \n12.5 (2.7)15 | \n– | \n– | \n
Feedstock compositions for specific waste feedstocks; average (standard deviation)number of samples.
While it is obvious that compositional differences can be stark between different biomass types, there is also a substantial compositional variability between different anatomical fractions of the same type of biomass. Table 5 compiles information on the chemical composition of different plant fractions for woody biomass, corn, and wheat.
\nStructural component\n | \n\nCellulose\n | \n\nHemicellulose\n | \n\nLignin\n | \n\nExtractives\n | \n
---|---|---|---|---|
\nWoody biomass (wt%–daf)a | \n||||
Whole tree | \n51.2 | \n23.4 | \n25.4 | \n3.0 | \n
Bark | \n22.0 | \n47.0 | \n31.0 | \n3.3 | \n
Twigs | \n15.4 | \n62.3 | \n22.3 | \n1.6 | \n
Leaves | \n26.5 | \n47.2 | \n26.3 | \n3.7 | \n
\nCorn (wt%–db)b | \n||||
Corn cobs | \n35.92 | \n30.7 | \n16.44 | \n5.89 | \n
Corn leaves | \n34.33 | \n22.77 | \n13.99 | \n10.54 | \n
Corn husk | \n37.73 | \n31.18 | \n10.52 | \n5.80 | \n
Corn internodes | \n40.21 | \n20.03 | \n17.24 | \n12.29 | \n
\nWheat (wt%–db)b | \n||||
Internode 1 | \n34.34 | \n21.30 | \n16.36 | \n16.24 | \n
Internode 2 | \n39.04 | \n21.07 | \n18.58 | \n10.98 | \n
Internodes 3/4/5 | \n38.92 | \n21.56 | \n19.50 | \n9.67 | \n
It can be seen that lignocellulosic biomass contains a large fraction of cellulose in the heartwood (shown by whole tree), while the bark contains a high percent lignin. In woody biomass, the extractives are fairly evenly distributed. Conversely, corn stover contains a majority of the extractives in the leaves and internodes (the links between different stalk segments). Taking advantage of processing a specific anatomical fraction could allow for greater control over product output by tailoring the composition of the reactor feed. Additionally, utilizing anatomical fractionation separation could increase the economic viability of a process by extricating high value components. Profitable use of a coproduct is exemplified by the use of distiller’s dried grains with solubles\x3c!-- The term “distiller dried grains and solubles” has been changed to “distiller’s dried grains with soluble.” Please check if okay.
The majority of the data included in Tables 1–5 can be found in Idaho National Laboratory’s (INL) Bioenergy Feedstock Library. The woody materials in Table 1 include a wide variety of softwoods, hardwoods, and other wood varieties making up around 23 different woody species. The herbaceous materials include those listed in Table 3 along with sugarcane, sugarcane bagasse, and wheat. The waste materials from Table 1 are all represented in Table 4. In Table 4 municipal solid waste (MSW) includes fractions of paper, cardboard, and grass clippings. No food-based waste is currently accounted for by this data. The construction and demolition (C&D) waste included oriented strand board, particle board, and a variety of lumber conditions. Woody residues included forest thinning and logging residues.
All of the values reported for proximate and ultimate (reported on a dry basis) for Tables 1–5 were collected at INL [17] and stored in the Bioenergy Feedstock Library [14]. The reported cellulose, hemicellulose, and lignin values were a combination of glucose (representing the cellulose fraction) and xylose, galactose, and arabinose (representing the hemicellulose) values measured using NREL’s LAP determination of structural carbohydrates and lignin in biomass [18], glucose, and xylose values predicted using an NIR-based predictive models developed at NREL [19], and cellulose and hemicellulose values reported in literature are all reported on a dry basis. It should be noted that the value for volatiles in the previous tables is determined by heating samples to 950 °C in an inert atmosphere. This value for volatile will therefore include all thermal decomposition products, in addition to molecules that could be removed without thermal decomposition.
\nUnderstanding the degree of biomass compositional variability is crucial to developing a robust conversion process. However, in addition to understanding compositional variability, it is useful to know where this variability originates. Kenney et al. have produced a thorough review discussing several sources of biomass variability [20]. Briefly, some of the major sources of biomass compositional variation derive from local agronomic conditions [21], drought [22], harvest season and year [23], and harvest method [24]. A further analysis of the sources of biomass variability and its impact on conversion processes has been compiled by Williams et al. [25].
As can be seen in Tables 1–5, biomass has a broad range of compositional variability, even within an individual feedstock. This variation has a substantial impact on biomass conversion to fuels and value-added chemicals that varies depending on the chosen conversion process. The following section investigates how feedstock quality impacts four common conversion processes: biochemical fermentation, direct combustion, pyrolysis, and hydrothermal liquefaction (HTL). General impacts of feedstock physical and chemical properties will be discussed before a more in-depth look at each conversion process.
\nThe physical properties of biomass have a myriad of effects on its conversion to fuels and chemicals. Arguably, the two most important physical properties of biomass, regardless of conversion process, are particle size and moisture content. Practically all conversion methods require some degree of size reduction. Biochemical conversion processes can accept a greater range of particle sizes, and the final size needed tends to be dependent on the processing system utilized [26, 27]. On the thermochemical side, hydrothermal liquefaction is much more insensitive to particle size due to high heating rates in the liquid media [28], but a significant amount of size reduction is needed to pump biomass sludges in a continuous system [29]. Pyrolysis uses particles smaller than 0.5 mm because small particles decrease char yields and have higher heating rates [30]. Optimal combustion particle size is often larger and varies for different biomass types at approximately 6 mm for straw, 4 mm for Miscanthus, and 2–4 mm for wood [31]. While particle size is obviously important, others have argued that moisture content is likely the single most problematic property affecting feedstock supply and biorefining operations [20]. Moisture increases heating rates during steam pretreatment for biological conversion [32], reduces bio-oil quality and thermochemical conversion [33], and causes low thermal efficiency in combustion processes [34]. Aside from particle size and moisture content, other physical properties of interest include bulk density, elastic properties, and microstructure. Bulk density has a strong effect on transportation and handling costs (lower densities greatly increase transportation costs), and the elastic properties/microstructure can increase compressibility and interparticle interactions at constricted flow points such as hopper openings.
\nBiomass chemical properties also have a large influence on best conversion process and the quality of the final product. The three primary chemical components of interest in biomass conversion are ash content, volatiles, and lignin. High ash content generally has a negative effect on biomass conversion across the board by reducing the effectiveness of dilute acid pretreatment for biological processes [35] and increasing char yields and fouling in thermochemical processes such as HTL [36], pyrolysis [37], and combustion [38]. However, there exist several strategies for ash removal including leaching and air classification [39]. Volatiles are generally represented by light organic acids (such as acetic acid) and furans. The furan fraction of the volatiles can reduce fermentation efficiency in biological processes [40] and lower energy content and stability in bio-oils produced by thermochemical processes [41]. Lignin, on the other hand, can have a variety of effects on biomass conversion depending on the process chosen. Lignin generally has a negative effect on ethanol production by blocking enzyme access to cellulose [42] but can increase oil yields for pyrolysis [43] and heating values for combustion [34] during thermochemical conversion.
