Circular vortex flows generate interesting self-organizing phenomena of particle motions, that is, particle clustering and classification phenomena. These phenomena result from interaction between vortex dynamics and relaxation of particle velocity due to drag. This chapter introduces particle clustering in stirred vessels and particle classification in Taylor vortex flow based on our previous research works. The first part of this chapter demonstrates and explains a third category of solid-liquid separation physics whereby particles spontaneously localize or cluster into small regions of fluids by taking the clustering phenomena in stirred vessels as an example. The second part of this chapter discusses particle classification phenomena due to shear-induced migration. Finally, this chapter discusses about process intensification utilizing these self-organizing phenomena of particle motions in vortex flows.
Part of the book: Vortex Dynamics and Optical Vortices
The present chapter provides an overview of vortex dynamics in complex fluids by taking examples of Taylor vortex flow. As complex fluids, non-Newtonian fluid is taken up. The effects of these complex fluids on the dynamic behavior of vortex flow fields are discussed. When a non-Newtonian shear flow is used in Taylor vortex flow, an anomalous flow instability is observed, which also affects heat and mass transfer characteristics. Hence, the effect of shear-thinning on vortex dynamics including heat transfer is mainly referred. This chapter also refers to the concept of new vortex dynamics for chemical process intensification technologies that apply these unique vortex dynamics in complex fluids in Conclusions.
Part of the book: Vortex Dynamics