A wide range of malignant and nonmalignant diseases require hematopoietic stem cell transplantation (HSCT) as last resort therapeutic approach. Graft versus host disease (GVHD), which is one of the major causes of transplant-related mortality, is minimized whenever increased matching of human leukocyte antigens (HLAs) between donor and recipient is present. Suitable donor selection is determined with the utilization of HLA typing. HLAs are highly polymorphic glycoproteins encoded by a region of genes known as the major histocompatibility complex (MHC). Their biological function is to present antigenic peptides to T lymphocytes. However, they also play important role in HSCT acceptance/rejection. During the previous years, various techniques have been acquired in order to better characterize the HLA profile of transplant donors and recipients. This effort is particularly challenging due to MHC size, but most importantly due to high sequence variability in specific regions of the respective genetic loci, between individuals. Initially, HLA typing was performed using serological typing, hybridization techniques, and restriction fragment length polymorphism (RFLP) approaches. Later on, polymerase chain reaction (PCR) based techniques and direct sequencing (dideoxy-based Sanger sequencing) capillary electrophoretic analyses arose. Nowadays, 2nd and 3rd generation sequencing (NGS) technologies show great potential in effectively identifying these polymorphic regions.
Part of the book: Umbilical Cord Blood Banking for Clinical Application and Regenerative Medicine