\nEthanol production from biomass occurs via two primary steps: depolymerization of the cellulose and hemicellulose to fermentable sugars and fermentation of these sugars to ethanol. Biomass conversion to ethanol has been evaluated in many reviews [42–45] which vary focuses from pretreatment and enzymatic hydrolysis [42] to optimization of the cellulase enzyme for improving sugar conversion to ethanol [44] and evaluation of current and future economic aspects of fuel ethanol production [46]. This work will build upon these previous reviews to explain how biomass compositional variability can influence fermentation processes for fuel production.
\nMixed rangeland grasses are a prime example of a feedstock with high compositional variability. These grasses are an emerging alternative to traditional energy crops. Mixed rangeland grasses also preserve natural habitat and typically require less maintenance than traditional energy crops. However, the naturally high variability of these grasses can lead to reduced product yields in biochemical conversion processes. Adler et al. have shown that ethanol yield per unit area decreases as plant species diversity increases. Ethanol yields are maximized when there is increased targeted coverage of C4 prairie grass energy crops, such as switchgrass, which sequester more carbon than typical C3 conservation grassland varieties [47]. This preference for C4 grasses illustrates how the production of ethanol using fermentation is typically much more dependent on biomass carbohydrate content. In fact, technoeconomic analysis has indicated that adjusting total carbohydrate content by 1% of total dry matter can change the minimum ethanol selling price (MESP) by $0.018/gal [46]. Given the compositional data above, fermentation is better matched to herbaceous crops than lignocellulosic material due to the higher carbohydrate content of grasses. Additionally, fermentation processes are typically more tolerant of the higher ash contents of herbaceous feedstocks [48]. However, it should be repeated that high alkali metal content from excess soil collected during harvest can increase acid neutralization during pretreatment and lower the xylan digestibility for corn stover, consequently lowering ethanol yields [35].
\nDespite compositional variability generally being a disadvantage in feedstock processing, there exists at least one aspect to variability that could be advantageous. Changes in structural carbohydrate content with anatomical fraction in corn stover significantly affect glucose yield. After hydrolysis, glucose concentration can be three times greater in the cobs, leaves, and husks than stalks [49]. Additionally, the corn cobs, leaves, and husks respond better than stocks to simultaneous saccharification and fermentation (SSF) despite having similar glucan levels [50]. Therefore, selective fermentation of specific anatomical fractions could increase process efficiency if a cost-effective separation process could be devised and there is a value-added coproduct that could be produced from the stalks. The advantage of separating biomass by anatomical fraction extends to other biomass types as well. For example, different fractions within wheat stover exhibit an almost 10% difference in glucan content, and some parts are much more susceptible to chemical saccharification [51].
While biomass as a feedstock exhibits a significant amount of compositional variability, illustrated in the tables above, the different options for thermochemical conversion are almost diverse. Thermochemical conversion operations utilize reactions using both solids (pyrolysis and combustion) and liquids (hydrothermal liquefaction). Products from thermochemical processes also span a wide range of states from solid (biochar), through liquid (bio-oil), all the way to gas (syngas). The wide variety of processing options and product outputs, along with short reaction times (on the order of seconds), allows thermochemical conversion operations to utilize a wide array of diverse process inputs.
The combustion of biomass, which is still common in developing countries, has been used for thousands of year to do everything from managing agricultural lands to producing heat and energy for industrial processes [52]. Currently, developed countries use nonrenewable fossil fuels such as oil, coal, and natural gas as a primary source of energy; however, these energy supplies could be depleted in the next 40–50 years [53]. In an effort to reduce the rate at which these nonrenewable resources are being depleted and reduce environmental impact, there is a shift toward the combustion of renewable biomass and other waste products (such as paper and plastics). Literature reviews focus on the combustion of biomass as an energy source both with [54–56] and without [30, 53, 57, 58] torrefaction as a pretreatment to improve combustion efficiencies and material grinding and storage properties. One of the major problems with combusting biomass in a traditional coal plant is slagging, a mineral buildup due to the higher ash content in biomass than in coal. This problem means that low-ash content biomass, such as woody feedstocks, is better to use than herbaceous materials (which have intrinsic ash contents about five times greater than woody materials) in combustion applications. While biomass combustion does present problems with slagging, it does have the benefit of reducing harmful greenhouse gas emissions as compared to coal [59], and the energy produced can be incorporated directly into the current energy grid without infrastructure changes.
Pyrolysis is a thermochemical process that starts with a solid and can be tuned to produce either a solid (biochar) or a liquid (bio-oil). However, this chapter will focus on the production of bio-oil and the effects of biomass composition on the resulting oil yields and quality. Pyrolysis is performed at temperatures from 400 to 600°C [60] and often includes a catalyst with the aim of increasing the energy density of the product by removing oxygen (as water and volatiles) [61]. Pyrolysis of biomass to produce fuels has been thoroughly reviewed in the academic literature [33, 61–64].
\nThe pyrolysis process is well suited for low-moisture-content material with low ash and high lignin content, meaning that pyrolysis processes favor lignocellulosic feedstocks. For example, lignin content increases the average molecular weight of resulting pyrolysis oil by 100 Da as lignin content rises from 5 to 15% [43]. The high ash content of herbaceous feedstock can decrease oil yields by 1–5% for every 1% increase in ash over an ash range of 1.5–7.5% [43]. In addition to decreasing oil yields, the alkali metals common in herbaceous crops can also have damaging effects on reactors and reduce catalyst lifetimes [65]. However, more recent studies have taken into account not only the production of pyrolysis oil but also the upgrading of that oil to the final fuel for a range of feedstocks including pines, poplars, switchgrass, and corn stover. In these integrated fast pyrolysis/hydrotreating studies, the effects of ash content on oil and upgraded fuel yields were relatively insignificant over a narrow ash range of 0.7–1.6% [66] (an ash range common for woody materials but low for grasses).
Hydrothermal liquefaction (HTL) is a unique thermal conversion process that utilizes biomass and water slurries. This makes HTL particularly well suited to turning high water content material, such as algae, municipal solid wastes, or grasses into bio-based oils. Additionally, HTL bio-oils tend to be higher quality than pyrolysis oils because they have less oxygen. However, the oil yields for HTL are lower than pyrolysis and the oxygen content is still higher than crude oil [67]. Performing the dissolution of biomass in a water media also saves energy on drying the feedstock, and the high heat transfer rates in a liquid media reduce particle size reduction requirements [36]. HTL can operate over a wide range of temperatures (200–600°C) to create products that range from solid biochars to gases. Reaction temperatures from 200 to 275°C are suitable for solid production [68], while temperatures from 275 to 350°C produce liquid products, and temperatures above 400°C are suitable for gas production [36]. Due to the liquid nature of the reaction media and the high temperatures, these reactors often operate at high pressures (5–40 MPa) to keep the reaction media as a liquid or supercritical fluid. Since the operating conditions and products of hydrothermal reactors are so diverse, the reviews of this material span a wide range. Some reviews cover both sub- and supercritical temperature regimes, with an array of model compounds and biomass feedstocks, and product arrays including liquid bio-oils and gases [67]. Other reviews focus on narrower operating regimes and liquid products from a variety of feedstocks with both high and low ash content [28, 36] or simply the processing of lignin (which is usually considered a waste product) [69]. While the hydrothermal processing of biomass offers advantages in being more feedstock agnostic, it has drawbacks in high capital equipment cost due to the extreme operating conditions, high energy input to heat the water, and lower yields (even though the oil quality is generally high).
