Polymer coatings play a crucially important role in protecting smart city facilities against the harsh factors of outdoor environments. Recent increased awareness of eco‐friendliness has led to the use of waterborne organic coatings. Research into the bulk material properties of these coatings is necessary in order to understand their degradation process in the field. The present work focuses attention on a unique rheological property, which has both elastic and viscous characteristics, as a means of assessing the stability of the coating. The viscoelastic property determines whether it presents solid‐like or liquid‐like response from the comparison of relative strengths of the relaxation time (τ) and operating time (t). In the process of degradation, both the storage (E′) and loss modulus (E″), which represent the elastic and viscous components, respectively, decrease accordingly, reflecting the deterioration of coating. The majority of the water molecules absorbed in a coating are strongly bound to the polymer network through hydrogen bonds with polar functional groups, which destroys intermolecular bonding between macromolecules and reduces the bulk materials’ ability to diffuse stress concentrations and thereby lowers a coating’s overall strength.
Part of the book: Smart Cities Technologies