Soil contamination could adversely affect microbial diversity, and perhaps also above‐ and below‐ground ecosystem functioning. It is important to study microbial diversity not only for basic scientific research, but also to understand the link between diversity and community structure and function in the pollution site. The study of microbial diversity and their function in contaminated soil creates a serious problem because they observed significant limitations in methodology and taxonomy of this group. Methodology for the determination of bacterial diversity does not include their function in the soil and other environment areas. Microbes are known for their catabolic activity in bioremediation, but changes in microbial communities are still unpredictable. The bioremediation of a pollutant and its rate depend on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. However, molecular methods have been used to study soil bacterial communities. While many anthropogenic activities, such as city development, agriculture, and use of pollution, can potentially affect soil microbial diversity, it is unknown how changes in microbial diversity can influence below‐ground and above‐ground ecosystems. There are problems associated with studying bacterial diversity in soil. These arise not only from methodological limitations, but also from a lack of taxonomic knowledge. Methods to measure microbial diversity in soil can be categorized into two groups: biochemical‐based techniques and molecular‐based techniques. But more common for studying microbial diversity in soil contaminated with polycyclic aromatic hydrocarbons are the molecular methods.
Part of the book: Soil Contamination