Aside from the production of biochar and bio-oil, hot liquid water can also be used to convert biomass into value-added chemicals. Luterbacher et al. have achieved a 65% yield of sugars from woody biomass and a 55% yield from switchgrass using a biphasic CO2/H2O system. This biphasic system improves process separations and can use larger particles (~1 cm) at a high solids loading (40 wt%) [70]. The targeted production of sugars from biomass, instead of a bio-oil destined for fuel blending, could facilitate the production of high-value chemicals and materials. For instance, biomass-derived sugars can be used to make renewable plastics by producing p-xylene [71–73]. The conversion of biomass-derived cellulose to p-xylene could take place using a scheme such as the one in Figure 1. In this scheme cellulose is converted to p-xylene in a four-step process: step one uses a biphasic CO2/H2O system to convert biomass into sugars [70], step two isomerizes glucose to fructose [74], step three converts fructose 2,5-dimethylfuran (DMF) [75], and step four converts DMF to p-xylene [71]. The final step of converting p-xylene to polyethylene terephthalate (PET) would take place in a typical refinery because this renewable p-xylene would act as a standard drop in feedstock.
\nA representative pathway for conversion of cellulose to terephthalic acid through the transformation of cellulose-derived sugars to furans.
The production of chemicals from biomass has the potential to produce a wide array of drop in building blocks. The top twelve most promising drop in chemical building blocks can be found in the Department of Energy’s report on Top Value-Added Chemicals from Biomass [76]. This report lists several chemicals that could be made from biomass with an emphasis on the conversion of sugars to building block chemicals and the conversion of these building block chemicals to intermediates. After examining both biochemical and thermochemical pathways, it was noted that biochemical pathways focused on the conversion of sugars to building block chemicals, and thermochemical pathways dominated the conversion of building block chemicals to final products.
Raw herbaceous biomass has a chemical composition which is low in carbon content and high in oxygen, volatiles, and ash; is high in moisture; and has low energy content. This combination of properties does not make herbaceous crops suitable for thermochemical applications such as gasification, pyrolysis, and co-firing [77]. The shortcoming of many types of raw biomass, in terms of chemical and physical properties, can be overcome by pretreatment to produce a conversion-ready feedstock. Currently, there exist a variety of pretreatment methods including pelletization, air classification, dry torrefaction, hydrothermal carbonization, steam explosion, ionic liquid dissolution, acid and alkali leaching, and ammonia fiber expansion (AFEX). These pretreatment techniques are being looked at to improve biomass quality to produce a conversion-ready feedstock for both thermochemical and biochemical applications [25, 78]. Pretreatment can reduce biomass chemical and physical heterogeneity and lessen problems in (a) conversion applications (removing using air classification to remove ash prior to co-firing biomass could reduce slagging), (b) supply chain logistics (pelletizing biomass reduces transportation costs), (c) operational constraints (certain forms of pretreatment allow for utilization of coal infrastructure for feeding, milling, etc. of biomass, without costly modifications or installation of separate processing lines), and (d) technical constraints (e.g., reduction of corrosion due to biomass washing).
\nPretreatment for the optimization of chemical production from biomass is very much in its infancy. However, it is a safe bet that pretreatment will be required to get a consistent product, given that specialty chemicals require a much higher purity than the fuels currently being produced. Current research is ongoing for the production of many different value-added chemicals such as p-xylene [71], dimethylfuran [75], and levulinic acid [79] to name just a few, but at this point, all of these studies start with pure feedstocks, such as cellulose, and not biomass. To move the industry, past fuels to value-added chemicals will require a greater understanding of how biomass composition effects its conversion to fuels and chemicals.
\nAs the previous pages have illustrated, the transformation of biomass to fuels and chemicals can take place over a wide variety of pathways with numerous influences from the biomass composition. These conversion pathways can be generally grouped as either biochemical or thermochemical. A greatly simplified process diagram for the production of renewable liquid fuels and chemicals from biomass can be seen in Figure 2. This figure groups feedstocks with their most likely conversion pathway based on the previous discussion regarding biomass composition.
Broad scheme for conversion of renewable material to fuels, chemicals, and energy.
Given the current variability in biomass resources, it is apparent that conversion technology will have to be tailored to regional renewable supply, be it lignocellulosic, herbaceous, a municipal solid waste stream, or algae. Given the high ash content of herbaceous biomass and the high water content of some municipal solid wastes, it is likely that these streams will be destined for use in biochemical pathways to produce sugars through enzymatic hydrolysis or methane using anaerobic digestion. However, there is also a chance that these materials could be passed through the thermochemical process of hydrothermal liquefaction to produce oils or undergo a more mild hydrothermal treatment to produce a platform chemical stream based on biomass-derived sugars. The abundant lignocellulosic biomass will likely be converted to bio-oil or energy using a thermochemical process such as pyrolysis or combustion, respectively. Thermochemical processes make use of lignocellulosic feedstocks in part due to their low ash content and because a high lignin content is unsuitable for enzymatic digestion in biochemical fermentation.
The large degree of variability between biomass resources, both currently available and emerging, is a significant barrier to the utilization of biomass as a feedstock for fuel and chemical production. The impacts of physical characteristics such as moisture content and particle size, as well as chemical characteristics such as ash content, extractives/volatiles, and lignin, all play varying, and intricate, roles during biomass conversion. Adding to the complexity of this system is the fact that, in addition to a myriad of compositionally diverse feedstocks, there also exist numerous conversion pathways to the final fuel or chemical products. To alleviate this problem, it will be necessary to develop techniques to reduce biomass variability and develop a consistent, conversion-ready feedstock for biorenewable fuel and chemical production.
This research was supported by the US Department of Energy under the Department of Energy Idaho Operations Office Contract No. DE-AC07-05ID14517.
\nFinancial and competing interests disclosure
\nThe US government retains, and the publisher, by accepting the article for publication, acknowledges that the US government has a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript.
Note that the following references [33, 63]; [44, 46]; [62, 66] have been identical and hence Refs. [63, 46, 66] have been deleted and renumbered accordingly. Please check for correctness.
The evolution of hepatic resection from an imprecise removal of portions of the liver often associated with a mortality rate of up to 20% to a routine and controlled anatomic procedure with operative risk less than 5%, represents a major advance in modern surgery. This accomplishment has been made thanks to better understanding of the liver vascular and biliary anatomy, recognition of the functional reserve of the liver and the potential for regeneration, advances is surgical technique as well as anesthesia and perioperative care. These factors, along with the improvement of prolonged survival following hepatic resection for colorectal metastases, hepatocellular and cholangiocarcinoma have led to an expansion of liver surgery.
