Many plants or plant-derived compounds with high levels of antioxidants and anti-inflammatory, immunomodulatory, and antimicrobial properties could be of great benefit for wound healing. Several studies have documented the use of plant extracts for the development of bioactive wound dressings. The purpose of this chapter is to give an update about the vegetal and bee products, which can be used as bioactive substances in wound dressings or in other formulations for wound healing. The adverse effects of plant and bee extracts, such as contact allergies, are also presented. In order to better exploit the huge reservoir of pharmacologically active plant-derived compounds and extracts, standardized methodology and clinical trials are necessary to give more concrete evidence supporting the use of traditional medicine in wound management.
Part of the book: Worldwide Wound Healing
The most recent World Health Organization report revealed that the number of adults suffering from diabetes has almost quadrupled since 1980 to 422 million, thus drawing attention to the urgent need to step up prevention and treatment of this disease. This chronic ailment is often associated with serious complications such as increased risk of heart disease, stroke and kidney failure. In 2012 alone, diabetes lead to 1.5 million deaths. This dramatic rise is mainly due to the increased prevalence of type 2 diabetes and factors driving it include overweight and obesity. Novel studies in this area have advanced our understanding regarding the complex relationship between diet, gut microbiota and diabetes. Despite no clear microbiota signature is associated with diabetes, patients harbour a reduction of butyrate-producing species (Faecalibacterium prausnitzii, Roseburia intestinalis) as well as an increase in opportunistic pathogens. Furthermore, the functions of the gut microbiome (i.e., vitamin metabolism, transport of sugars, carbohydrate metabolism, short chain fatty acid (SCFA) synthesis, etc.) are also different in patients with type 2 diabetes, a fact that may significantly alter the course of disease. Diet is one of the most decisive factors that have an impact on the gut microbiome. Nutritional interventions using prebiotics (i.e., inulin-type fructans), polyphenols and arabinoxylans have been employed for the treatment of diabetes. Besides the shifts produced by these dietary components in the microbiome composition, it is worth mentioning their impact on host physiology through modulation of gut peptide production and glucose metabolism. The information presented within this chapter summarizes the most recent advances in the study of the microbiome-diet-diabetes interplay and analyses how these novel findings can be used in order to establish new therapeutic approaches for those with diabetes.
Part of the book: Pathophysiology
Methicillin-resistant Staphylococcus aureus (MRSA) strains are known for their emergent multi-drug resistance phenotypes, implication in nosocomial infections and outbreaks worldwide, being commonly associated with hospital-acquired MRSA (HA-MRSA) and community-acquired MRSA (CA-MRSA) skin and soft tissue infections. S. aureus causes a wide spectrum of clinical symptoms, ranging from mild to life-threatening diseases; disease severity is determined by microorganism-related virulence factors and host condition. The ability of these strains to form microbial biofilms, one of the main pathogenicity factors, generates difficult medical problems, favored by the widespread use of large invasive medical procedures (probes, catheters, heart valves, prostheses). Contamination of these devices is associated with the risk of subsequent development of human infections. The knowledge of virulence and antibiotic resistance patterns of HA-MRSA and CA-MRSA and encoding genes are very important for supporting effective infection control measures and therapy of staphylococcal infections.
Part of the book: Staphylococcus Aureus