\nIn this chapter, we will give the evolution of the technique used for the standard open right hepatectomy. In addition, we will describe on detail our technique employed for right hepatectomy focusing on:
Indications
Preoperative preparation
Specific technical aspects
It was the work from our center conducted by Bismuth [1] which introduced to the English speaking word, the segmental approach to liver surgery, which in turn was based on the anatomical description of the liver by Couinaud [2]. The two liver lobes are divided into four segments with defined blood inflow and outflow as well as biliary drainage. The fibrous Glissonian sheath surrounds the branches of the segmental structures, whereas the hepatic veins lie between the pairs of the liver segments [3, 4].
\nFor further details on liver anatomy of interest for surgeons performing liver surgery the reader is referred to the chapter on liver anatomy on this book.
\nCurrently, hepatic and right liver resections may be required in a wide variety of conditions, including pathological processes which are limited to the respective right side of the liver. Partial right hepatectomy in the treatment of primary (benign or malignant) liver tumors, biliary tract tumors and secondary malignant tumors are the most common indications. Partial right hepatic resections may also be necessary in the management of complex cystic diseases, benign biliary stenoses, some hepatic trauma, and more recently in liver transplantation with live donors. Total hepatectomies are reserved for situations of liver uptake in cadaveric donors and hepatic replacement in the hepatic transplant recipient.
\nThe modern era of anatomic resection dates as far back as 1950s, when Lortat-Jacob [5] reported the technique of right hepatectomy by performing an initial dissection, ligation and division of the right hepatic artery, portal vein and right hepatic vein, followed by parenchyma transection with intrahepatic isolation of the vessels. Although, this technique is advantageous as it reduces the bleeding during the parenchyma transection in addition to displaying the demarcation line between healthy and ischemic parenchyma, it is associated with serious complications such as major bleeding and air embolism (if the right hepatic vein is injured during the dissection of its non-parenchymal route). For this reason, Lortat-Jacobs’ original technique [5], was later modified by preceding the portal and hepatic vein dissection by supra- and infra-hepatic caval control. This technique has, however, two drawbacks: firstly, the already mentioned risk of trauma to the hepatic vein, and secondly, the possibility of devascularization of parts of remaining liver in cases of anatomical variations. In addition, during a right hepatectomy, the extrahepatic ligation of the right pedicle is associated with a risk of ligation of the biliary convergence situated anterior to the origin of the right portal branch.
\nIn contrast, these complications are less frequent with the technique described by Tung and Quang [6] which entails an initial parenchymal dissection with intrahepatic control of the vessels.
\nAlthough, other techniques have been described, generally most liver surgeons use a combination of these techniques often applied in accordance to case specifics.
\nThe technique we use, first described by Bismuth [7], consists of an initial hilar dissection to control the arterial and portal components without touching the biliary duct (Figure 1).
\nControl of the arterial and portal components without touching the biliary duct.
The control of right hepatic vein can also be done at this stage, however, this is not essential and should be avoided if difficulties are anticipated. This technique has the advantage of preceding the parenchymal section by the selective control of the right arterioportal and right hepatic components (as in the technique described by Lortat-Jacob) [5] and tie the vessels in the hepatic parenchyma (as in the technique described by Ton That Tung) [6].
\nBefore any decision to perform a major surgical procedure could be made there is a need for a thorough pre-operative evaluation of the patients focused on the general physical status as related to the requirements of the planed operative procedure. All factors needed for a proper evaluation of the risk and possible gain from the patient’s point of view should be taken into account. In this aspect liver resection does not differ from any other major surgical resection. However, there are factors that are specific to liver resection: the risk for massive intraoperative hemorrhage and postoperative functional hepatic insufficiency. The preoperative evaluation of the functional capacity of the remaining liver is difficult and there are no strict and objective rules and specific knowledge and experience is required. In general, to determine the indications for surgery and the possible course of the prognosis following the surgical treatment, evaluation of liver cell integrity, excretory, and metabolic performance as well as the expected temporary ischemia and the effects of the anesthesia are all of importance [8]. Risk factors should be taken into account particularly fibrosis/cirrhosis or small future remnant volume and the question whether resection safety can be increased by portal vein embolization (PVE) should be examined preoperatively [9].
\nAlso, the preoperative evaluation should aim at clarifying the following questions:
The extent of the pathological lesions.
Detailed evaluation of the pathological lesions within the hepatic parenchyma and the relationship with important structures such as vascular and biliary components.
In this regard, a three phase spiral computerized tomography (CT) and a magnetic resonance (MR) can be of a significant help. However, further information and accuracy with great clinical benefit during the preoperative evaluation is obtained from 3D CT or MR reconstruction, vascular reconstruction as well liver volume measurements.
\nThe patient is placed on supine position. The right arm is placed along the body wrapped in a drape whose ends pass under the back of the patient. The left arm is stretched at 90°. For anesthesiological monitoring, central venous lines and an arterial pressure sensor are placed. A gastric tube may be used to decompress the stomach.
\nMedian incision with right transverse extension (modified Makuuchi incision).
The surgical field usually extends from the lower half of the chest to the pubic symphysis. The patient’s head is turned to the right and fixed on this position by Elastoplast® tape in order to expose the left jugular triangle. The site of the abdominal incision is marked and the entire operative field is then covered. For large tumors requiring a thoracoabdominal incision or median sternotomy, the entire chest is included in the surgical field.
\nAn optimal surgical approach is a prerequisite for safe, controlled liver resection. For right hepatic resection, we use almost exclusively an abdominal approach. This involves a median incision with right transverse extension (Figure 2).
\nDepending on the case, the incision usually can be extended cranial over the xiphoid process. A bicostal incision may provide a very good exposure suitable for almost all types of standard hepatectomies.
\nExtension of the incision into the chest is exceptional, however, in extreme cases the incision can be extended further by a partial sternotomy, giving an excellent exposure of the suprahepatic vena cava. Similarly, a thoraco-phreno-laparotomy is used rarely for very large tumors of the right lobe or the upper right lobe preventing the mobilization and control of the suprahepatic vena cava.
\nThis step involves a complete exploration of the abdominal cavity paying special attention to the liver in order to identify possible undiagnosed lesions which could constitute a contraindication to liver resection. In general, it is possible to perform this step via a limited right subcostal incision. The first part of the exploration involves a manual palpation which is focused on the left liver, porta hepatis (in particular the lower posterior aspect) and the coeliac region. Division of the ligamentum teres and the falciform ligament along the anterior surface of the liver facilitates the exploration. The elevation of the ligamentum teres helps to expose the inferior surface of the liver and the area of the hilus as well as umbilical fissure. Performing this step (elevation of the ligamentum teres) helps to identify and better estimate lesions which can be potentially missed or underevaluated. Exploration should also include the inferior quadrants of the abdomen looking for adenopathy, peritoneal carcinomatosis or any lesion indicating colonic recurrence. Frozen section biopsies should be done for suspected lesions.
\nThe second part of the exploration involves performing an ultrasound (US) examination of the liver. The US helps to identify previously undetected lesions and to clearly delineate anatomical landmarks in the relation to the tumor [10]. The intraoperative US is particularly beneficial for deep seated lesions <10 mm in diameter as identification of these lesions may influence the surgeon to change the strategy and/or tip the balance against a curative resection. In addition, US may identify anatomical variations that may make the resection more difficult, such as accessory hepatic veins or common origins of the portal pedicles [11]. Finally, ultrasound is an indispensable aid when the anatomy is altered by a previous hepatectomy. If the exploration (manual and by US) is negative, the incision is enlarged to start the mobilization of the liver.
\nFollowing the division of the ligamentum teres, the posterosuperior remaining part of the falciform ligament is incised and divided as far back as the suprahepatic IVC. The space between the right hepatic vein (RHV) and middle hepatic vein (MHV) is dissected 2 or 3 cm in the caudal direction. In a similar fashion, the perihepatic attachments (right and when required left coronary ligament) are divided. This begins from the right lateral side and continues to the inferior peritoneal reflection exposed by retracting the right lobe anterosuperiorly. During this stage it is important to stay in close contact to the liver surface so to avoid entering the retroperitoneum. Failure to do so may result on profuse bleeding from severed retroperitoneal veins, which at times can be very dilated, particularly in patients with portal hypertension. Similarly, after dividing the upper lamina of the coronary ligament, care should be taken not to enter the thickness of the diaphragm as it can cause bleeding which often requires a time consuming hemostasis. In addition, adhesions between liver and diaphragm when present should not be digitally dissected (especially with a cirrhotic liver) as this approach is associated with a real risk of liver decapsulation leading to massive bleeding.
\nMultiple short Spigelian veins between the IVC and posterior surface of the liver are ligated and divided as the liver is retracted anteriorly and laterally to the left. If an inferior right hepatic vein/s are present (>5 mm) it is crucial to ligate and divide them as they are a potential source of major bleeding. During this stage, one often encounters a band of ligamentous tissue extending from the liver to the right lateral aspect of the vena cava and in some patients this represents a small bridge of liver parenchyma. Regardless the nature, this too requires ligation and division as most of the time this band contains one or two veins.
\nAfter the right liver is fully mobilized, the space between the RHV and the MHV in the anteromedian surface of the vena cava is carefully dissected using a right angle forceps through which a tape is passed around to control the root of the RHV. Having achieved this, laparotomy pads are placed behind the liver to enhance the exposure of the right lobe necessary for the parenchyma resection.
\nIt is not unusual that during mobilization to find right lobe tumors attached to the diaphragm. The surgeon should either separate these attachments or in some cases resect a segment of the diaphragm which can be subsequently repaired. Tumor attachment/s to the diaphragm should not be considered as distal metastatic lesions and should not influence the surgeon to abandon the planed resection.
\nAfter cholecystectomy, the right lateral aspect of the hepatoduodenal ligament is incised longitudinally just posterior to the bile duct, followed by a hilar dissection to identify and achieve control of the right hepatic artery (RHA) and right portal vein (RPV). The right hepatic artery is identified during the cholecystectomy. Anomalies such as having a right hepatic artery originating from the superior mesenteric artery or posterior location in the hepatoduodenal ligament should always be kept in mind if injuries are to be prevented. Ideally, these possibilities should be excluded during the preoperative work-up by CT angiography imaging. The artery is traced to its left sufficiently to identify with certainty its junction with the proper hepatic artery after which the right branch is controlled.
\nThe next step involves the exposure of the portal vein. Using gently a blunt right angle forceps, the trunk of portal vein is dissected anteriorly and posteriorly and a traction tape is passed around this vessel. Dissection is then continued into the hilum of the liver to expose the bifurcation of the portal vein, where the right branch is freed up and controlled by a vascular tape. During this step, one should be careful to avoid two possible complications. First, the left portal vein tends to pass directly away from the operator and care must be taken not to injure it. Second, the possibility of small tributaries from the right portal branch to the caudate lobe should always be kept in mind as failure to do so may lead to cumbersome bleeding from such very fine veins. Hilar dissection is completed by tracing the common bile duct into the hilum where the right and left branches are seen. Insertion of a small catheter through the cystic duct stump and up into the left and right ducts can be useful to identify these structures as a preparation step for eventual division (during the parenchyma transection).
\nAn initial occlusion of RHA and RPV with bulldog clamps will reveal a demarcation line on the liver surface that corresponds to the transection plane, which is marked with electrocautery. The isolation and clampage of the right arterial and portal branches is advantageous as it allows selective clamping without inducing ischemia in the contralateral site of the liver [12, 13, 14].
\nOne important point to remember is that at the end of this step the surgeon has two options. First, as described above to dissect and control the vascular components (right hepatic and portal branch) followed by parenchyma transection. Second, to dissect, ligate and divide the vascular components before commencing the parenchymal transection. The choice will depend on the case particulars and on the surgeons’ preference.
\nAfter selectively controlling the right lobe inflow and outflow, transection of the parenchyma is commenced along the marked line running from an anteroinferior to posterosuperior direction near the diaphragmatic hiatus of the IVC for early exposure of the middle hepatic vein. The transection is done using either a Kelly clamp or ultrasonic dissector with selective occlusion of the vascular inflow (RHA and RPV). While the ultrasonic dissector is highly effective for exposure of the periportal pedicles, care must be taken with this instrument when dissecting in close contact to the hepatic veins whose walls are extremely fragile. In addition, one should be always aware of the location of the tumor to achieve a negative histologic margin. When the resection is performed in a fibrous or cirrhotic liver, using a small Kelly clamp (kellyclasie) to carry out the transection may be preferable. As parenchymal division proceeds, pedicles including the larger branches originating from the hepatic veins are tied with silk 4.0. We do not use metal clips or absorbable material to achieve the hemostasis in transection surface of the remaining parenchyma. In our experience, the clips can easily be removed/dislodged during manipulations, by vigorous suction or when the liver becomes very congested or edematous leading to unnecessary bleeding and time delay to control it.
\nCare must be taken to preserve the middle hepatic vein by carefully ligating its branches to the anterosuperior and anteroinferior segments of the right lobe and by preserving the venous drainage of the medial segment of the left lobe. The parenchyma is divided in an anteroposterior direction until the anterior surface of the IVC is exposed. Before the specimen is removed it is necessary to divide the right portal pedicle and right hepatic vein. The right hepatic artery already controlled is double ligated with nonabsorbable suture (Cardionyl® 4.0), whereas the portal vein is sutured transversely with Cardionyl® 5.0 in order to prevent stricture of the remnant portal trunk. At this stage, the right biliary duct as the only remaining anatomical structure of the pedicle is in turn divided and closed with PDS 6.0. The right hepatic vein as the last structure holding the specimen, clearly exposed by a combined approach (extrahepatic dissection above the liver and laterally along the vena cava as well as medially by the parenchymal transection) is double clamped using DeBakey clamps and divided leaving sufficient length to perform a secure closure with Prolene® 4.0, or it may be divided using a vascular stapler. Alternatively, the right hepatic vein can be controlled and divided intrahepatically during the parenchyma transection. However, extrahepatic control reduces blood loss as the liver is divided and is very important maneuver for tumors close to the vena cava. Following the removal of the specimen, it is important to check for possible bile leaks by injecting methylene blue either via the cystic duct stump or the stump of the right bile duct before closing it. Bile leaks on the resection surface are easily visualized and selectively closed by using monofilament sutures. With the described technique for the parenchymal transection, the cut surface is usually dry, however, when required the hemostasis is achieved by gentle manual compression combined sometimes with application of biological fibrin glues.
\nFollowing resection, torsion of the mobilized left lobe may occur which can potentially lead to either kinking of the vessels in the hilum or the left hepatic vein. By refixing the falciform ligament this complication can be prevented. In addition, the diaphragmatic veins, vena cava, the surface of the parenchyma, hepatic artery and the integrity of the bile duct are checked before abdominal closure.
\nIn 2001 Belghiti described a technique termed the “liver hanging manoeuvre” (LHM). In this procedure, the liver is lifted by a tape passed between the anterior surface of the vena cava and the liver, thereby providing effective vascular control, in order to make the anterior approach safer and easier [15].
\nThe classic technique was first described to facilitate right hepatectomy by the anterior approach. In this first variant of the procedure, the anterior aspect of the suprahepatic IVC is exposed and the space between the right hepatic vein (RHV) and the middle hepatic vein (MHV) is dissected along the IVC axis for 2–3 cm, and when the dissection is complete, the hepatic parenchyma is looped up with a tape.
\nDuring the parenchymal transection, continuous upwards traction is applied on the tape by holding both its ends together. The tape ensures the safety of the underlying major vascular structures during transaction in a manner akin to dissecting on the finger to protect an important underlying structure. The tape elevates the liver, making it easier to transect, and constantly guides the surgeon towards the correct plane, thereby enabling a vertical transaction along the shortest possible route. The traction on the tape can also be regulated to provide control in instances of venous bleeding to help identify the vessel.
\nIn “up to down” technique, the classic technique is modified in order to increase its security that no major bleeding occurs during the maneuver [16]. The entire blind dissection of the RHIVC tunnel is performed in a craniocaudal direction in order to avoid the possible risk of RHV or MHV injury by the clamp inserted caudally. The maneuver is begun between the RHV and MHV, this space usually does not contain SHVs [17], and can be safely dissected for 3–4 cm downwards with a right-angled vascular clamp without any risk. The long axis of the RHIVC does not always represent a straight perpendicular line, but may take a straight-oblique or slightly curved course [17]. For this reason the dissection should be performed along a right oblique axis rather than in vertical direction to reduce the risk of injury to the caudate processus vein.
\nDrainage is carried out by silicone drains. Two drains are brought out on the lower edge of the surgical incision, one placed on the right subdiaphragmatic space near the resected surface, whereas the second drain whose end lies in the foramen of Winslow is placed under the liver. In general, we believe that hepatectomies should be drained as this measure reduces the risk of postoperative hematoma formation or bile collection.
\nThe patient is kept in ICU for a minimum of 12 h in order to begin monitoring potential postoperative complications (Table 1).
\n\n
| \n
Potential postoperative complications of right hepatectomy.
The adoption of a specific technique for right hepatectomy is related to the preference of the surgeon and for each specific situation, however, it is desirable that surgeons are familiar with various techniques available to perform the operation. An obvious example is the resection of large tumors of the right lobe in these cases and it is desirable, but impossible, to maintain the conventional mode of hepatic resection with mobilization of the wolf right prior to transection. Another example is the ability to promptly apply occlusion of vascular influx, or even total vascular exclusion, in case of bleeding during hepatectomy.
\nThe surgical risks associated with hepatic resection are now smaller, especially in specialized centers and high volume liver operations.
\n"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality. Throughout the world, we are seeing progress in attracting, retaining, and promoting women in STEMM. IntechOpen are certainly supporting this work globally by empowering all scientists and ensuring that women are encouraged and enabled to publish and take leading roles within the scientific community." Dr. Catrin Rutland, University of Nottingham, UK
",metaTitle:"Advantages of Publishing with IntechOpen",metaDescription:"We have more than a decade of experience in Open Access publishing. \n\n ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\\n\\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\\n\\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\\n\\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\\n\\nOur reach – Our books have more than 130 million downloads and more than 108,170 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\\n\\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\\n\\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\\n\\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\\n\\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\n\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\n\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\n\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\n\nOur reach – Our books have more than 130 million downloads and more than 108,170 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\n\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\n\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\n\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\n\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:117095},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10645",title:"TEST Luka EV",subtitle:null,isOpenForSubmission:!0,hash:"34c7613d332b05758ea87b460199db54",slug:null,bookSignature:"",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10646",title:"Rozmari - Test Book - Luka 13102020",subtitle:null,isOpenForSubmission:!0,hash:"b96ff714b24bc695b8dceba914430b85",slug:null,bookSignature:"",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10651",title:"Machine Learning",subtitle:null,isOpenForSubmission:!0,hash:"5806b4efae3bd91c3f56e64e0442df35",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10653",title:"Optimization Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"753812dbb9a6f6b57645431063114f6c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10653.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10660",title:"Heritage",subtitle:null,isOpenForSubmission:!0,hash:"14096773aa1e3635ec6ceec6dd5b47a4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10660.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:17},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:314},popularBooks:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9534",title:"Banking and Finance",subtitle:null,isOpenForSubmission:!1,hash:"af14229738af402c3b595d7e124dce82",slug:"banking-and-finance",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",editors:[{id:"206517",title:"Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"712",title:"Structural Engineering",slug:"engineering-civil-engineering-structural-engineering",parent:{title:"Civil Engineering",slug:"engineering-civil-engineering"},numberOfBooks:10,numberOfAuthorsAndEditors:110,numberOfWosCitations:34,numberOfCrossrefCitations:63,numberOfDimensionsCitations:97,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"engineering-civil-engineering-structural-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8355",title:"Infrastructure Management and Construction",subtitle:null,isOpenForSubmission:!1,hash:"65dbf9dbd943d058488488e73b6c592a",slug:"infrastructure-management-and-construction",bookSignature:"Samad M.E. Sepasgozar, Faham Tahmasebinia and Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/8355.jpg",editedByType:"Edited by",editors:[{id:"221172",title:"Dr.",name:"Samad M.E.",middleName:null,surname:"Sepasgozar",slug:"samad-m.e.-sepasgozar",fullName:"Samad M.E. Sepasgozar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8589",title:"Bridge Optimization",subtitle:"Inspection and Condition Monitoring",isOpenForSubmission:!1,hash:"f8713f4c0933358bac0d2f3d64ea34ff",slug:"bridge-optimization-inspection-and-condition-monitoring",bookSignature:"Yun Lai Zhou and Magd Abdel Wahab",coverURL:"https://cdn.intechopen.com/books/images_new/8589.jpg",editedByType:"Edited by",editors:[{id:"235629",title:"Dr.",name:"Yun Lai",middleName:null,surname:"Zhou",slug:"yun-lai-zhou",fullName:"Yun Lai Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7369",title:"Failure Analysis",subtitle:null,isOpenForSubmission:!1,hash:"6ef22a4739e8f6aa0eb6f7ee49f088c6",slug:"failure-analysis",bookSignature:"Zheng-Ming Huang and Sayed Hemeda",coverURL:"https://cdn.intechopen.com/books/images_new/7369.jpg",editedByType:"Edited by",editors:[{id:"196101",title:"Dr.",name:"Zheng-Ming",middleName:null,surname:"Huang",slug:"zheng-ming-huang",fullName:"Zheng-Ming Huang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8822",title:"Advances in Structural Health Monitoring",subtitle:null,isOpenForSubmission:!1,hash:"429d24d493e64821ae08df0a71d33e37",slug:"advances-in-structural-health-monitoring",bookSignature:"Maguid H.M. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/8822.jpg",editedByType:"Edited by",editors:[{id:"141308",title:"Prof.",name:"Maguid H.M.",middleName:null,surname:"Hassan",slug:"maguid-h.m.-hassan",fullName:"Maguid H.M. Hassan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6597",title:"Elasticity of Materials",subtitle:"Basic Principles and Design of Structures",isOpenForSubmission:!1,hash:"0fa760a58144d1a77a16afba49a3685d",slug:"elasticity-of-materials-basic-principles-and-design-of-structures",bookSignature:"Ezgi Günay",coverURL:"https://cdn.intechopen.com/books/images_new/6597.jpg",editedByType:"Edited by",editors:[{id:"186402",title:"Associate Prof.",name:"Ezgi",middleName:null,surname:"Günay",slug:"ezgi-gunay",fullName:"Ezgi Günay"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6957",title:"New Trends in Structural Engineering",subtitle:null,isOpenForSubmission:!1,hash:"8c26eaf65a25f29d43abd17ff651746f",slug:"new-trends-in-structural-engineering",bookSignature:"Hakan Yalciner and Ehsan Noroozinejad Farsangi",coverURL:"https://cdn.intechopen.com/books/images_new/6957.jpg",editedByType:"Edited by",editors:[{id:"72283",title:"Dr.",name:"Dr. Hakan",middleName:null,surname:"Yalciner",slug:"dr.-hakan-yalciner",fullName:"Dr. Hakan Yalciner"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5503",title:"Wood in Civil Engineering",subtitle:null,isOpenForSubmission:!1,hash:"fb659c92f0d45acc8f960d9a656b54e2",slug:"wood-in-civil-engineering",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/5503.jpg",editedByType:"Edited by",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6015",title:"Proceedings of the 2nd Czech-China Scientific Conference 2016",subtitle:null,isOpenForSubmission:!1,hash:"86a180d0c50ce1f279a1b4d6e3cf0e69",slug:"proceedings-of-the-2nd-czech-china-scientific-conference-2016",bookSignature:"Jaromir Gottvald and Petr Praus",coverURL:"https://cdn.intechopen.com/books/images_new/6015.jpg",editedByType:"Edited by",editors:[{id:"200987",title:"Prof.",name:"Jaromir",middleName:null,surname:"Gottvald",slug:"jaromir-gottvald",fullName:"Jaromir Gottvald"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5248",title:"Structural Bridge Engineering",subtitle:null,isOpenForSubmission:!1,hash:"8a6b781d7ca98b6008887c99915a62ec",slug:"structural-bridge-engineering",bookSignature:"Shahiron Shahidan, Shahrul Niza Mokhatar, Mohd Haziman Wan Ibrahim, Norwati Jamaluddin, Zainorizuan Mohd Jaini and Noorwirdawati Ali",coverURL:"https://cdn.intechopen.com/books/images_new/5248.jpg",editedByType:"Edited by",editors:[{id:"145588",title:"Dr.",name:"Shahiron",middleName:null,surname:"Shahidan",slug:"shahiron-shahidan",fullName:"Shahiron Shahidan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2193",title:"Advances on Analysis and Control of Vibrations",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"926bac5ebecf5b70140e42105b5e2527",slug:"advances-on-analysis-and-control-of-vibrations-theory-and-applications",bookSignature:"Mauricio Zapateiro de la Hoz and Francesc Pozo",coverURL:"https://cdn.intechopen.com/books/images_new/2193.jpg",editedByType:"Edited by",editors:[{id:"148213",title:"Dr.",name:"Mauricio",middleName:null,surname:"Zapateiro",slug:"mauricio-zapateiro",fullName:"Mauricio Zapateiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:10,mostCitedChapters:[{id:"38705",doi:"10.5772/50293",title:"LPV Gain-Scheduled Observer-Based State Feedback for Active Control of Harmonic Disturbances with Time-Varying Frequencies",slug:"lpv-gain-scheduled-observer-based-state-feedback-for-active-control-of-harmonic-disturbances-with-ti",totalDownloads:1849,totalCrossrefCites:11,totalDimensionsCites:11,book:{slug:"advances-on-analysis-and-control-of-vibrations-theory-and-applications",title:"Advances on Analysis and Control of Vibrations",fullTitle:"Advances on Analysis and Control of Vibrations - Theory and Applications"},signatures:"Wiebke Heins, Pablo Ballesteros, Xinyu Shu and Christian Bohn",authors:[{id:"146079",title:"Prof.",name:"Christian",middleName:null,surname:"Bohn",slug:"christian-bohn",fullName:"Christian Bohn"},{id:"146081",title:"Mr.",name:"Pablo",middleName:null,surname:"Ballesteros",slug:"pablo-ballesteros",fullName:"Pablo Ballesteros"},{id:"146082",title:"Ms.",name:"Wiebke",middleName:null,surname:"Heins",slug:"wiebke-heins",fullName:"Wiebke Heins"},{id:"146083",title:"Mr.",name:"Xinyu",middleName:null,surname:"Shu",slug:"xinyu-shu",fullName:"Xinyu Shu"}]},{id:"38704",doi:"10.5772/50294",title:"LPV Gain-Scheduled Output Feedback for Active Control of Harmonic Disturbances with Time-Varying Frequencies",slug:"lpv-gain-scheduled-output-feedback-for-active-control-of-harmonic-disturbances-with-time-varying-fre",totalDownloads:1315,totalCrossrefCites:8,totalDimensionsCites:9,book:{slug:"advances-on-analysis-and-control-of-vibrations-theory-and-applications",title:"Advances on Analysis and Control of Vibrations",fullTitle:"Advances on Analysis and Control of Vibrations - Theory and Applications"},signatures:"Pablo Ballesteros, Xinyu Shu, Wiebke Heins and Christian Bohn",authors:[{id:"146079",title:"Prof.",name:"Christian",middleName:null,surname:"Bohn",slug:"christian-bohn",fullName:"Christian Bohn"}]},{id:"53394",doi:"10.5772/66780",title:"PFPM: Discovering Periodic Frequent Patterns with Novel Periodicity Measures",slug:"pfpm-discovering-periodic-frequent-patterns-with-novel-periodicity-measures",totalDownloads:982,totalCrossrefCites:7,totalDimensionsCites:8,book:{slug:"proceedings-of-the-2nd-czech-china-scientific-conference-2016",title:"Proceedings of the 2nd Czech-China Scientific Conference 2016",fullTitle:"Proceedings of the 2nd Czech-China Scientific Conference 2016"},signatures:"Philippe Fournier-Viger, Chun-Wei Lin, Quang-Huy Duong, Thu-Lan\nDam, Lukáš Ševčík, Dominik Uhrin and Miroslav Voznak",authors:[{id:"200987",title:"Prof.",name:"Jaromir",middleName:null,surname:"Gottvald",slug:"jaromir-gottvald",fullName:"Jaromir Gottvald"}]}],mostDownloadedChaptersLast30Days:[{id:"70758",title:"Bridges: Structures and Materials, Ancient and Modern",slug:"bridges-structures-and-materials-ancient-and-modern",totalDownloads:451,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"infrastructure-management-and-construction",title:"Infrastructure Management and Construction",fullTitle:"Infrastructure Management and Construction"},signatures:"Arturo Gonzalez, Michael Schorr, Benjamin Valdez and Alejandro Mungaray",authors:[{id:"16436",title:"Dr.",name:"Michael",middleName:null,surname:"Schorr",slug:"michael-schorr",fullName:"Michael Schorr"},{id:"65522",title:"Dr.",name:"Benjamin",middleName:null,surname:"Valdez",slug:"benjamin-valdez",fullName:"Benjamin Valdez"},{id:"311533",title:"MSc.",name:"Arturo",middleName:null,surname:"Gonzalez",slug:"arturo-gonzalez",fullName:"Arturo Gonzalez"},{id:"311534",title:"Dr.",name:"Alejandro",middleName:null,surname:"Mungaray",slug:"alejandro-mungaray",fullName:"Alejandro Mungaray"}]},{id:"65037",title:"Monitoring of Critical Metallic Assets in Oil and Gas Industry Using Ultrasonic Guided Waves",slug:"monitoring-of-critical-metallic-assets-in-oil-and-gas-industry-using-ultrasonic-guided-waves",totalDownloads:436,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances-in-structural-health-monitoring",title:"Advances in Structural Health Monitoring",fullTitle:"Advances in Structural Health Monitoring"},signatures:"Anurag Dhutti, Shehan Lowe and Tat-Hean Gan",authors:null},{id:"61413",title:"Prefabricated Steel-Reinforced Concrete Composite Column",slug:"prefabricated-steel-reinforced-concrete-composite-column",totalDownloads:1298,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"new-trends-in-structural-engineering",title:"New Trends in Structural Engineering",fullTitle:"New Trends in Structural Engineering"},signatures:"Hyeon-Jong Hwang",authors:null},{id:"65174",title:"Applications of Infrared Thermography for Non-destructive Characterization of Concrete Structures",slug:"applications-of-infrared-thermography-for-non-destructive-characterization-of-concrete-structures",totalDownloads:557,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"advances-in-structural-health-monitoring",title:"Advances in Structural Health Monitoring",fullTitle:"Advances in Structural Health Monitoring"},signatures:"Ravibabu Mulaveesala, Geetika Dua and Vanita Arora",authors:null},{id:"69602",title:"Structural Health Monitoring from Sensing to Processing",slug:"structural-health-monitoring-from-sensing-to-processing",totalDownloads:363,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances-in-structural-health-monitoring",title:"Advances in Structural Health Monitoring",fullTitle:"Advances in Structural Health Monitoring"},signatures:"Yoann Hebrard",authors:null},{id:"65199",title:"Nanotechnology and Development of Strain Sensor for Damage Detection",slug:"nanotechnology-and-development-of-strain-sensor-for-damage-detection",totalDownloads:476,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"advances-in-structural-health-monitoring",title:"Advances in Structural Health Monitoring",fullTitle:"Advances in Structural Health Monitoring"},signatures:"Yumna Qureshi, Mostapha Tarfaoui, Khalil K. Lafdi and Khalid Lafdi",authors:null},{id:"50780",title:"History of Sustainable Bridge Solutions",slug:"history-of-sustainable-bridge-solutions",totalDownloads:1733,totalCrossrefCites:3,totalDimensionsCites:2,book:{slug:"structural-bridge-engineering",title:"Structural Bridge Engineering",fullTitle:"Structural Bridge Engineering"},signatures:"Slawomir Karas",authors:[{id:"182839",title:"Dr.",name:"Slawomir",middleName:null,surname:"Karas",slug:"slawomir-karas",fullName:"Slawomir Karas"}]},{id:"53959",title:"Exterior Wood Coatings",slug:"exterior-wood-coatings",totalDownloads:2057,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"wood-in-civil-engineering",title:"Wood in Civil Engineering",fullTitle:"Wood in Civil Engineering"},signatures:"Mojgan Nejad and Paul Cooper",authors:[{id:"193511",title:"Dr.",name:"Mojgan",middleName:null,surname:"Nejad",slug:"mojgan-nejad",fullName:"Mojgan Nejad"},{id:"194021",title:"Emeritus Prof.",name:"Paul",middleName:null,surname:"Cooper",slug:"paul-cooper",fullName:"Paul Cooper"}]},{id:"53126",title:"Traditional Wooden Buildings in China",slug:"traditional-wooden-buildings-in-china",totalDownloads:2451,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"wood-in-civil-engineering",title:"Wood in Civil Engineering",fullTitle:"Wood in Civil Engineering"},signatures:"Ze-li Que, Zhe-rui Li, Xiao-lan Zhang, Zi-ye Yuan and Biao Pan",authors:[{id:"191878",title:"Prof.",name:"Ze-li",middleName:null,surname:"Que",slug:"ze-li-que",fullName:"Ze-li Que"},{id:"205443",title:"Dr.",name:"Zhe-rui",middleName:null,surname:"Li",slug:"zhe-rui-li",fullName:"Zhe-rui Li"},{id:"205444",title:"Dr.",name:"Xiao-lan",middleName:null,surname:"Zhang",slug:"xiao-lan-zhang",fullName:"Xiao-lan Zhang"},{id:"205445",title:"Dr.",name:"Zi-ye",middleName:null,surname:"Yuan",slug:"zi-ye-yuan",fullName:"Zi-ye Yuan"},{id:"205446",title:"Dr.",name:"Biao",middleName:null,surname:"Pan",slug:"biao-pan",fullName:"Biao Pan"}]},{id:"65016",title:"The Importance of Emissivity on Monitoring and Conservation of Wooden Structures Using Infrared Thermography",slug:"the-importance-of-emissivity-on-monitoring-and-conservation-of-wooden-structures-using-infrared-ther",totalDownloads:563,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"advances-in-structural-health-monitoring",title:"Advances in Structural Health Monitoring",fullTitle:"Advances in Structural Health Monitoring"},signatures:"João Crisóstomo and Rui Pitarma",authors:null}],onlineFirstChaptersFilter:{topicSlug:"engineering-civil-engineering-structural-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/187835/felipe-zuniga",hash:"",query:{},params:{id:"187835",slug:"felipe-zuniga"},fullPath:"/profiles/187835/felipe-zuniga",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()